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MOTIVATION Single-cell chromatin accessibility assays are an increasingly popular approach for expand-
ing the understanding of the role chromatin plays in gene expression regulation, but the combination of high
sparsity and noise characteristic of single-cell assays with the binary nature of accessibility makes the data
challenging to fully leverage. Here, we present PeakVI, a deep generative model that explicitly accounts for
the unique properties of these data. PeakVI learns an informative low-dimensional representation of the
cells, denoises the original observations, and provides functionality for differential accessibility analysis
at single-region resolution. PeakVI is continuously supported and publicly available in the scvi-tools suite.
SUMMARY
Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the
regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of spar-
sity, and scale of the generated data make its analysis challenging. Here, we present PeakVI, a probabilistic
framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative
latent space that preserves biological heterogeneity while correcting batch effects and accounting for tech-
nical effects, such as library size and region-specific biases. In addition, PeakVI provides a technique for
identifying differential accessibility at a single-region resolution, which can be used for cell-type annotation
as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI
is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of crit-
ical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework.
INTRODUCTION

Regulatory elements in the genome tend to reside in regions of

open chromatin, making the landscape of chromatin accessi-

bility a valuable target of study. Several molecular assays

have been developed to support this effort (Schones et al.,

2008; Boyle et al., 2008; Crawford et al., 2006), among them

ATAC sequencing (ATAC-seq) (Buenrostro et al., 2015a), in

which accessible regions are fragmented, and the correspond-

ing DNA fragments are sequenced and mapped back to the

reference genome, accumulating in areas of open chromatin.

Recent advances in sequencing technologies enable perform-

ing this assay in single cells (Buenrostro et al., 2015b), thereby

allowing the study of chromatin variability at a single-cell reso-

lution. Application of single-cell ATAC-seq (scATAC-seq) has

led to promising results in discerning sources of variation,

beyond those observed at the transcriptional level (Satpathy
Cell R
This is an open access article under the CC BY-N
et al., 2019; Preissl et al., 2018), and allowed for high-resolution

characterization of the regulation of in continuous processes,

e.g., in immunity (Satpathy et al., 2019).

Despite the potential of scATAC-seq, analyzing the resulting

data remains challenging. scATAC-seq assays have generally

limited sensitivity, detecting 5%–15% of accessible regions

(Preissl et al., 2018), a common issue for single-cell genomics.

In addition, the coverage of these data is limited a priori since

each genomic region has at most two copies in a single cell.

Finally, scATAC-seq is extremely high dimensional, often con-

sisting of hundreds of thousands of genomic regions. These

challenges require specialized processing and analysis methods

that are designed to account for the specific properties of

scATAC-seq data.

One common task for analyzing scATAC-seq is dimension-

ality reduction: transforming the data to a low-dimensional

space that preserves the meaningful information in the original
eports Methods 2, 100182, March 28, 2022 ª 2022 The Authors. 1
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data. This step is crucial to make some downstream analyses,

such as clustering and visualization, less noisy, more stable,

and computationally tractable. Existing methods use various

approaches to achieve this task. Some use methods developed

for natural language processing (e.g., latent Dirichlet allocation

used by cisTopic [González-Blas et al., 2019] and latent seman-

tic analysis [LSA] used by ArchR [Granja et al., 2021]) that inher-

ently handle sparse high-dimensional data but do not inherently

account for confounding factors that do not have an analog in

textual language, such as batch effects. Other methods reduce

dimensionality by first aggregating individual regions in the scA-

TAC-seq data to easily interpretable features, such as binding

motif scores in the case of chromVAR (Schep et al., 2017) or

gene activity scores in the case of Cicero (Pliner et al., 2018),

which makes the data easier to analyze but masks the fine-grain

single-region resolution provided by scATAC-seq. These

methods have been demonstrated to be under-powered in

capturing the true heterogeneity in the original data (Chen

et al., 2019). Finally, recent methods use deep generative

models (e.g., SCALE [Xiong et al., 2019]) but do not account

for technical factors and suffer from model over-fitting due to

the dimensionality of the data in contrast with the limited num-

ber of samples.

Another common task is differential accessibility analysis.

The ability to identify chromatin regions that are preferentially

accessible in one population compared with another is founda-

tional to characterizing the chromatin remodeling between

cellular identities and states. However, specialized methods

to perform this task in the context of scATAC-seq data have

not yet been developed. Methods that rely on aggregation of

individual regions, such as chromVAR and Cicero, perform dif-

ferential analyses in the aggregated space, thereby losing the

single-region resolution. Other methods use linear models

developed for RNA-seq data (Fang et al., 2021) or standard

statistical tests (Granja et al., 2021). These approaches often

suffer from numerical instability due to the sparsity of the

data and being statistically overpowered due to the large sam-

ple size.

Some recent processing pipelines, such as SnapATAC (Fang

et al., 2021) and ArchR (Granja et al., 2021), offer comprehensive

end-to-end analysis pipelines that resolve many issues with pro-

cessing scATAC-seq data, such as sensitive peak calling, pro-

moter-enhancer association, and doublet detection. However,

for the fundamental tasks mentioned above, these pipelines

rely on methods that were not optimized for scATAC-seq data

and can therefore be improved upon.

Here, we present PeakVI, a deep generative model that

learns a probabilistic low-dimensional representation of single

cells from their chromatin accessibility landscape. PeakVI ac-

counts for technical biases in the data stemming from batch

effects, variation in sequence coverage, and bias due to the

width of DNA regions and creates a representation of the

data that minimizes these effects. The representation is pro-

vided at two levels. One part of the model infers a representa-

tion for each cell in a latent low-dimensional space. This latent

representation and the space it is embedded in can be used

directly for downstream analyses: integration of datasets,

identification of cellular sub-populations, and visualization. A
2 Cell Reports Methods 2, 100182, March 28, 2022
second part of the model provides a corrected, probabilistic

representation of the raw data. This high-dimensional repre-

sentation enables statistically robust inference of single-re-

gion-level differential accessibility and cell state annotation.

We demonstrate PeakVI’s performance on published data

and benchmark it against state-of-the-art published methods

on a range of analysis tasks. We show that PeakVI is a power-

ful addition to the arsenal of scATAC-seq methods and

provides capabilities that can help unlock the full potential of

scATAC-seq data analysis. PeakVI is publicly available as

part of the scvi-tools (Gayoso et al., 2021) suite of deep gener-

ative models for single-cell genomics.

RESULTS

PeakVI model
PeakVI leverages variational inference with deep neural net-

works to model scATAC-seq data. For each cell, PeakVI esti-

mates the probability of each chromatin region being accessible,

as well as technical factors that affect the probability of an

accessible region being observed. The standard output of

most scATAC-seq preprocessing pipelines (including those em-

ployed here; see STAR Methods) is a table of N cells and K

genomic regions. The regions typically correspond to DNA seg-

ments with enriched accessibility that are inferred through peak

calling over cell aggregates (Buenrostro et al., 2015b; Fang et al.,

2021; Granja et al., 2021).

