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Connections between inflammation and diseases are suggested important in understanding the genetic
mechanisms of diseases. However, studies on the functional cross-links between inflammation and disease
genes are still in their early stages. We integrated the protein-protein interaction (PPI), inflammation genes,
and gene-disease associations to construct a disease-inflammation network (DIN). We found that nodes,
which are both inflammation and disease genes (namely inter-genes), are topologically important in the
DIN structure. Via mapping inter-genes to PPI, we classified diseases into two categories, which are
significantly different in Intimacy measuring the contribution of inflammation genes to the connections
between disease pairs. Furthermore, we constructed a cross-talking subpathways network. As indicated, the
cross-subpathway analysis shows great performance in capturing higher-level relationship among
inflammation and disease processes. Collectively, The network-based analysis provides us a rather
promising insight into the intricate relationship between inflammation and disease genes.

ne of the major tasks for contemporary biology and medicine is to decipher the underlying mechanisms

of human complex diseases. Inflammation has been proposed as the seventh hallmark of cancer’, which

significantly contributes to different development stages of various diseases. Researches on the links
between inflammation and disease genes are thus helpful to understand the complex nature of human genetic
diseases. However, few systematic studies on the functional links have been reported.

During the past decades, great efforts have been dedicated to identifying disease-related genes, proteins, and
metabolites, which directly or indirectly connect to each other through computational or experimentally vali-
dated interactions. In an early study on inflammatory diseases, such as rheumatoid arthritis and inflammatory
bowel disease, Heller et al.” identified disease-related genes by using cDNA microarrays. Later, with the advent of
sequencing, Jones et al.> implicated PALB2 as a susceptibility gene of pancreatic cancer with the use of exomic
sequencing. An early systemic study of human disease genes completed by Wu et al., integrated human protein-
protein interactions and known gene-phenotype associations to systematically predict disease genes related to
various phenotypes. Turner et al.’> and Furney et al.° also contributed to the studies of human disease genes.
However, few studies have focused on the relationships among genes corresponding to different disease pheno-
types. Goh et al.” constructed a disease phenome network (human disease network, HDN) and a disease genome
network (disease gene network, DGN), which indicated a common genetic origin of many diseases through
disease-gene association pairs. Recently, inflammation, as an important factor in the initiation and progression of
various diseases, has been generally accepted. Donoso et al.* explored the role of inflammation in age-related
macular degeneration. In another study on colorectal cancer, Itzkowitz et al.” emphasized the important roles of
inflammation. Nevertheless, none of the studies have systematically characterized the functional links between
inflammation and disease genes at a network level.

In this study, we focused on inflammation, controlled by both environmental and genetic factors and which is
one of the most pivotal factors in inducing various diseases, to study the functional cross-links between inflam-
mation and disease genes, as well as the mechanisms of their action. We integrated the human PPI network,
inflammation genes, and gene-disease associations to construct a disease-inflammation network (DIN) and then
dissected the topological characteristics of the network. In order to describe the relationships between inflam-
mation and disease genes from a systems perspective, we classified diseases into type I diseases, which are
significantly associated with inflammation genes, and type II diseases, which are not. Subsequently, we defined
Intimacy as the contribution of inflammation genes to the connections between one disease and another, which
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tends to be higher in type I diseases. Finally, we showed that inflam-
mation genes make great contributions to connections between most
genetic diseases, especially in the associations between infection and
immunity, as well as between infection and cancer, at a network level
and a subpathway network level.

Results
Construction of the DIN. The local inflammatory microenviron-
ment, which is essential for the initiation and progression of various
diseases, can be depicted by representative inflammation genes. To
interpret the functional links between genetic diseases and inflam-
matory microenvironment, we used disease and inflammation genes
to construct a disease-inflammation network (DIN), integrating PPI
information and gene-disease associations. There are 2831 disease-
related genes curated by the GAD and 231 inflammation genes
generated from the GO database'®. We mapped all these genes to
the PPI network of the HPRD and then extracted the maximal
connected component as the DIN (Figure 1).

As shown in Figure 1, the DIN contained 1867 nodes with 6252
interactions. Finally, 1815 disease genes and 160 inflammation genes
were included.

