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A B S T R A C T   

The drag based Savonius wind turbine (SWT) has shown immense potential for renewable power 
generation in built-up areas under complex urban wind conditions. While a series of studies have 
been conducted on improving SWT’s efficiency, optimal performance has yet to be achieved using 
traditional design approaches such as experimental and/or computational fluid dynamics 
methods. Recently, artificial intelligence and machine learning have been widely used in design 
optimization. As such, an ANN-based virtual clone can be an alternative to traditional design 
methods for wind turbine performance determination. Therefore, the main goal of this study is to 
investigate whether ANN-based virtual clones are capable of determining the performance of 
SWTs with a shorter timeframe and minimal resources compared to traditional methods. To 
achieve the objective, an ANN-based virtual clone model is developed. Two sets of data 
(computational and experimental) are used to validate and determine the efficacy of the proposed 
ANN-based virtual clone model. Using experimental data, the model’s fidelity is over 98%. The 
proposed model produces results in one-fifth the time of the existing simulation (based on the 
combined ANN + GA metamodel) method. The model also reveals the location of the dataset’s 
optimized point for augmenting the turbine’s performance.   

1. Introduction 

With a 4% contribution to global electricity generation, wind is regarded as the second-largest source of renewable energy after 
hydro energy [1]. Sustainable wind energy reduces dependence on fossil fuels that have a significant impact on environmental ecology 
and sustainable development. In 2021, the installed wind power generation capacity reached 837 GW, according to the Global Wind 
Report 2022 [2]. Fig. 1 depicts the exponential growth of global wind power generation capacity over time (1995–2021). On-shore, 
off-shore, or coastal areas seem to be the most common wind energy harnessing domains. Renewable wind energy can also be used for 
sustainable energy solutions in built-up or urban areas [3]. Smartly designed wind turbines can ensure the optimum use of complex and 
highly volatile wind energy in built-up areas. 

Most commercial onshore and offshore wind turbines have production capacities in the MW range, and rural and coastal areas are 
suitable locations for their installation if smartly designed small-scale wind turbines are used [3,5,6]. Urban wind is erratic and 
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turbulent, which makes it difficult to utilize for power generation effectively using traditional horizontal or vertical axis wind turbines. 
However, the vertical axis wind turbine (VAWT) is better suited to urban applications than the horizontal axis wind turbine (HAWT), 
because the VAWT is omnidirectional, effective at low wind speeds, and can be installed in space-constrained areas [7–9]. Among 
vertical-axis wind turbines, the Savonius type wind turbine is gaining popularity, despite its low efficiency due to its higher starting 
torque [10]. The Darrieus type wind turbine, although it has a higher power coefficient (Cp), is less desirable because of its greater 
sensitivity to approaching turbulent winds [11–13]. Darrieus turbines are more expensive because of their more complex design and 
despite their smaller initial torque [14,15]. Thanks to its higher reliability and capacity for self-starting, the Savonius wind turbine 
(SWT) is preferable over the HAWT and DWT. SWTs can operate effectively in built-up areas, including on top of buildings, in highway 
dividers, and near railroad tracks [3,16,17]. Wind energy systems based on the SWT are efficient for generating electricity in isolated 
settlements. The Savonius wind turbine has a wide range of potential and developing applications, including installation on city 
highways, between two tall buildings or other infrastructure, and/or alongside railway tracks [18]. Despite achieving notable 