The starting point of PeakVI is therefore a N3K matrix X

where xij is the number of reads from cell i that map to region

j. While these observations are counts, the underlying biology

is mostly binary (a region is either accessible or not). Therefore,

PeakVI models the observations as samples from a Bernoulli

distribution Pðxij >0
��yij;rj;[iÞ, where yij is the probability of region

j being accessible in cell i, rj˛½0;1� is a region-specific scaling

factor, and [i˛½0;1� is a cell-specific scaling factor (Figure 1A).

Conceptually, these components are related to the three mo-

lecular events that are required for a region to be observed

as accessible: (1) the region must be accessible in the cell,

which largely depends on the cell state and identity, captured

by yij; (2) the accessible region must be tagmented by the

transposase that underlies the ATAC-seq protocol, a process

which may be skewed by region-specific factors such as width

(in base pairs) and sequence biases, captured by rj; and (3)

finally, the corresponding fragment must be captured and

sequenced, which may also depend on library-specific factors,

such as sequencing depth and efficacy of the library prepara-

tion, captured by [i.

PeakVI uses a variational autoencoder (Kingma and Welling,

2013) (VAE) and an auxiliary neural network to estimate these

factors. The VAE consists of two major components: (1) the

encoder network fz infers the distributional parameters of the

d-dimensional (for d � D) latent representation zi (also known

as the variational posterior) from the observed data: fzðxiÞ =
qðzijxiÞ, and (2) the decoder network gz and the generative

model, which takes a sample from the latent representation zi
and the batch annotations si and generates an estimate of

the probability of each genomic region being accessible in

the cell i: ðgzðzi; siÞÞj = yij. The cell-specific scaling factor [i is
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Figure 1. PeakVI model overview

(A) Conceptual model illustration. The input region-by-cell count matrix (left) is estimated as the product of region-specific effects (center top), cell-specific effects

(center), and accessibility probability estimates (center bottom). The observation probability matrix (right) is used to calculate the likelihood of the data for

optimization.

(B) The region-specific factor rj is assigned higher values for wider regions, indicating a higher probability of those regions being fragmented.

(C) The cell-specific factor [i increases with the number of fragments up to a saturation point. Cells with sufficient fragments are not penalized even if other cells

have significantly more fragments.

(D) Random corruption of the data at increasing rates leads to a small but steady increase in the mean squared error (measured from corrupted indices).

See also Figures S1A and S1B; Table S1.
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inferred from the observed data using an additional neural net

f[, and the region-specific scaling factor rj˛½0; 1� is optimized

directly as a model parameter. Finally, the probability of

observing a region in a cell (i.e., pðxij >0Þ) are computed as

the product of the three probabilities: pðxij >0Þ= yij,[i,rj (Fig-

ure 1A). Formally:
ðmi;siÞ= fzðxiÞ Infer distributional parameters
zi � Nðmi; siÞ Sample latent representation
yij = ðgzðzi; siÞÞj Estimate probability of accessibility
[ i = f[ ðxiÞ Estimate cell� specific factor

xij>0 � Ber
�
yij,[ i,rj

�
Calculate likelihood
Cell Reports Methods 2, 100182, March 28, 2022 3
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Conditioning on batch annotations, or any other known sour-

ces of unwanted variation, encourages the encoder to capture

batch-independent biological variation in the latent representa-

tion zi, which can then be used for normalized and batch-cor-

rected visualization, clustering, and other downstream analyses.

The inferred accessibility probabilities yij are an estimate of the

true chromatin landscape in each cell, while technical effects

that stem from either region-specific biases or cell-specific

biases are captured by the r and [ scaling factors, respectively.

We can then estimate the probability of observing a region in

each cell as the product of these factors yij,[i,rj and compute

the likelihood of the observations. During training, a lower bound

of themarginal log likelihood logpðxij >0Þ is thenmaximized using

auto-encoding variational Bayes (Kingma and Welling, 2013).

Full model architecture and training parameters are provided in

the STAR methods section.

Benchmark datasets
To evaluate the performance of PeakVI, we examined both simu-

lated and real datasets. We found, however, that current simula-

tion techniques (Chen et al., 2019) rely on independent sampling

from distributions attained from bulk ATAC-seq data, which cre-

ates a highly sparse covariance structure that does not realisti-

cally reflect assayed datasets (Figure S1A).Our analysis therefore

relies primarily on two publicly available datasets: (1) hematopoi-

esis data from Satpathy et al., (2019), which consists of bone

marrow and blood samples that were flow-sorted for different

cell subsets, as well as several batches of unsorted samples

that consist of multiple cell types, and (2) a dataset released by

10XGenomicsof jointRNA-seqandATAC-seq fromsingle human

peripheral blood mono-nuclear cells (PBMC�s). The first dataset

contains cell-type-specific labels that provide an established

benchmark, as well as multiple batches that allow comparison

of batch effect correction. The second dataset provides an

orthogonal modality of data that can be used to validate scA-

TAC-based analyses. Finally, the two datasets are generated us-

ing different protocols and are processed differently, allowing us

to demonstrate that the PeakVI’s performance is protocol and

processing independent.

PeakVI captures nuanced effects of technical
confounders
Since the normalization factors included in the PeakVI model, r

and [, are optimized by the training process, we set out to

confirm that they converge on values that correspond to the

empirical, technical confounders. We used the 103 PBMC

data for these analyses. For the region-specific factor r, we

examined how it corresponds to thewidth of the genomic region,

a known technical confounder.We found that PeakVI assigns the

vast majority of regions with a value around 0.5, with higher

values indeed being assigned to wider regions, which have a

higher probability of being fragmented (Figure 1B). Notably, the

overall distribution of this factor only reaches as high as roughly

0.75, well below the max value of 1. This translates to a global

penalty imposed on all observations, which implicitly reflects

the limited sensitivity of this assay and the resulting abundance

of false-negative observations. For the cell-specific factor [ we

examined how it corresponds to the number of reads captured
4 Cell Reports Methods 2, 100182, March 28, 2022
in each cell. We find that the vast majority of cells have [z1,

and the dynamic values of [ indeed correspond to the empirical

library size (Figure 1C). The saturation of this factor reflects an

important consideration when normalizing library sizes for chro-

matin profiling: different cell types may have different levels of

accessibility (e.g., unbalanced chromatin remodeling during dif-

ferentiation [Sen et al., 2016]), therefore this factor should not

penalize cells states with less accessible chromatin, but rather

only weigh down cells in cases where the decrease in fragments

is due to technical effects. Overall we see that the normalization

factors used by the model have a clear but nuanced correspon-

dence to empirical confounders.
PeakVI is robust to increased sparsity and stable across
hyperparameters
Limited sensitivity, which results in an abundance of missing ob-