Dissection of the DIN. To delicately depict the functional cross-
links between disease and inflammation genes in the network, we

first examined the overlap among disease genes, inflammation genes,
and PPI nodes (Figure 2A). As shown, we could classify the nodes in
the DIN as disease genes only, inflammation genes only, or both
disease and inflammation genes (henceforth, inter-genes). Subsequ-
ently, we determined the topological characteristics of the DIN, such
as the degree, clustering, and topological coefficient. The degree
distribution followed p(k) o< k™°°*¢ using all the nodes in the DIN
(Figure 2B), which showed that the DIN is a scale-free biological
network. In a scale-free network', most of the nodes have only a
few interactions, whereas a few nodes with a large number of
interactions are tended to be hubs. We further examined the degree
distributions of three kinds of nodes in the DIN. As shown, the
general degree distribution of nodes that are inter-genes was
significantly greater than that of nodes that are disease genes only,
with a p-value of 0.005 (Wilcoxon’s Rank-Sum Test, Figure 2C).
Similarly, it was also significantly higher, when comparing the
degree distribution of inter-genes with inflammation genes only (p
= 0.0012, Wilcoxon’s Rank-Sum Test, Figure 2C). While those nodes
in the DIN that are inflammation genes only had a median degree of
3, which is definitely equal to that of nodes that are disease genes only
(p = 0.0628, Wilcoxon’s Rank-Sum Test, Figure 2C). Besides, in order
to properly control the analysis of inflammation genes and disease
genes, we again compared them with non-disease genes in the original
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Figure 1| The disease and inflammation network (DIN). The network is constructed by mapping disease genes and inflammation genes to the PPI
network and then generating the maximal connected component as the DIN. Inflammation genes are colored in grey and disease genes are colored
according to their classes. Those genes that are both inflammation genes and disease genes are drawn with black border. MD denotes genes involved in

multiple disease classes.
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Figure 2 | Topological analysis of the DIN. The number of overlapping genes among the nodes of the PPI network, disease genes, and inflammation genes
are shown in (A). Black arrow indicates the three categories of inter-genes, inflammation genes only and disease genes only in the DIN. (B) Degree
distribution for all the nodes in the DIN is plotted on the x-axis, and the numbers of genes are plotted on the y-axis. (C) Degree distribution for three
categories of nodes in the DIN. Significance tests were based on the Wilcoxon’s Rank-Sum Test and p values for comparisons between inter-genes and
disease genes only, and between inter-genes and inflammation genes only are both less than 0.01. Clustering coefficients (D) and topological coefficients
(E) for all the nodes in the DIN are plotted on the y-axis, and the corresponding degrees are plotted on the x-axis.

PPI network. As indicated, the general degree distribution is signifi-
cantly higher when comparing inflammation genes with non-disease
genes (p = 6.8293e-07, Wilcoxon’s Rank-Sum Test, Supplementary
Figure 1), as well as comparing disease genes with non-disease genes

(p = 2.4687¢-75, Wilcoxon’s Rank-Sum Test, Supplementary Figure 1).
Moreover, in the DIN, the shortest paths show a similar tendency just
as the degree distributions for the three kinds of nodes, with nodes
that are inter-genes having significantly shorter length of paths.
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The clustering coefficient of each node in the network is a measure
of the tendency of nodes in a network to form clusters or groups'>. In
Figure 2D, we found that, with an increase in the node degree, the
clustering coefficient decreases. In addition to clustering coefficient,
the topological coefficient is also computed'?, which is used to mea-
sure the extent to which a node shares links with the others in a
network. As shown in Figure 2E, with an increase in the node degree,
the topological coefficient increases, which was consistent with pre-
vious researches on biological network structures'*'¢. Additionally,
in consideration of the accuracy of topological analysis, we also
compared mean values of degree (Supplementary Figure 2), cluster-
ing coefficient (Supplementary Figure 3), and topological coefficient
(Supplementary Figure 4) of all nodes in the DIN with random
distribution, separately. 1000 random DINs were extracted from
1000 random PPI networks, using edge permutation with degree of
each node in the original PPI unchanged. As shown, all these topo-
logical parameters were significantly higher as comparing with the
random distributions.

To further confirm the reality of the DIN, the number of nodes and
edges in the real DIN were also compared with the random distri-
bution. As shown in Figure 3, the average number of nodes and edges
across 1000 random DINs were significantly smaller than that of the
real DIN.