Nomenclature 

AI artificial intelligence 
OL output layer 
ANN artificial neural network 
RF random forest 
CFD computational fluid dynamics 
RMSE root mean square error 
Cp coefficient of power 
RVM relevance vector machine 
Ct coefficient of torque 
SSA salp swarm algorithm 
DL deep learning 
SWT savonius wind turbine 
DVM discrete vortex method 
SVM support vector machine 
DWT darrieus wind turbine 
TSR tip speed ratio 
FFT fast fourier transform 
VAWTs vertical axis wind turbines 
GA genetic algorithm 
WTs wind turbines 
GEP genetic expression programming 
A turbine’s frontal area (m2) 
GP genetic programming 
F mechanical load on the shaft (N) 
GWEC global wind energy council 
PAv available power in the wind (W) 
HAWTs horizontal axis wind turbine 
PTr output power from the turbine (W) 
HL hidden layer 
T torque (Nm) 
IWO invasive weed optimization 
V wind speed (m/s) 
MAE mean absolute error 
ρ air density (kg/m3) 
ML machine learning 
ω angular speed (rad/s) 
MLP multi-layer perceptron 
q dynamic pressure 
MSE mean square error 
R turbine’s rotational radius (m) 
MSLE mean squared logarithmic error 
r radius of the pulley on the shaft (m) 
NN neural network 
N turbine’s rotational speed (rpm) 
ODGV omni-directional-guide-vane  
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performance improvement, the full potential of the SWT has yet to be reached. 
Contemporary research indicates the possible application of artificial intelligence (AI) for the advancement of the SWT blade design 

to enhance its performance. AI was first introduced in 1951 and is progressively used as one of the key features of modern technology 
and decision-making. AI is considered a central part of Industry 4.0. The concept of “artificial intelligence” is the computer simulation 
of human intelligence [18]. It is a growing field in many technical fields, including neurology, computer science, control systems, 
statistics, road vehicle aerodynamics, and battery charging framework optimization techniques [19–22]. However, a recent review 
paper highlighted the successful approaches of AI in diverse fields, including the possible application of AI in wind turbine optimi-
zation and power generation [18,23]. The features of artificial intelligence are numerous. The data science domain collaborates with 
machine learning and deep learning algorithms, two subsets of AI, to ensure smooth, inexpensive, quick, and efficient design as well as 
optimization and prediction approaches [18]. 

Existing and widely used SWT blade design or performance optimization methods include computational fluid dynamics 
simulation-based strategies and/or wind tunnel experiments, both of which have limitations and challenges. The computational 
method is costly and time-consuming in and of itself, and wind tunnel facilities are frequently unavailable and expensive. Additionally, 
the average wind speed is not regular in most of the places, so all the sensors installed in the experimental setup cannot operate 
properly on this approach. Whereas the simulation-based method, especially CFD, is expected to tackle all these issues. However, this 
method is considered the ideal one. The principal concern in this technique is the multi-scale turbulence and non-linearity of the 
Navier-Stokes fluid momentum equation. Large-Eddy Simulation (LES) and Reynolds Average Navier-Stokes (RANS) are two methods 
for reducing scale diversity, which are typically unrealistic and expensive due to computational resource constraints. A data-driven or 
machine-learning-based strategy is one way to alleviate this problem. In this study, the primary purpose is to investigate a data-driven 
virtual cloning method based on artificial neural networks (ANNs) that can be employed to determine the SWT’s performance in terms 
of power coefficient under different combinations of input parameters with a shorter timeframe and fewer resources. Computational 
and experimental approaches take time, effort, and large resources and are costly to implement. With limited input values, the 
computational procedure takes a long time to yield any meaningful results. The novelty of the study is achieving fidelity with a shorter 
timeframe and fewer computational resources using the proposed ANN-based virtual clone model. The study is conducted based on 
two different cases, where Case I represents the better involvement of the proposed model compared to a prior model. The experi-
mental data set from Case II would be used to validate the model’s fidelity. The successfully developed ANN-based virtual clone model 
is expected to usher in significant industrial implications for wind turbine design and optimization. 