servations, isamajorproblem insingle-cell assaysandparticularly

scATAC-seq. We therefore examined how PeakVI handles

increasing levels of sparsity. We corrupted the 10X PBMC data

by randomly replacing non-zero observations with zeros at a

rangeofprobabilities (10%–90%) and trainedPeakVI oneachcor-

rupted dataset. We then used PeakVI’s estimates of the probabil-

ity of accessibility for thesecorruptedobservationsandcompared

the estimates from themodels trained on corrupted data, inwhich

these observations were 0, to the original estimates from the

model trained on the full data, where these observations where

non-zero. We computed the error: 1
jCj
P

ij˛Cðycij � yijÞ2, where C is

the set of corrupted observations, yc is the probability of accessi-

bility estimatedbyPeakVIwhen trainedon thecorrupteddata, and

y is the probability of accessibility estimated from the original, un-

corrupted, data.We found thatPeakVI produceshighly consistent

results, even inhighly sparsesituations:with ameansquarederror

of 0.06 when 10%of the observations are removed, to 0.17 when

90% of the data are removed (Figures 1D and S2). We also

observed that the corrupted estimates are generally lower than

the original estimates, consistent with the corruption being one-

directional (introducing false negatives, not false positives). These

results demonstrate thatPeakVI is robust to low-quality andhighly

sparse data.

Since training PeakVI involved stochastic optimization of a

non-convex function, the model can produce different results

in different runs. We examined how stable PeakVI is to changes

in architecture and training hyperparameters by training PeakVI

on a variety of configurations and comparing how the different

models perform on held-out data. We varied the number of hid-

den layers in the neural networks, the size of themini-batch used

in training, the dropout rate and learning rate, and the weight

decay. For each set of hyperparamters, we trained the model

three times and measured the likelihood the model achieves

on the held-out data in each run. We found that PeakVI is highly

stable and that the default hyperparameters performwell without

a need to fine-tune the model for each analysis (STAR Methods;

Table S1). Finally, to see how PeakVI stability is impacted by the

sparsity of the data, we artificially corrupted data to only retain

50% and 10% of observations and repeated the stability anal-

ysis. In both cases, while the model performance decreased

compared with the full data, the model remained stable in terms
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of hyperparameters, indicating that the default hyperparameters

perform well even in highly sparse situations (Table S1).

PeakVI learns an informative batch-corrected latent
representation
PeakVI learns a low-dimensional representation of each cell that

preserves biological heterogeneity while reducing noise, tech-

nical artifacts, and batch effects. We compared the latent space

learned by PeakVI with representations frompublishedmethods.

We compared these using four methods: (1) LSA, a natural lan-

guage processing technique commonly used in scATAC-seq

analysis pipelines, such as Signac (Stuart et al., 2021) and ArchR

(Granja et al., 2021); (2) cisTopic (González-Blas et al., 2019),

which uses latent Dirichlet allocation; (3) SCALE (Xiong et al.,

2019), which also employs a VAE and incorporates Gaussian

mixture modeling to create a clustered latent space; and (4)

chromVAR (Schep et al., 2017), an algorithm that aggregates

genomic regions by known binding motifs and normalizes these

aggregates to motif accessibility scores. The first two methods,

LSA and cisTopic, were chosen since a recent benchmark of

computational analysis methods for scATAC-seq methods

(Chen et al., 2019) found them to be the best performing

methods. SCALE is included in our comparison due to the con-

ceptual similarities with PeakVI. Finally, we included chromVAR

since it is commonly used as both a dimensionality reduction

method as well as an annotation technique.

First we used the 103 PBMC scATAC-seq data to measure

how consistent each latent representation is with the gene

expression profiles that are also measured from each cell. We

ran all methods on the 103 PBMC data and extracted the latent

representation computed by each. We then independently

analyzed the paired scRNA-seq data and clustered the cells

based on their gene expression profiles (STAR Methods). We

then overlaid the scRNA-based cluster labels on the scATAC-

based representations (Figure 2A), and measured for each cell

the fraction of its chromatin-based K-nearest neighbors that

are from the same RNA-based cluster for varying values of K

(STAR Methods; Figure 2B). We found that PeakVI and cisTopic

outperformed all other methods, with PeakVI doing marginally

better than cisTopic. We also measured how robust each

method is to library size effects, by computing for each latent

space the correlation of the latent representation with the empir-

ical library size (logðnumber of fragmentsÞ), using Geary’s C

(Geary, 1954) (STAR Methods; Figure S2A). We found that LSA

and SCALE are especially sensitive to library size effects, while

PeakVI and cisTopic are more robust, and chromVAR is insensi-

tive to library size effects.

Next we looked into how each method handles a more com-

plex experimental design, as in the hematopoiesis dataset,

which consists of multiple samples of different sizes, some

cell-type-specific and others general. We analyzed the data

with all methods. For completeness, we also included a variation

of LSA used by the ArchR pipeline (Granja et al., 2021) called Iter-

ative LSA (STAR Methods), as well as three configurations of

PeakVI: (1) ‘‘no batch,’’ without any batch annotation; (2) ‘‘full

batch,’’ treating each sample as a separate batch; and (3) ‘‘repli-

cate batch,’’ treating each replicate from multi-replicate condi-

tions as a separate batch (STARMethods). These configurations
correspond to having no batch correction, strict batch correc-

tion, or an intermediate approach, respectively. We examined

how well each method preserves biological heterogeneity by

measuring how separated the sorted cell populations are, using

the cell-type-specific fluorescence-based labels (Figures 2C,

S2B, and S3). We also examined how well each method handles

batch effects, which none of the examined methods explicitly

corrects, bymeasuring howwell mixed the four different batches

of unsorted PBMC samples are (Figures 2D and S2B). For both

analyses we computed an enrichment score by computing for

every cell the number of neighbors out of its K-nearest neighbors

that share its label, and comparing themwith the random expec-

tation (STAR Methods), for varying values of K (scores in the text

are for K = 50) (Figure 2E). Ideally, this enrichment score would

be high for biological labels and low for batch labels. We find that

LSA, cisTopic, and PeakVI with nobatch configuration all achieve

high separation (enrichment scores 9.1, 9.13, and 9.42, respec-

tively) but separate the different batches as well (enrichment

scores 2.33, 2.28, and 2.39, respectively); conversely, chrom-

VAR and SCALE outperform all methods in batch mixing (1.57

and 1.59, respectively) but do worse on cell-type separation

(5.78 and 7.03, respectively). Iterative LSA seems to underper-

form on both tasks. In contrast, we find that PeakVI with repli-

cate-batch strikes a desirable balance, preserving biological

heterogeneity comparably well (enrichment score 9.04) while

more effectively mixing the batches (enrichment score 1.85).