Characterization of the functional cross-links between disease and
inflammation genes at a network level. To explore the functional
cross-links between disease and inflammation genes, we further
mapped 121 inter-genes to the human PPI network and then
calculated the significance of the overlap between inter-genes and
the PPI network through hypergeometric distribution. With 121
inter-genes mapped to the human PPI network, a significant
overlap was observed with a p-value of 3.6713e-32 (Figure 4A,
hypergeometric distribution). Subsequently, we focused on the 121
overlapping genes, which formed a new network with the maximal
connected component containing 32 genes and 49 relationships
(Figure 4B). As shown by the result, inflammation genes tend to be
associated with multiple disease genes, which indicates an important
role of inflammation genes in contributing to genetic diseases in the
network. We also examined the distribution of 121 genes into 18
disease classes according to the GAD classification system by
excluding the classes “unknown” and “other” (Figure 4C). We
showed that the class “immune” overlaps with most inflammation
genes, which suggests that alterations in the focal inflammatory
microenvironment are more associated with immunity. Further-
more, some inter-genes are shared by different disease classes,
termed as multiple diseases (MD), as illustrated in Figure 4B,
which shows the multiple functions of inflammation in various
genetic diseases (Figure 4C).

To show the statistical significance of the overlap between inflam-
mation and disease genes, the p-value and fold-enrichment ratios
(FER) were calculated (Figure 4D). Only four classes, namely
chemo-dependency, developmental, normal variation, and psycho-
logical disease, were not significant (p > 0.001). We termed these
diseases as non-inflammation-related diseases (NIRD). On the con-
trary, those diseases with a significant overlap with inflammation
were termed as inflammation-related diseases (IRD). In addition to
the most highly associated class “immune”, the disease class cardio-
vascular, infection, and cancer were also in relation to inflammation,
which has been supported by literature'”'®. In order to measure the
contribution of inflammation genes to the connections between one
disease to another, we further examined the Intimacy of each pair of
diseases in the two disease categories of IRD and NIRD (details in
Methods). For each pair of diseases, we constructed 1000 random
pseudo-inflammation gene sets, and then computed the random
Intimacy values to construct a random distribution. By comparing
the real Intimacy with the random distribution of Intimacy, we could

define the significance of the Intimacy for the pair of diseases
(Figure 5A).

As indicated by the results, Intimacy, among IRD tended to be
higher than that in NIRD, which suggests the potential functions of
inflammation genes in bridging the connection between each pair of
diseases. Biologically, the computation of Intimacy is designed to
take the direction of disease conversion between each pair of diseases
into consideration. Therefore, in order to measure the general level of
Intimacy between each disease pair, we ranked all disease pairs based
on the sum of Intimacy for each disease pair with direction informa-
tion (i.e. sum of Intimacy from disease A to B and that from disease B
to A; Supplementary Table 1). The most associated disease classes
bridged by inflammation genes are “immune” and “infection”,
which has already been supported by literature'**'. Therefore,
Intimacy defined by inflammation genes, which are also part of
immune response and infection, contributing to the connections
between immune and infection is unsurprisingly the most relevant
one. Others ranking in the top 5 includes disease pair of cardiovascu-
lar and metabolic (Supplementary Figure 5)*>**, cardiovascular and
immune (Supplementary Figure 6)***°, and aging and cancer
(Supplementary Figure 7)***’, whose connections have already been
shown in relation with the bridgeness of inflammation genes. Disease
pair of normal variation and metabolic was suggested by us to be
newly involved. As supported by the literature®®*, metabolic system
is one of the most fundamental requirements for survival, whose
proper function is mutually dependent on immune response.
Inflammation could cause disequilibrium of the mutual dependence
of metabolic and immune systems and then lead to chronic disorders
of homeostasis. Beta-glucuronidase belonging to the disease class of
normal mutation, which is generally known to be associated with
inflammation in the exudates from gingival®®>. We therefore inferred
the disease pair of normal variation and metabolic could be bridged
by inflammation genes in proper conditions.