2. Literature review 

Numerous studies on blade profiles and augmented devices have been conducted. Even though all of these studies have shown an 
increasing Cp, an optimal benchmark is still lacking. Researchers have suggested that the use of AI in this regard can potentially be a 
suitable alternative [18]. It can be used to estimate performance and optimize a SWT’s design parameters. The standard formula for 
calculating SWT efficiency is its power coefficient. This primary parameter depicts how well the turbine extracts kinetic energy from 
the wind. It is described as the ratio of the extracted wind power from the turbine rotor to the available wind power [24]. Although 
there are a few formulas for computing the Cp value, the fundamental equation is still the same. The Cp has always been the primary 
focus of turbine design, construction, and real-time implementation [25]. The torque coefficient (Ct), mechanical power and torque, tip 
speed ratio (TSR), drag or lift coefficients, and other basic parameters are included. The Ct and TSR have a direct impact on the power 
coefficient of the SWT. A higher amount of wind energy is extracted with the ideal tip speed ratio. Some of the most common and 
fundamental equations for Cp calculation are shown in equation 1 through 4 [26–38]. For instance, equations (1) and (4) depict the 
mathematical scheme of Cp, whereas equation (2) shows Ct, and equation (3) represents the TSR. 

Cp =
PTr

PAv
=

Tω
1
2 × ρAV3 =

πNT
15ρAV3 (1)  

Fig. 1. Global wind power capacity growth (1995–2021) [4].  
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Ct =
F × r

1
2 × ρAV2R

(2)  

TSR=
ωR
V

(3)  

Cp=
PTr

qAV
= Ct×TSR (4) 

A SWT’s performance takes its particular blade profile into account. Several SWT blade profiles have been proposed. The shapes 
that are more concerning from 1929 include those that are semicircular, multiple quarter semicircular, splined, slotted, twisted, airfoil- 
shaped, Benesh, fish-ridged rotors, and helical [39,40]. All these unique profiles have attested to the substantial enhancements in 
turbine performance. Fig. 2 shows the advancement of the power coefficient, which corresponds to various profiles over time [[34–37, 
40–51]]. However, this comparative analysis, which looks at 18 blade profiles and their output in total from 1978 to 2020, reveals that 
for the majority of that period, the power coefficient changes by between 0.12 and 0.33. The average Cp was observed at 0.217, which 
is not the required value, as seen in Fig. 2. Recent studies suggest that AI integration can provide a solution to resolve this issue 
[52–55]. 

The SWT augmentation techniques were used to expand another research domain with the same objective of improving the tur-
bine’s efficiency as Cp. Numerous studies have focused on the issue and produced unique findings. The implementation of 14 
augmentation devices, including the wind shield, deflector plate, V-shaped deflector, nozzle, circular windshield, obstacle shield, 
curtain plates, ODGV, and others, has improved the Cp over the period from 1978 to 2020, as shown in Fig. 3 [35,38,40–42,46,56–63]. 

Although the SWT’s Cp improves with this approach, the average value was found to be 0.277, which was somewhat higher than 
that of the blade profiles. Shields, guiding vanes, and curtains are a few other augmentation tools that have demonstrated an increase 
in Cp of 0.38 to 0.52. But again, this must increase the SWT’s average value. According to research, AI should be incorporated to ensure 
that the SWT performs at its best. Additionally, recent studies have noted the involvement of AI in the dominant wind power gen-
eration sector; for example, AI has been shown to be effective at estimating wind speed [64]. As reported in the literature, a series of 
machine learning (ML) algorithms, including RVM, SVM, and GP, have been used to build wind turbines that can ensure better TSR. 
Several studies on the use of AI in wind turbine technology have previously been carried out [65–68]. Table 1 shows a summary of 
some of this work. 

The initial sampled data can be implemented through different AI algorithms (ML or DL) along with several evolutionary and 
optimization algorithms to develop a digital model that can mimic traditional design approaches. The optimized model can be ob-
tained with some small and calculative changes in hidden layers, number of neurons, and proper learning rate for a certain dataset. 
Fig. 4 shows the limited application of AI to SWT blade design and performance optimization, where deep learning and evolutionary 
algorithms are used to determine the outcomes. The virtual model can be implemented for the performance evaluation of airfoil shape, 
radial turbine blades, deflector geometry, and so on. 