Finally, PeakVI with full-batch configuration also achieves a

good balance (8.37 for cell-type separation, 1.88 for batch mix-

ing), but underperforms the replicate-batch configuration on

both tasks. Overall, these results demonstrate that PeakVI is bet-

ter able to correct batch effects while preserving biological het-

erogeneity, reaching an overall better latent representation than

all examined methods.

PeakVI performs differential accessibility analysis at a
single-region resolution
Among the main promises of scATAC-seq is the ability to better

identify individual genomic elements that help regulate certain

biological processes. Achieving this requires the ability to iden-

tify individual regions that are differentially accessible between

different groups of cells. In practice this task is challenging due

to the binary nature of each observation, batch effects, and the

high levels of noise and sparsity. Most differential analyses

thus choose to aggregate the differential signal across different

regions, either by the binding motifs they harbor (i.e., the differ-

ential analysis chromVAR performs) or by aggregating the sur-

rounding regions to each gene and creating a gene activity score

(Pliner et al., 2018). While these analyses are useful, they do not

enable identification of individual regions, thereby not fully un-

locking the promise of scATAC-seq data. Some differential ana-

lyses are performed in single-region resolution: ArchR (Granja

et al., 2021) uses Wilcoxon rank-sum test, and Signac (Stuart

et al., 2021) uses a logistic regression model, which models

the total number of fragments to account for library size effects.

Both of these approaches offer partial solutions to the noise and

sparsity issues presented by scATAC-seq.

PeakVI addresses this problem by leveraging the probabilistic

nature of the latent space to produce denoised and normalized
Cell Reports Methods 2, 100182, March 28, 2022 5



A B

C

D E

Figure 2. UMAP visualizations of latent representations from PeakVI, LSA, cisTopic, SCALE, and chromVAR

(A) The paired scRNA-scATAC sample PBMC dataset from 103 Genomics. Cells are colored based on the scRNA-based clustering; umaps are computed from

the scATAC representations. All methods except for chromVAR are comparably consistent with the scRNA data.

(B) Quantitative consistency of the latent representation with the scRNA data; fraction of the K-nearest neighbors in the scATAC representation that are also

among the K-nearest neighbors in the scRNA representation, for various values of K. PeakVI marginally outperforms cisTopic, followed by LSA, SCALE, and

chromVAR.

(C) Data from Satpathy et al. (2019); cells are colored using the FACS-based cell-type-specific labels. Cells from unsorted samples or non-specific sorted

samples are colored in light gray. PeakVI, LSA, and cisTopic all achieve good separation of cell types.

(D) Data from Satpathy et al. (2019); cells are colored using the unsorted PBMC replicates. Cells from all other samples are colored in light gray. Batch effects are

reduced with PeakVI, chromVAR, and SCALE.

(E) Enrichment of labels among the K-nearest neighbors for each cell; the x axis is the enrichment of batch labels, where lower enrichment indicates better batch

mixing. The y axis is the enrichment of cell-type labels, where higher enrichment indicates better separation. PeakVI reaches a better balance of the two tasks.

See also Figures S2A, S2B, and S3.
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estimates of accessibility, which enable a robust and accurate

estimate of differential accessibility at a single-region resolution.

In brief, given a population of cells C and a region j, PeakVI sam-

ples from the area of the latent space that corresponds to C and

estimates the probability of region j being accessible for each

sample, then averages over the samples to get a stable estimate

of accessibility: YCj
(STAR Methods). Importantly, the represen-

tation of the latent space using random variables means that

each cell in the original data can be sampled multiple times, al-

lowing PeakVI to sample beyond the available number of

observed cells. In addition, this procedure can be conditioned

on batch annotation, thereby correcting batch effects. When

comparing two populations of cells, CA and CB, we use the ab-

solute difference between estimates (YCB
� YCA

) as a measure

for the extent of differential accessibility (effect size). Compared

with ratio-based statistics (e.g., odds ratio), this estimate is more

interpretable (representing absolute increase or decrease in

binding propensity) and more stable to low-level signals. For

instance, this means that an increase from 0.01 to 0.21 will be

equivalent to an increase from 0.7 to 0.9 as opposed to the first

being a 20-fold increase and the second being a 1.3-fold

increase.

Using PeakVI estimates for differential accessibility is
more sensitive and robust than using the observed data
directly
To compare the estimated effect from PeakVI to the empirical ef-

fect calculated directly from the observations, we used the he-

matopoiesis data and the replicate-batch PeakVI model. We

define the empirical accessibility as the proportion of cells in C

in which j is observed as accessible: XCj
= 1

jCj
P

i˛C1
�
xij>0

�
, and

the empirical effect is defined equivalently to the estimated ef-

fect, as XCB
� YCA

. We clustered the latent representations of

the cells and ran a series of comparisons for each cluster. First,

we ran two comparisons for each cluster: (1) a ‘‘biological’’ com-

parison, comparing all cells within the cluster to all other cells,

and (2) an ‘‘artifactual’’ comparison, comparing within each clus-

ter cells that originated from the two large PBMC batches (repli-

cates 1 and 2; excluding clusters with less than five cells in either

group) (Figure 3A). The biological comparisons are a common

use for differential analyses where some real differences in

accessibility are expected, whereas the artifactual comparisons

are used as negative controls. We ran two additional compari-

sons for each cluster, comparing cells within that cluster that

originated from a given PBMC batch (either replicate 1 or 2) to

all cells in all other clusters, which essentially provided two tech-

nical replicates of the biological analysis (denoted ‘‘biological

b1’’ and ‘‘biological b2’’).

We first measured the correlation between the PeakVI esti-

mated effects and the raw data (empirical) effects. We found

that the effects are highly correlated in biological comparisons

(mean Pearson correlation 0.97), but less so in artifactual com-

parisons (mean correlation 0.52) (Figure 3B). We then used the

results from ‘‘biological b1’’ and ‘‘biological b2’’ results, and

found that the estimated effect is highly reproducible (mean cor-

relation 0.95), while we see a marked decrease in reproducibility

of the empirical effect (mean correlation 0.66) (Figure 3C). We

also noticed that, while the results were highly correlated, there
was a difference in the width of the distributions between the

estimated and the empirical effects (Figures 3C and S4A). To

investigate this effect more thoroughly, we calculated the SD

of the distributions for each comparison, and found that, in all

biological comparisons (including ‘‘biological b1’’ and ‘‘biolog-

ical b2’’), the estimated effect had a wider distribution than the

empirical effect, whereas in artifactual comparisons the distribu-

tions were either similarly wide or the estimated effect had a nar-

rower distribution (Figure 3D).We also found that this is related to

the number of cells included in the compared groups, especially

in comparisons that rely on small numbers of cells: in these

cases we observed the least difference in standard deviations

for the biological comparisons, and the most difference for the

artifactual comparisons (Figure 3E).