To further explain in detail the Intimacy bridged by inflammation
genes, we focused on two specific disease pairs. The maximal con-
nected component of the genes of each given pair of diseases was
generated after mapping these genes to the human PPI network and
then defined as the gene module of this pair of disease classes. We
took the gene modules of two pairs of diseases as examples: the pair of
infection and immunity (Figure 5B) and the pair of infection and
cancer (Figure 5C). Generally, genes with higher degree, such as
NFKB1 (Figure 5B), RXRA (Figure 5B), RELA (Figure 5C) and
CCR5 (Figure 5C), tend to be hubs in the gene modules, and are
believed to have much more impact on the global structure of the
module networks. The transcription factor NFKBI (Figure 5B) is the
most abundant form of NF-kappa-B, which is complexed with
the product of the gene RELA (Figure 5C). NF-kappa-B*'** is a
transcription factor that is activated by various intra- and extracel-
lular stimuli, such as cytokines, oxidant free radicals, ultraviolet irra-
diation, and bacterial or viral products. The expression of genes
regulated by Rel/NFKB members is involved in immunity and apop-
totic and oncogenic processes; thus, NFKB1*, as an inflammation
gene, is important in linking infection and immunity. Because NF-
KB plays a well-known function in the regulation of inflammation,
we thus reasoned that inflammation bridges infection and immunity.
Epidemiologic studies**** have shown that chronic inflammation
predisposes individuals to various types of cancer. Furthermore, it
is estimated that the underlying infections that could cause chronic
inflammation are linked to approximately 15% of all deaths from
cancer worldwide®®. RELA, as an important inflammatory factor, is
involved in linking infection and cancer through the mediator of
inflammation® . We thus conclude that the inflammation genes
NFKB1 and RELA are important in the link between infection and
immunity, as well as between infection and cancer. Additionally,
disease gene RXRA (Figure 5B) and CCR5 (Figure 5C) have been
partially validated to be linked to the process of immune***" and
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the number of nodes and edges in the DIN indicated by a red downward arrow.

infection, respectively*>*’. Nevertheless, further researches on these
two and some other genes are needed to understand the cellular and
molecular mechanisms mediated by them underlying those complex
diseases.

Further dissection of the functional cross-links based on disease-
and inflammation-related subpathways. To further assess the func-
tional cross-links between disease and inflammation genes, we
constructed a subpathway-subpathway network based on disease-
related subpathways, inflammation-related subpathways, and pathway

structure data. Using the iSubpathwayMiner software package,
disease class-related and inflammation-related subpathways were
generated according to 15149 unique gene-disease associations
involving 18 disease classes and 2831 disease genes. Any two sub-
pathways that are significantly enriched for common genes were
connected by an edge in the final subpathway-subpathway net-
work if the gene overlapping between them was significant (p <
0.01, hypergeometric distribution). We thus constructed a subpath-
way-subpathway cross-talk network (Figure 6A) with 202 subpath-
way nodes and 716 edges.
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inflammation genes in bridging the connections between disease pairs. Gene modules were generated from disease pair of infection and

immunity, and disease pair of infection and cancer, separately.

In parallel with the two gene modules (Figure 5B and 5C) gener-
ated from the PPI network, two disease- and inflammation-related
subpathway-based subnetworks extracted from the subpathway
network were much more representative of the bridgeness of disease
and inflammation genes. For example, five inflammation-related
subpathways (path:04620_3, path:04620_11, path:04722_1, path:
05131_2, and path:04620_9) mediated the connections between
infection and immunity (Figure 6B). In agreement with Figure 5B,
NFKBI1 and RELA also emerged as the essential genes in linking
infection and immunity when searching for the common genes
shared by both inflammation- and infection-related subpathways,

as well as inflammation- and immune-related subpathways. Some
new genes were also included, such as IRAK4, IRAK1, and MYD88.
Shared by multiple immune-, inflammation-, and infection-related
subpathways, such as path:05145_1, path:04722_1, and path:
04620_5, the inflammation gene IRAK1* is a critical mediator of
innate immunity, which is also important in the immune response
corresponding to viral infection*>*. Similarly, another IRAK family
member, IRAK4, is also in control of the immune response to intra-
cellular infection, such as Chlamydia pneumonia*. Furthermore, the
sharing of path:05145_1, path:04620_3, and path:04620_11 by the
inflammation gene MYD88 is also critical in the connection between
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Figure 6 | The cross-talking subpathway network based on disease- and inflammation-related subpathways. The whole subpathway-subpathway cross-
talking network contained 202 subpathway nodes and 716 edges. The rectangles in the network correspond to disease- and inflammation-related
subpathways. The nodes are colored according to their categories, which contains 18 disease classes obtained from the GAD database (A). (B ~ C)
Examples of subpathway-supathway network showing functional connections bridged by inflammation genes. The network in (B) was generated by
extracting inflammation-, immune-, and infection-related subpathways, and the network in (C) was generated through extracting inflammation-,
cancer-, and infection-related subpathways.
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infection and immunity mediated by inflammation. Takeuchi et al.*®