In comparison to the conventional optimization strategy, the AI-based approach is more cost- and time-effective. When using a 
traditional approach, complex and time-consuming design, numerical, or simulation (CFD, FFT, etc.) procedures are required. AI has 

Fig. 2. The rate of change of power coefficient of SWTs with various blade profiles (adapted from Noman et al. [18]).  
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made this process simpler by substituting the complex process with simple code and a set of design parameter data that requires the 
least amount of time, effort, infrastructure, and investment. In addition, conventionally, the entire input combination cannot be 
verified by simulation, whereas an AI technique verifies the appropriate output for all given data at once. Therefore, it is expected that 
new optimization techniques based on AI will eventually replace turbine design and optimization technology. The data validation, 
estimation, and optimization domains are where ANN is most frequently applied among all available ML techniques. ANN has offered a 
55% enhancement ratio, considering less windy environments, by improving the proposed blade structure [79]. 

In order to acquire the higherCp by ensuring blade optimization, the Salp Swarm Approach (SSA), another ML algorithm, has been 

Fig. 3. The effect of different augmentation devices on the rate of change of the Cp (adapted from Noman et al. [18]).  

Table 1 
A glimpse of recent research on WT technology with the inclusion of AI.  

Ref. & PY Turbine 
Type 

Dataset Algorithm Feature 

[52] 
2019 

SWT CFD Simulation ANN, GA Improving the efficiency by designing a deflector plate 

[69] 
2014 

VAWT Experimental ANN Turbine rotor’s performance coefficient and torque coefficient 
estimation 

[70] 
2021 

VAWT Experimental ANN Investigating the influence of aerodynamic parameters of the turbine 

[71] 
2021 

Not specified Simulation Long Short-Term Memory (LSTM) Predicting the parameters 

[72] 
2022 

VAWT Simulation Random Forest (RF) Automatic transmission system optimization 

[73] 
2017 

Not specified CFD Simulation Mean, LR, M5, RF Wind speed prediction 

[74] 
2018 

SWT CFD Simulation ANN, GA Parameter optimization 
Overlap ratio, Number of stages, Blade rotation 

[75] 
2016 

SWT Simulation ANN Prediction of aerodynamic characteristics 

[76] 
2019 

Not specified CFD Simulation LSTM Wind speed forecasting and fatigue analysis 

[77] 
2022 

Not specified Simulation ANN, 
Genetic Expression Programming 
(GEP) 

Turbine performance estimation 

[78] 
2022 

VAWT Simulation For Modeling: 
SVM, RF 
Bayesian ridge regression (BR) 
For optimization: 
Artificial Bee Colony (ABC); 
Genetic Algorithm (GA); 
Particle Swarm Optimization (PSO) 

Performance optimization  
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implemented, along with the discrete vortex method (DVM) [54]. Another feature that can be used to assure blade optimization is a 
surrogate model based on machine learning [78]. In order to predict the power coefficient with a dataset that contains a total of 13 
aerodynamic features, such as rotor diameter, overlap ratio, TSR, rotor height, etc. Rathod et al. [77] proposed a metamodel in 
conjunction with ANN and GEP (genetic expression programming) (for a single combination). For estimating the TSR of a VAWT 
featuring a deflector plate, Chen et al. [80] utilized the NN model in combination with the Taguchi method. The model performed 
effectively, with the error (between the CFD simulation and the projected value) being less than 4%. 

Numerous ML applications have also incorporated the evolutionary algorithm (which is not an ML method) and the genetic al-
gorithm (GA). By combining an ANN and GA metamodel with CFD simulation, Storti et al. [52] were able to optimize the deflector 
design and reduce costs by up to 97%. The cost function, which was created by the logical interface between the dependent and in-
dependent variables from experimental data, was analyzed and optimized using ANN and GA [74]. Again, the research [55] reported 
that the increase in Cp was 5.91%. The GA has demonstrated its acceptability through a number of implementations. A GA-based 
optimization method described in Ref. [53] led to a 33% increase in time-average Cpmax. Additionally, researchers [81] have pre-
sented a computational design methodology. To reduce the computational costs, they have combined the GA with IWO and 
non-dominated sorting-based multi-objective stochastic algorithms (NSGA-II). 