Taken together, these results demonstrate that PeakVI is

amplifying the empirical effect when the effect corresponds to

real biological difference, but silences it when it is a product of

noise. When the empirical effect is more susceptible to noise

(e.g., a smaller number of cells included in the comparison),

PeakVI is less able to amplify biological signal, but more efficient

in silencing the noise. In contrast, when the empirical effect is

calculated with a large number of cells, and is therefore less

noisy, PeakVI has less silencing effect, but is able to amplify

real differences better.

Statistical significance with PeakVI
To estimate the statistical significance of differential effects,

PeakVI uses techniques described in previous methods from

our group (Lopez et al., 2018, 2020). In brief, during the sampling

procedure described above, PeakVI considers pairs of samples,

one from each of the compared groups ðya; ybÞ. PeakVI deter-
mines for each pair if the measured effect for each region j is

greater than some minimal effect size d: hj = 1ð��yCb
�yCa

��>dÞ
(for one-sided tests: hj = 1ðyCa

> yCb
+ dÞ). We repeat this many

times and define the probability of differential accessibility,

pj
DA, as the proportion of pairs for which hj = 1 (STAR Methods).

We then use a conservative multiple hypothesis correction pro-

cedure described previously by Lopez et al., (2020) to identify

differentially accessible regions with some nominal false discov-

ery rate.

Established pipelines perform this analysis using generalized

linear models (e.g., Signac [Stuart et al., 2021]) or standard sta-

tistical tests, such as theWilcoxon rank-sum test or a two-sided t

test (e.g., ArchR [Granja et al., 2021]). We therefore compared

our differential accessibility analysis with a generalized linear

model (GLM) equivalent to that used by Signac: a logistic regres-

sion with an additional covariate for the number of fragments in

each cell to avoid library size effects dominating the analysis

(STAR Methods), as well as to a Wilcoxon rank-sum test used

by ArchR. We performed two comparisons using all methods:

(1) an artifactual comparison, using the hematopoiesis data we

compared between cells from the two PBMC replicates that

mapped to cluster 1, corresponding to cells the NK cell label

(Figure 3G), and (2) a biological comparison, comparing cells

from the NK cell sample to cells from the B cell sample (using

only cells that were FACS sorted) (Figure 3H). We found that all

approaches show a clear relationship between effect size and

statistical significance in both analyses. Both GLM andWilcoxon
Cell Reports Methods 2, 100182, March 28, 2022 7
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Figure 3. Differential accessibility analysis with PeakVI

(A) Illustration of the different comparisons. ‘‘real,’’ compare cells between two population; ‘‘null,’’ compare cells from different batches within a single population;

‘‘real b1’’/‘‘real b2,’’ compare cells from a specific batch in a population to all cells in the other population.

(B) Pearson correlations between the estimated and empirical effects.

(C) Correlation of effect size in ‘‘real b1’’ and corresponding effect in ‘‘real b2’’ comparisons. PeakVI estimated effects are far less sensitive to batch effects.

(D) An example (using cluster 14) relationship between the PeakVI estimated effect to the empirical effect in real (top) and null (bottom) comparisons.

(E) The width (measured by the SD) of the effect distributions; PeakVI amplifies real differential effects, and silences nuisance ones.

(F) Level of amplification/silencing depends on level of noise in the empirical effect.

(G) Volcano plots for a GLM (top), Wilcoxon (middle), and PeakVI (bottom) when comparing between two batches of NK cells.

(H) Volcano plots for a GLM (top), Wilcoxon (middle), and PeakVI (bottom) when comparing between B cells and NK cells.

(I) PeakVI (bottom) effect is better correlated with a bulk ATAC-based ground truth comparison and more numerically stable than GLM (top) and Wilcoxon

(middle).

See also Figure S4A and Table S2.
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results revealed two common issues: (1) some regions have a

very large effect size but are not statistically significant, corre-

sponding to regions that have very low detection rates in both

populations, and (2) the p values were inflated due to the large

sample size. In the artificial comparison, where no biological

signal is expected, PeakVI correctly identified no regions as

differentially accessible, compared with 910 regions identified

by the GLM model and 6,761 regions identified by the Wilcoxon

rank-sum test. In the biological comparison, PeakVI identified

11,362 (16.5%) regions as differentially accessible, compared

with 33,679 (48.9%) identified by the GLM, and 26,410 (19.7%)

identified by Wilcoxon test.

We then ran an equivalent comparison between B cells andNK

cells using bulk ATAC-seq data from Calderon et al. (2019) with

sorted immune cell populations, as a ground truth (STAR

Methods), and compared the results with the scATAC-seq-

based results from both analyses (Figure 3I). Overall results

from all methods are consistent with the bulk results, but PeakVI

achieves higher correlation between the effect sizes (0.74

compared with 0.48 and 0.52 for the GLM and Wilcoxon results,

respectively). In terms of correctly identifying differential regions,

for both PeakVI andWilcoxon, 86%of the regions identifiedwere

also differential according to the bulk analysis, compared with

65.6% for the GLM. In terms of overlap between the regions

found with bulk comparison versus single cell, all analyses re-

sulted in sets of regions that are over-represented at the bulk re-

sults, with PeakVI reaching an odds ratio of 1.92, Wilcoxon

reaching 1.93, and GLM reaching 1.47. Overall, these results

demonstrate that PeakVI provides a well-calibrated statistical

significance estimation and enables identification of differentially

active regions at a single-region resolution, while minimizing

false discovery and avoiding numerical issues due to low detec-

tion rates.

PeakVI supportsmultiple approaches for annotation and
discovery of cell states
Amajor challenge in analyzing scATAC-seq data is the lack of re-

gion-based annotations of cell state, in contrast to the abundant

resources for RNA-based annotation. Currentmethods therefore

rely on annotations that were generated from gene expression

profiles, which are useful but only provide a partial solution, since

chromatin accessibility may carry information that is not discern-

ible from gene expression alone. We therefore set out to demon-

strate two different approaches for howPeakVI can be leveraged

for annotation and downstream discovery. First, PeakVI’s inte-

gration capabilities can be used for transfer learning, projecting

annotated reference data and un-annotated query data onto a

joint space, and transferring insights from the former to the latter.

Importantly, this approach relies solely on the regions, without

associating regions to target genes or identifying harbored

motifs. Second, in the lack of an annotated reference, PeakVI’s

differential accessibility analysis can be leveraged for de novo

annotation, associating marker regions with nearby genes and

identifying enriched gene sets or known marker genes.

PeakVI can be used for transfer learning, by leveraging an an-

notated reference dataset to annotate a query dataset. First, the

reference and query datasets need to be integrated into a joint

space, which can be achieved using PeakVI in one of two
ways: (1) naively, by analyzing both datasets together and con-

ditioning on the dataset of origin, or (2) using a two-step proced-

ure first presented in scArches (Lotfollahi et al., 2021), in which

the reference data are processed in advance, and then incoming

query data can be projected onto the reference-based space.