confirmed that mice with MyD88 deficiency are highly susceptible to
Staphylococcus aureus infection and that immune cells can be acti-
vated through the TLR7 MyD88-dependent signaling pathway*’.
With regard to the connection between infection and cancer
mediated by inflammation (Figure 6C), the IL1B and TNF contained
in path: 04620_9 are also implicated in the link between inflam-
mation and cancer, in addition to the above-discussed inflammation
genes NFKB1, RELA, MyD88, IRAK4, and IRAKI. Gene poly-
morphisms in IL1B and TNF could induce cancer risk through an
inflammatory microenvironment in several different popula-
tions®>*'. In addition, the NFKB1 and RELA that reside in the NF-
kB node of path:04620_9 and the NF-kB signaling pathway that
resides upstream of path:04620_9 are important in the tumor-pro-
moting processes activated by inflammation and infection®.
Interestingly, three subpathways (path:04620_3, path:04620_9,
and path:04620_11) reside in the same KEGG pathway, path:04620
(Toll-like receptor signaling pathway; Figure 7), which is associated
with infection, inflammation, and cancer®®*. Furthermore, two
inflammation-related subpathways, path:04620_3 and path:04620_
11, which are associated with immunity and infection mediated by
MYDB88, are located upstream of path:04620. Moreover, the subpath-
way path:04620_9 is located downstream of path:04620. Collectively,
path:04620_9 is related to the promotion of tumor, which is tightly

TOLL-LIKE RECEPTOR. SIGNALING PATHWAY |

Path:04620_11 I

PIK-Akt
sigualing pathovay

associated with an inflammatory microenvironment. This might
thus suggest that path:04620 (Toll-like receptor signaling pathway)
could be a good exhibitor of cancer progression activated by inflam-
mation and infection.

Discussion

The identification of human disease-associated genes has long been
of central importance in the study of human genetics. With the
establishment of the human disease-disease network, a shift has been
seen from the study of disease genes to the study of associations
between various disease genes. Because the close relationship
between inflammation and various disease phenotypes has been
widely accepted™, studies of the roles of inflammation in carcinogen-
esis have emerged. However, systematic studies on the functional
links remain in their early stages.

Inflammation contributes to the diverse progression of human
complex diseases, such as immunity and cancer. To study the func-
tional cross-links and the underlying mechanisms of their action, we
integrated the PPI network, gene-disease information, and inflam-
mation genes to construct a DIN network. By further dissecting
topological parameters, such as the shortest paths of the DIN, we
found that nodes that are inter-genes are important in the mainten-
ance of the network structure, which is consistent with a previous
study’. In the present study, we confirmed the topological import-
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Figure 7 | Detailed information of subpathways (i.e. path:04620_3, path:04620_11, and path:04620_9) in the KEGG (i.e. path:04620). Nodes marked by
red asterisk are genes significantly overlapping with the corresponding subpathways.
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ance of disease genes in the DIN. In addition, we showed that inter-
genes, as both inflammation and cancer genes, are topologically
important. After mapping inter-genes to the PPI network, we com-
puted the FER values between inter-genes and different disease gene
sets and then classified diseases as either IRD or NIRD. Based on the
two classifications, we further examined the Intimacy of each pair of
diseases mediated by inflammation genes. As shown by the results,
the Intimacy of IRD was found to be higher than that of NIRD, which
is a good indicator of the functional cross-links between inflam-
mation and various disease phenotypes.

We comprehensively examined all the disease pairs via ranking
them based on the summed Intimacy for each pair (i.e. sum the
Intimacy from disease A to B and disease B to A; disease A and
disease B belong to one disease pair; Supplementary Table 1). In
total, we found that there were only one pair of inflammatory dis-
eases that ranked in the top 5 of the table, together with other three
pairs of inflammation-related diseases; their connections bridged by
inflammation were all confirmed by other researches. In addition to
those literature-supported pairs, the remaining pair ranking in the
top 5 was newly found by us that might be involved in the bridgeness
by inflammation genes in proper conditions (i.e. disease pair of nor-
mal variation and metabolic). As shown by the examples of gene
modules extracted from the PPI network, inflammation was indeed
found to be important in mediating between infection and immun-
ity, as well as between infection and cancer. Collectively, as suggested
by the results, our integrated approach could not only recur the
connections bridged by inflammation genes between those well-
known inflammatory disease pairs, but also predict new connections,
which could therefore help us to study the functional roles of inflam-
mation genes between disease pairs, via their structural importance
at the level of network.