Table 2 provides a brief overview of some findings from recent studies, particularly those using ML algorithms to advance SWT. As 
shown in the table, the application of AI outperformed all traditional methods in terms of percentage gains in power coefficient. 
Additionally, the strategy significantly reduces the cost of computing associated with optimization. Thus, AI can be used for turbine 
design and performance optimization. 

From the contemporary literature review, it is evident that an artificial neural network (ANN) has immense potential for deter-
mining wind turbine performance. Although some limited studies have been undertaken (as shown in Tables 1 and 2), most of these 
studies are based on ideal wind conditions, and their models’ validation against experimental data is not very clear. Hence, the 
proposed study aims to develop an ANN-based virtual clone model by validating its efficacy against experimental data with complex 

Fig. 4. AI the next generation optimizer for SWT blades.  

Table 2 
A sample of the optimization with several ML/evolutionary algorithms specially for SWT blade.  

Author Published Year Algorithms Observation (Cp) 

Chan [53] 2018 GA 33% increase in Cp 

Chern [82] 2021 5.61% increase in Cp 

Shammari [79] 2020 ANN Enhancement ratio as 55% 
Mohammadi [74] 2018 ANN & GA Cpmax of 0.222, with AR as 0.89 and OR as 0.159 
Storti [52] 2019 30% increase in Cp 

Acarer [43] 2020 3D: at TSR = 0.55 Cpmax is 0.29 
2D: at TSR = 0.58 Cpmax is 0.36 

Masdari [54] 2019 SSA 27% increase in Cp 

Josep [81] 2020 GA, IWO, NSGA-II Minimized computational cost  
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turbulence scales. Urban and built-up areas’ wind conditions vary notably due to complex turbulence scales. 
The proposed virtual clone model is intended to develop based on machine learning algorithms. Several digital models are to be 

built with ML algorithms such as decision trees, random forests, linear regression, and K-nearest neighbor (KNN) with the Case I 
dataset. The experimental validation of the proposed model would be based on the Case II dataset. There are some more ways to 
develop an optimization model with the combination of GA, IWO, and PSO (particle swarm optimization) along with ANN, which also 
perform well with the enriched dataset. However, the experimental dataset was small (300:6); therefore, the intended model does not 
concern hybrid techniques. Furthermore, the proposed ANN-based clone model has shown better performance than the previously 
developed model at Storti et al. [52], which combined ANN with GA. Rathod et al. [77] used the ANN model and compared it to the 
GEP and reported achieving better results using the ANN. The hybrid model, particularly GA-ANN, contains complex structures that 
necessitate more run time and computing specifications [83], and other researchers have proposed similar scenarios in which a single 
ANN could solve most problems. 

3. Methodology 

The entire workflow for this study has been discussed in several subsections. The work is split into two cases: Case I, taking into 
account the dataset provided by Storti et al. [52], which has a total of 300 sequences of data, each with six independent features 
(300:6), and Case II, taking into account the dataset of Loganathan et al. [1], with the size of 490:5. Fig. 5 depicts the entire meth-
odology proposed to build the optimized virtual clone. 

The process of developing the best ANN-based prediction model with the appropriate activation function, learning rate, number of 
hidden layers, optimizers, and other factors began with the collection of the dataset. 

The first step is to collect and preprocess the dataset for developing the optimal sequential keras model, whose specifications are 
presented in Table 11. The second step (Box 1 in Fig. 5) consists of splitting both the datasets into training and test portions and the 
overall processes to develop, adjust (changing the activation function and optimizer), and validate the ANN-based virtual clone. 
Initially, the developed ANN model was trained with the training set (x_train) and validated with the corresponding x_test data to select 
the model’s proper parameters. The optimized virtual clone is determined by considering the least model loss and best performance 
metrics’ values after implementing a total of 8 updated activation functions and 7 optimizers. Sections 3.3 and 3.4, respectively, 
describe the comparative analysis of the best suit activation function and optimizer for the clone, as well as all associated results. One 
of the hyperparameter-tuning methods, random search, was used efficiently to determine the optimal learning rate and number of 
hidden layers. 