The scArches procedure is particularly useful when creating a

detailed atlas to be used as a reference resource. After the query

and reference are in a shared space, transferring annotations

from one to the other can be done using proximity-based classi-

fiers, such as KNN or cluster majority vote (which we utilized

here). We demonstrate this ability using the hematopoiesis

data as the reference, and a dataset of human PBMCs provided

by 103 as a query (note that this dataset is different from themul-

tiomic dataset used in previous sections). Notably, the reference

data cover both bone marrow and blood, and consists of sam-

ples that were sorted to specific cell types, as well as samples

that consist of the entire PBMC compartment. We therefore

expect the query data to align only to the parts covered by the

reference PBMC samples, and not next to cell subsets that are

more abundant in the bone marrow. Furthermore, we expect

technical hurdles to complicate the integration of the datasets

as they were generated by different experimental protocols

and processed with different computational pipelines.

We began by creating a reference model, by analyzing the he-

matopoiesis data using PeakVI in a scArches-compatible config-

uration (STAR Methods). We then used PeakVI to project the

query PBMC data onto the reference space. PeakVI was able

to mix the datasets well, only mapping query cells onto areas

of the space occupied by PBMCs, but not those corresponding

to progenitor cells, which are absent from the query PBMC data

(Figures 4A and S4B). We then clustered the cells and assigned

each cluster with the most abundant cell-specific FACS-based

label in that cluster from the reference data. Importantly, these

annotations are based on similarity of chromatin landscapes be-

tween cells in the query and reference data, without any associ-

ation to other biological features or aggregation, resulting in a

straight-forward labeling of the query data (Figure S4C).

However, this procedure requires an annotated atlas from a

corresponding system, while many scenarios require de novo

annotation, which PeakVI facilitates using the differential acces-

sibility analysis. We demonstrate this using the hematopoiesis

data, by de novo annotating the data and using the FACS-based

labels as a ground truth. We first clustered the latent space (Fig-

ure 4D), and consistent with our previous findings we found that

clusters tend to consist primarily of cells that have the same la-

bel. Next, using our differential accessibility analysis, we

compared each cluster to all other clusters except for the three

most similar clusters, to avoid highly similar clusters masking

the differences (STAR Methods). For each cluster we used a

one-sided test to only identify regions that are preferentially

open in the target cluster. We then used enrichr (Chen et al.,

2013; Kuleshov et al., 2016) to associate the regions to nearby

genes and leveraged the ARCHS4 (Lachmann et al., 2018)

collection to find over-represented cell-type-specific gene sig-

natures. We were able to confidently identify many of the cell-

type-specific clusters, which matched their FACS-based label

(Figure 4E; STAR Methods). For instance, marker regions for

clusters 13 and 17, in which labeled cells are overwhelmingly B
Cell Reports Methods 2, 100182, March 28, 2022 9
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Figure 4. PeakVI unlocks multiple paths for annotation and identification

(A–C) PeakVI supports transfer learning. (A) Mapping of query data (sample PBMC data from 103 Genomics) onto reference data (from Satpathy et al., 2019).

PeakVI mixes the query data with the reference despite the data being generated by a different protocol and processed by a different pipeline. (B) The reference

data, colored by FACS-based cell-type-specific labels. (C) The query data, colored by the transferred cell-type-specific labels.

(D–F) De novo annotation using PeakVI’s differential accessibility analysis. (D) Hematopoiesis data colored by clusters. (E) Regions that are preferentially

accessible in each cluster were analyzed for enriched cell-type signatures from ARCHS (Lachmann et al., 2018) signatures, using enrichr (Chen et al., 2013;

Kuleshov et al., 2016). Heatmap shows distribution of cell-type-specific labels for each cluster, normalized by row. (F) Volcano plot for a differential accessibility

analysis between the two B cell clusters (clusters 13 and 17).

(G) Volcano plot for only significant regions, labeled by associated genes that are implicated in naive B cells (red) and memory B cells (blue).

See also Figures S4B and S4C.
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cells, were indeed enriched for regions associated with B cell

marker genes; cluster 1 marker regions were enriched for NK

cell marker genes, and indeed, the labeled cells in that cluster
10 Cell Reports Methods 2, 100182, March 28, 2022
are NK cells. Similarly signatures for CD4+ T cells, Regulatory

T cells, and pDCs, were all highly enriched in the clusters with

the corresponding FACS-based labels. Thus, using PeakVI and
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gene-based signatures, we are able to annotate the data and

recapitulate many of the FACS-based labels.

These results are nonetheless limited by the availability of gene

signatures,whichmaynot be available for all cell types, or provide

only a high-level annotation at a limited resolution. Specifically,

most progenitor cells in the hematopoiesis data could not be an-

notated in a similar fashion for lack of corresponding signatures,

and despite clustering separately, both CD4+ naive T cells and

CD4+ memory T cells were annotated simply as CD4+ T cells,

since higher-resolution signatures were not available. PeakVI

can therefore be used in a two-step approaches whereby cells

can be stratified into broad types, using reference-based annota-

tion, and then assigned with more high-resolution labels of cell

sub-types or states using de novo analysis. As a case in point,

we focused on the set of cells which were annotated as B cells

in our reference-based analysis. These cells can be divided into

two clusters (clusters 13 and 17). To derive a higher-resolution

annotation of the B cell compartment, we ran a two-sided com-

parison between the two clusters and identified 1,043 differen-

tially accessible regions in total, 207 preferentially accessible in

cluster 13 and 836 preferentially accessible in cluster 17 (STAR

Methods; Figure 4F; Table S2). Among the genes associated

with regions detected for cluster 13 we found TCL1A, known to

be expressed throughout B cell differentiation up to naive B cells

but silenced inmemoryB cells and plasmacells (Teitell, 2005; Vir-

gilio et al., 1994), and YBX3, implicated in B cell differentiation as

an immature B cell marker (Lee et al., 2020). We also found

SATB1, TENT5A, and ZNF667-AS1, which along with TCL1A

and YBX3, were previously found to be differentially expressed

in naive B cells compared with memory B cells (Longo et al.,

2009). Concordantly, genes associated with cluster 17 included

known markers for memory B cells AIM2 (Svensson et al., 2017)

and CD80 (Sahoo et al., 2002), and nine other genes previously

found to be differentially expressed in memory B cells compared

with naive B cells (Longo et al., 2009) (Figure 4G). Taken together,

we concluded that cluster 13 consists of naive B cells and cluster

17 consists of memory B cells, therefore demonstrating that

PeakVI’sdifferential accessibility analysis canbeused in conjunc-

tion with a reference-based annotation to increase the resolution

of annotations and identify new targets for further study.