Additionally, we also constructed a subpathway-subpathway net-
work based on disease- and inflammation-related subpathways to
characterize the cross-links, as illustrated by the two examples of
disease-related subpathways mediated by inflammation-related sub-
pathways. Furthermore, this network-based analysis adds a new layer
of complexity to the study of human diseases in that it considers
inflammation as an important factor in the initiation and progres-
sion of diseases.

Methods

Data. A set of inflammation genes was obtained from the Gene Ontology categories
“inflammatory response” (GO:0006954) and “regulation of inflammatory response”
(GO:0050727), namely the human inflammation gene set containing 231 genes. The
human disease gene set was generated on May 2012 from the Genetic Association
Database (GAD, http://geneticassociationdb.nih.gov/), which includes 2831 disease
genes corresponding to 18 disease classes. The database is an comprehensive archive
of associated genes of human complex diseases and disorders, which also includes
summary data extracted from published papers on candidate genes and GWAS
studies. The human PPI network (http://www.hprd.org)*’, which involves 9028
proteins with 35865 high-confidence interactions, is then used to construct DIN. The
database seems the most integrated for human proteins in the public domain and
widely used in scientific researches®*”.

Fold-enrichment ratio and Intimacy between each disease pair. The fold-
enrichment ratio (FER) is defined as the ratio between the observed value and
expected value (O/E ratio). An estimator is used to measure whether the observed
overlap when mapping inflammation genes to the gene set of each disease class is large
enough to be significant.

For the given pair of diseases d and d; with corresponding disease gene sets g, ...,
&km and gjy, ..., g, the Intimacy is defined to describe the contribution of inflam-
mation genes in bridging the connections between disease dj to d;. Considering the
disease information passed from dy to d; based on the human PPI network connec-
tion, we can define how much d is influenced by dj by treating genes related to d; as
abnormal genes (upregulated or downregulated). Let I(dy — d;) denote the intensity
with which d; is influenced by d, as follows:

di—dy)= %Zmax{i(gjg,gkp)}(t):172,...m) (1)
p=1

where 7 is the total number of disease genes of d;and i(gjo,gxp) is the Intimacy between
the disease pair. By using the network-based method, the shortest path method, we

can define i(gjo.gk,) from the following transformation:

i _ 1
l(gjo,gkp) = W)o,gkp) 5

where d(gjo.gkp) is the shortest path length between gj, and gi,.

Generation of random networks. The PPI network was randomized 1000 times
using edge permutation, with the degree corresponding to each node in the original
PPI network kept unchanged. The edge permutation approach has been widely
applied on various kinds of networks to generate randomized networks®. All 1000
random PPI networks were used to construct 1000 random DINs via mapping
inflammation and disease genes to those random PPI networks and then extracting
the maximal connected component, separately.

Random test and statistical analysis. In order to compute the significance of
Intimacy bridged by inflammation genes, we constructed 1000 random pseudo-
inflammation gene sets. Each pseudo-inflammation gene set contained the same
number of genes as the real inflammation gene set, and each pseudo-inflammation
gene had the same degree as the real one. Given a pair of diseases, we computed the
real Intimacy bridged by the real inflammation gene set, and then computed a
random distribution of Intimacy values using the 1000 pseudo-inflammation gene
sets. Subsequently, we could define the significance of the Intimacy for the pair of
diseases, via comparing with the random distribution of Intimacy.

The significance of the overlap between inflammation genes and disease genes
against nodes of the human PPI network, and the overlap between gene sets from
different subpathways, were computed by hypergeometric distribution as follows:

mY\ (N—m
k k n—k
i=0 N ’
()
considering that a set of N elements has two subsets with m and n elements,

respectively. We calculated the probability of containing at least k overlapping ele-
ments using the formula.

P(X>KN.mm=1—"%" (3)

Construction of subpathway-subpathway network. We used the method that has
been incorporated into the CRAN package iSubpathwayMiner (http://cran.r-project.
org/web/packages/iSubpathwayMiner/) to identify the disease-related subpathways.
In this method, the subpathway regions were located by lenient distance similarity of
signature nodes within the pathway structure. Subsequently, we used hypergeometric
test to identify disease-related subpathways.
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