As the initial performance of the proposed clone did not achieve the expected results with the prior dataset of Case II, it was then 
modified to enrich its volume by calculating two new features, namely “turbine speed” and “torque coefficient,” from the original 
experimental report, and the modified dataset turns into 490:7, which results in the considerable inclination of the developed model’s 
performance (Box 2 in Fig. 5). Lastly (Box 3 in Fig. 5), the optimized virtual clone was trained with the updated Case II dataset, and 
thereafter the validation dataset (x_test of Case II) of size 50:7 was utilized to evaluate the models’ estimations. The predicted outputs 
were checked with the corresponding labelled output for calculating the performance metrics. When the clone’s prediction error was 
observed to be the minimum, this indicated the optimized virtual clone could replicate and replace the experimental or simulation- 
based conventional blade design approaches. Finally, the developed model was validated with the experimental data to ensure its 
acceptance. 

Fig. 5. Workflow of the proposed methodology.  
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3.1. Description of the dataset for case I 

For Case I, the dataset was implemented with regard to the improvement of the SWT with a set of deflector plates. The main goal of 
that (presented in previous work [52]) was to determine the best deflector geometry design. The dataset was prepared initially by one 
of the sample variable generators, the Latin Hypercube Sampling (LHS) method. Once the sampled variables were produced, these 
were then tested through the CFD analysis to find the corresponding output for a certain input combination. The dataset contains six 
input features for a corresponding output (Cp), which was then utilized to train the proposed metamodel on Storti’s study. A portion of 
the dataset with its input features and target is illustrated in Table 3. 

3.2. Description of the dataset for case II 

For Case II, the RMIT wind tunnel experimental dataset (Loganathan et al. [1]) was used to train and develop the best fit and 
optimal ANN-based virtual clone model, which can quickly replicate the experimental result. The dataset was gathered from the 
experimental setup of a series of prototype SWTs developed at RMIT University, Melbourne, Australia. All the prototypes’ blades were 
semi-circular with no twisting. A custom version of Catman® AP data acquisition software was used along with a torque transducer and 
sensors to collect the data of three variables, namely “torque coefficient,” “turbine rotational speed,” and “wind speed,” and other 
features were incorporated from the experimental setup. The number of blades varied from 8 to 48, and the wind speed was recorded 
from 4.5 to 8.5 m/s in the experimental dataset. Moreover, the estimated clearance also fluctuated within a range of − 3 to 82 mm. 

The main focus of Loganathan et al.‘s [1] experiment was to determine the effect of aerodynamic parameters (number of blades, 
TSR, etc.), and some other influencing parameters such as the wind speed, clearance between the blades, and turbine speed on the 
power coefficient of the SWT. Five input features are considered in the initial dataset for the corresponding output (Cp). This dataset 
contains a total of 490 input combinations. Table 4 shows a section of the dataset used in the study. 

3.2.1. Updating dataset of case II 
Any machine learning (ML) or deep learning (DL) algorithm responds well to a significant amount of data. As the dataset for Case II 

had a smaller volume, certain new characteristic values from the PhD thesis by Loganathan [1] were produced from the pre-existing 
data by using the governing equation to increase the volume of the dataset. Two of the additional elements, “turbine speed” and 
“torque coefficient,” were manually added to enhance the model’s performance. The procedure was carried out in such a way that it 
left the other parameters unaffected. The correlation matrix of the dataset in Fig. 6 has demonstrated the independence of all the 
features. With one exception (turbine speed, TSR), all of the characteristics appear to be independent because their values in the 
correlation matrix are all considerably less than 1. However, as the newly added features have enhanced the model’s performance, this 
case can be neglected. 

The dataset has been slightly modified from the original dataset. The adjusted dataset is shown in Table 5. The modified dataset’s 
csv (comma separated value) file was first uploaded to colab. The required libraries were then added, and some file installations were 
also performed. The keras sequential technique was used to create the ANN-based prediction model. The random search technique was 
used to tune the hyperparameters. 