DISCUSSION

PeakVI is a deep generative model for analyzing single-cell chro-

matin accessibility data. The model is designed to explicitly

account for various technical effects thatmaskanddistort thebio-

logical signal. The latent representation learned by the model is

probabilistic in nature, embedding the observed cells in a smooth

variational space thatpreserves thebiological heterogeneity,min-

imizes confounding effects, and can be used directly to explore

the chromatin landscape of a population of cells. Importantly,

PeakVI takes as input a region-by-cell count matrix, allowing the

user to integrate PeakVI with current and future preprocessing

and peak calling methods.

PeakVI improves upon previous attempts to use deep learning

to analyze scATAC-seq data in several manners. First, the archi-

tecture used in the underlying neural networks scales with the

size of the input data, increasing the expressiveness of themodel
to match with increasingly large and complex datasets (STAR

Methods). Second, PeakVI accounts for technical confounders

and enables correction of batch effects, with clear benefits to

downstream results. Thirdly, since it is common for features (re-

gions) to outnumber the samples (cells), and the observations

are mostly binary and therefore contain little information, PeakVI

also takes measures to successfully prevent the model from

over-fitting, by holding out some of the data as a validation set,

tracking the model’s performance on the validation data, and

halting the training process when the performance on the valida-

tiondata stops improving, thusensuring that themodel is learning

generalizable features. Finally, PeakVI provides extensive

methods to take advantage of the learned latent space for anal-

ysis tasks beyond dimensionality reduction, visualization, and

clustering. Specifically, PeakVI enables high-resolution annota-

tion of cell state, by allowing both reference-based analysis and

de novo annotation analysis. In that capacity, PeakVI enables ac-

curate differential accessibility analysis at a single-region resolu-

tion that reduces the effect of confounders and avoids common

issues with the current practices for differential accessibility,

namely numerical instability and inflation of significance scores.

Since PeakVI takes as input a region-by-cell matrix, it does not

offer a full end-to-end solution to all of the challenges presented

by scATAC-seq, instead relying on other methods and pipelines

to perform upstream tasks, such as fragment alignment, peak

calling, and cell calling. This allows users to match PeakVI with

other methods; for instance, using specialized peak callers such

as Lancetron (Hentges et al., 2021) or AtacWorks (Lal et al.,

2021), and analyzing the resulting matrix with PeakVI to benefit

from superior dimensionality reduction, batch correction, differ-

ential accessibility, and annotation. In addition, PeakVI is imple-

mented in the scvi-tools suite (Gayoso et al., 2021), which

provides interfaces with popular processing environments, such

as scanpy (Wolf et al., 2018) and Signac (Stuart et al., 2021).

Finally, PeakVI is robust to low-quality data and easy to configure,

train, and use. It can be easily incorporated in existing analysis

pipelines to enhance current analyses for dimensionality reduc-

tion, batch correction, differential accessibility, and annotation.

Limitations of the study
PeakVI relies on peaks that are called upstream of the model,

which limits the model’s power in situations where informative

peaks were discarded (i.e., in rare populations), unlike methods

that perform their own peak calling or that use the fragments

directly. This also means that, when integrating multiple data-

sets, the datasets need to be process jointly to get a shared

set of peaks before PeakVI can be employed.
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METHOD DETAILS

The PeakVI model
Let X ˛NN3K

0 be a scATAC-seq region-by-cell matrix with N cells and K regions, where xij ˛N0 is the number of fragments from cell i

that map to region j. Since PeakVI models the probability of observing a region, regardless of the number of reads supporting that

observation, the observations are treated as binary: X�˛½0;1�N3K , where x�ij = 1ðxij >0Þ. The observations are therefore generated

from a Bernoulli distribution x� � BerðqijÞ. PeakVI computes qij as a product of three probabilities: qij = yij,rj,[i, where yij captures

the true biological heterogeneity; rj captures region-specific biases (e.g width, sequence); [i captures cell-specific biases (e.g library

size). The three probabilities are estimated jointly using deep neural networks.

The biological component yij is estimated using a VAE (Kingma and Welling, 2013), which is composed of two deep neural net-

works, the encoder fz and decoder gz. Briefly, the encoder fz : N
K
0/ðRD;RDÞ, computes the distributional parameters of a D-dimen-

sional multivariate normal random variable: Z � MVNðfzðxiÞ1; fzðxiÞ2Þ. The sample is then concatenated to the batch annotation for

cell i, and passed through the decoder gz : ðRD; f0;1gSÞ/½0;1�K , for S being the dimension of the one-hot batch annotation (the

number of batches). The cell-specific factor [i computed from the input data for cell i via a deep neural network f[ : N
K
0/½0;1�.

Finally, the region-specific factor rj, since it is optimized across samples, is stored as a K-dimensional tensor, used and optimized

directly.

Architecture
All PeakVI neural nets are fully connected networks, composed of repeated blocks that share a basic structure. For convenience, we

define a fully connected block FCðI;O;D;AÞ as having a fully connected layer with I input nodes and O output nodes, followed by a

drop-out layer with a D probability of dropout, a layer-norm layer, and finally an A activation function.
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The encoder fz is constructed as follows:
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N;

ffiffiffiffi
N

p
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�
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;
ffiffiffiffi
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4
p
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��

With
ffiffiffiffi
N4

p
being the default dimensionality of the latent representation. This ensures that the model architecture scales with the num-

ber of features in the data and the complexity of the representation.

The decoder gz is constructed as follows:
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With S as the dimensionality of the batch annotations, concatenated to the latent representation.

The cell-specific factor network f[ is constructed similarly:

FC
�
N;

ffiffiffiffi
N

p
;0; leakyReLU

�
/

FC
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N
p

;
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p

;
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�
/
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N
p

;1;0; sigmoid
�

Training procedure
By default, PeakVI is optimized using AdamW (Loshchilov and Hutter, 2017) with a learning rate of 0.0001, weight decay of 0.001, and

minibatch size of 128. Themodel is trained on 90%of the data, with the remaining 10%used as a validation set. Training is performed

for at most 500 epochs, with early stopping: if there is no improvement in terms of the reconstruction loss on the validation set for

50 epochs, the training stops. For epochs i ˛½1;50� the KL divergence term is weighed done by a factor of i=50. The best state

throughout training, defined as the state that achieves the best reconstruction loss, is saved during the training and used as the final

state. All training settings are configurable.

Differential accessibility analysis
For a differential accessibility analysis between two populations A and B, the analysis is performed as follows:

1) N cells are sampled from each population, with replacement (default N = 5000). We denote the resulting cells Ci
X for the i-th

sample from population X, for i ˛½N� and X ˛fA;Bg.
2) for each cell C, we apply the inference model on the cell’s chromatin accessibility profile fzðxCÞ to get the variation distribution

corresponding to that cell, qC, sample from that distribution to get an estimated profile of the probability of accessibility of all

regions in that cell: zC. We then use the generative model gz to estimate the probability of accessibility of each region j in that

cell: ðyCÞj. Sampling from the variational space allows us to sample the same cell multiple times and get different estimates,

thereby enabling statistical power beyond the original sample size.

3) to calculate the effect size for each region, we simply take the average estimated probability of accessibility across all samples

from each population, and compute the absolute difference between the averages: Dj = ðyAÞj � ðyBÞj.
4) to calculate the statistical significance, we randomly pair samples from each population into N pairs of estimates

fðyA; yBÞiji˛½N�g, then for each regionwecount for howmanypairs thedifferencebetweenestimateswasgreater than somemin-

imal d (default 0.05): pDAj
= 1

N

PN
i 1ððyAÞij � ðyBÞij>dÞ. This procedure has been previously described by (Lopez et al., 2020).

5) In addition to pDA, we also compute the Bayes factor: BFj = log pDA

1�pDA
, and perform multiple testing correction using the pro-

cedure previously described by Lopez et al. (Lopez et al., 2020) to get a qualitative, binary label for each region.

QUANTIFICATION AND STATISTICAL ANALYSIS

Stability analysis
To measure the stability of PeakVI to hyperparameter selection, we ran a full grid search using the 103 Genomics sample data. We

held out 10%of the data as a test set and trained all models on the remaining set. We trained eachmodel 3 times (with an independent
Cell Reports Methods 2, 100182, March 28, 2022 e2
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train-validation split) andmeasured the likelihood on the held-out data. The full results are available in Table S1. The hyperparameters

we varied and the values used are as follows: learning rate (1e-2, 1e-3, 1e-4); number of hidden layers (1,2,3,4); dropout rate (0.1, 0.3);

minibatch size (64, 128, 256); weight decay (0.1, 0.01, 0.001).

Dataset processing
The hematopoiesis data was downloaded from GEO (Accession GSE129785); specifically the processed peak-by-cell matrix and

metadata files: scATAC-Hematopoiesis-All.cell-barcodes.txt.gz, scATAC-Hematopoiesis-All.mtx.gz, scATAC-Hematopoiesis-

All.peaks.txt.gz. We then filtered the genomic region to only those that are detected in at least 0.1% of the cells in the sample,

reducing the data from 571400 regions to 133962 regions. The sample data from 103 genomics was also downloaded as prepro-

cessed peak-by-cell matrices, without any additional filters.

Running published methods
For all methods, we followed the standard recommended procedure for analyzing data. For visualization, we computed the umap

(McInnes et al., 2018) coordinates using the python implementation from the latent space computed by the respective method

(except for SCALE, see below). cisTopic (v0.3.0): We used the WarpLDA model fitting procedure, and chose the best number of

topics based on the second derivative, as recommended by the package documentation. For the hematopoiesis data the model

used 100 topics, and 40 topics for the paired PBMC sample data from 10X Genomics. chromVAR (v1.12.0): We used the

JASPAR2016 motif set, containing 386 motifs, and followed the standard analysis outlined in the package documentation. We

used the unnormalized motif deviation scores. For dimensionality reduction, we found no clear difference between using the chrom-

VAR scores directly and applying an additional linear procedure (i.e principle component analysis). Results described in the manu-

script use the deviation scores directly. LSA: We used the python implementation from the Scikit-learn (Pedregosa et al., 2011). We

first binarized the data, then computed the top 50 components used the TruncatedSVD method, on the tfidf-transformed data.

SCALE (v1.0.4): we used the external script to run SCALE without a pre-determined number of clusters, using the default arguments.

In all visualizations, we used the umap coordinates computed by SCALE.

Enrichment score calculation
Enrichment scores used to quantify cell type separation and batch mixing were computed in an identical way. Given a latent repre-

sentation R, an integer k, and cell labels L, we first compute GR;k , the K-nearest neighbor graph from R with k neighbors. We then

compute for each cell the proportion of neighbors that share the same label: si =
1
k

P
j˛GR;k ðiÞ1ðLi = LjÞ. The overall score is the average

score across all cells, s, normalized by the expected score for a random sample from the distribution of labels: E½s� = P
[˛fLgp

2
[ , for

fLg being the set of available labels, and p[ being the proportion of each label [˛fLg. The enrichment score is then s
E½s�.

Differential expression with logistic regression
As a simple benchmark for differential accessibility, we constructed a standard logistic regression model to compare B-cells to

NK-cells, using the design y � number of fragments+ cell type, where y is the binary detection of a genomic region. We fit themodel

using the glm function in R. Due to the runtime of this analysis, we limited the results to regions that are detected in at least 1% of the

compared cells.

Analysis of bulk ATAC-seq data
The bulk ATAC-seq data used as a ground truth reference for differential accessibility analysis was downloaded from GEO (accession

GSE118189). We used the unstimulated samples of all B-cell and NK-cell subtypes included in the study and used DESeq2 (Love et al.,

2014), which was found to be among the ebst performingmethods for differential accessibility from bulk ATAC-seq data (Gontarz et al.,

2020) for differential accessibility between the two group.We then found regions in the hematopoiesis data that overlapwith the regions

in the bulk data, and used the differential signal found in the bulk data for the overlapping regions in the hematopoiesis data.

Projection of query data onto reference
Projection of query data onto a latent space learned from reference data is done using scArches (Lotfollahi et al., 2021). First, the 103

sample PBMC data was downloaded and processed (using CellRanger v3.1.0) using the hematopoiesis peaks. We then trained a

PeakVI model on the hematopoiesis data using ell covariate injection, which adds one-hot encoded batch annotation to each layer

in the VAE (as opposed to only the decoder layers, which is the default behavior). We then trained the resulting model on the query

data, which involves adding batch annotations corresponding to the query data, and only training the nodes in the network that

interact with these additional batches. This preserves the latent representation of the reference data while projecting the query

data onto the same space, while correcting batch effects between the query and data.

Cluster annotation with differential accessibility
Differential accessibility to identify marker regions for each cluster was performed between each cluster and all other clusters except

the three most similar clusters. This was in order to avoid sampling pairs of cells that are highly similar from the two groups, which
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would reduce the signal. We therefore calculated the centroid of each cluster (the average position in the latent space of all cells in the

cluster), computed the Euclidean distancematrix between all centroids, and identified for each cluster the 3most similar clusters.We

then used the identified regions (using the Bayesian FDR method described by Lopez et al. (Lopez et al., 2020)), ran them through

enrichr (Chen et al., 2013; Kuleshov et al., 2016), and downloaded the enrichment results for the ARCHS4 Tissues set. For associating

regions with genes, we used the bioconductor package TxDb.Hsapiens.UCSC.hg19.knownGene (Carlson andMaintainer, 2015) and

considered only strict overlaps between the region and the annotated gene body or promoter.
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