3.3. Choice of activation function and optimizer for proposed clone (case I and case II datasets) 

The primary goal of establishing the ML/DL model was to replace the traditional methodologies for estimating the performance of 
turbine blade designs. Only the balanced or best-fit model can accurately reproduce the simulation or experimental process. The 
optimizer, activation function, learning rate, and other model specifications make up a balanced NN model. In the process of creating 

Table 3 
Portion of the Case I dataset with its input features and target.  

r1 (cm) Ѳ1 (◦) Δr2 (cm) ΔѲ2 (◦) Δr3 (cm) ΔѲ3 (◦) Cp 

137 10 19 4 8 4 0.161 
139 5 15 2 13 4 0.143 
139 7 7 3 17 4 0.147 
148 4 24 1 7 5 0.159 
147 9 9 3 29 2 0.168 
138 12 28 5 20 4 0.192 
133 10 26 5 13 4 0.182 
133 6 18 2 16 4 0.167 
150 6 30 4 26 4 0.184 
135 8 17 2 14 3 0.165 
145 14 28 2 8 5 0.176 
136 5 8 4 19 3 0.145 
152 1 9 2 25 1 0.175 

There was a total of 300 input combinations for the entire arrangement. The same dataset was implemented here in this work for developing the 
virtual clone initially: r and Ѳ (r1, ѲѲ1, Δr2, ΔѲѲ2, Δr3, ΔѲѲ3) represent the linear distance from the centre of the rotor and the angle difference of the 
deflector plate, respectively. 
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the virtual clone, a detailed analysis of the best optimizer was performed by the trial-and-error method (sequential model). The list of 
optimizers and their corresponding results for the dataset are shown in Table 6. It was quite difficult to choose the best optimizer with 
the chosen HL, and learning rate because the dataset (used in Case II) is smaller in size. As of yet, “Adam” was the model’s best match 
for the dataset used in this study. 

The summary of the analysis is displayed in Table 6, following comparison with other optimizers. The loss function MSE was 
6.6585 × 10− 3 and various other metrics were noted, along with the optimizer “SGD”, which was used to begin the comparison. The 
MSE for the remaining optimizers, including “RMSprop”, “Adadelta”, “Adagrad”, “Adamax”, and “Nadam”, was 3.3021 × 10− 3, 
2.2734 × 10− 2, 4.4467 × 10− 2, 1.816 × 10− 3, and 3.0967 × 10− 3, respectively. While “Adam” revealed the lowest MSE to be 1.0807 
× 10¡3 and the lowest value for the other performance metrics (r2 score, MAE, and RMSE), which were used as shown in Table 6. 

Additionally, the performance of a NN model depends on the appropriate selection of the ideal activation function for the specific 
dataset. A detailed comparative analysis has been undertaken following the same method (as optimizer selection) in order to identify 
the best activation function for constructing the virtual clone. For the datasets of Case I and II, respectively, Tables 9 and 10 show the 
overall and detail results represented at Section 4.1.1. 

Table 4 
A portion of the initial dataset used in Case II  

Blade number Wind speed (m/s) TSR Predicted clearance (mm) Clearance error (%) Cp 

8 8.5 0.0013 82.0 1.23 0.221 
8 8.5 0.0051 82.0 1.23 0.203 
8 8.5 0.0078 82.0 1.23 0.185 
8 8.5 0.0095 82.0 1.23 0.166 
8 8.5 0.0105 82.0 1.23 0.148  

Fig. 6. Correlation matrix of the Case II dataset.  

Table 5 
Some modified dataset for Case II provided by Loganathan [1].  

Blade number Wind speed (m/s) TSR Turbine speed (rad/s) Torque coefficient Predicted clearance (mm) Clearance error (%) Cp 

8 8.5 0.0013 0.719 166.83 82.0 1.23 0.221 
8 8.5 0.0051 2.736 40.20 82.0 1.23 0.203 
8 8.5 0.0078 4.196 23.83 82.0 1.23 0.185 
8 8.5 0.0095 5.153 17.47 82.0 1.23 0.166 
8 8.5 0.0105 5.658 14.14 82.0 1.23 0.148  

Table 6 
Investigation of the virtual clone’s performance using several optimizers in comparison. (Containing the learning rate as 0.001, the optimizer as 
Adam, the maximum number of epochs as 500, the activation function for the output layer as linear, and the number of HL as 7).  

Optimizer Accuracy 
Train/Val 

R2_Score MAE MSE RMSE 

SGD 97.14/96.82 74.0 0.063 6.6585 × 10− 3 0.0816 
RMSprop 96.88/95.26 87.1 0.042 3.3021 × 10− 3 0.0575 
Adadelta 90.36/95.26 11.1 0.109 2.2734 × 10− 2 0.1508 
Adagrad 96.09/95.26 82.6 0.050 4.4467 × 10− 2 0.0667 
Adam 97.40/96.88 95.8 0.016 1.0807 × 10¡3 0.0329 
Adamax 96.88/95.26 92.9 0.020 1.816 × 10− 3 0.0426 
Nadam 96.00/96.00 87.9 0.039 3.0967 × 10− 3 0.0556  
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3.4. ANN architecture 

Along with some ML techniques (hyperparameter tuning, linear search, etc.), a virtual clone based on artificial neural networks 
(ANNs) has been developed to mimic any experimental model and CFD as a balanced model (with less mean absolute error) and to find 
the dataset’s optimal point, ensuring the highest Cp. In this study, a supervised machine learning model has been created, etc.), a 

Table 7 
Specification of the optimal ANN topology for case I and case II datasets.  

Parameters Specification (case I) Specification (case II) 

Input 6 7 
Output 1 1 
HL of neural network 3 3 
Drop out 0.2 0.2 
No. of epochs 1500 500 
Mean Absolute Error 0.0037 0.016 
Mean Squared Error 1.353 × 10− 5 1.081 × 10− 3 

RMSE 2.98 × 10− 3 0.033 
R2_Score 93.9 95.8 
Optimizer Adam Adam 
Learning rate 0.001 0.001 
Activation function for HL elu softplus 
Activation function for output layer linear linear  

Table 8 
Some formula is used for the performance metric calculation [87,88].  

Evaluating metrics Governing formula Where, 
Residual = (observed value – fitted value) 
SSresidual = sum of the squares of residuals SStotal = total sum of the squares yhat = predicted value by the model 
ytr = target output 

R2_score 1 −
ssresidual

sstotal 
MAE 1

n
∑n

i=1
ytr − yhat 

MSE 1
n
∑n

i=1
(ytr − yhat)

2 

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ytr − yhat)

2
√

Table 9 
Comparative performance analysis of the virtual clone with several activation functions for Case I  

Activation Function for HL Accuracy 
Train/Val 

R2_Score MAE MSE RMSE 

relu 1.00/1.00 92.40 0.0031 1.6823 × 10− 5 0.0041 
sigmoid 1.00/1.00 − 0.011 0.0122 2.2471 × 10− 4 0.0149 
softplus 1.00/1.00 87.70 0.0040 2.7403 × 10− 5 0.0052 
softmax 1.00/1.00 − 0.008 0.0122 2.2348 × 10− 4 0.0149 
softsign 1.00/1.00 90.90 0.0034 2.0229 × 10− 5 0.0045 
selu 1.00/1.00 72.10 0.0069 6.1980 × 10− 5 0.0079 
elu 1.00/1.00 93.90 0.0028 1.3529 × 10¡5 0.0037 
tanh 1.00/1.00 85.70 0.0047 3.1863 × 10− 5 0.0056  

Table 10 
Comparative analysis of the performance of the virtual clone with several activation functions for the Case II dataset (Containing the learning rate as 
0.001, the optimizer as Adam, the maximum number of epochs as 500, the activation function for the output layer as linear, and the number of HL as 
7).  

Activation Function for HL Accuracy 
Train/Val 

R2_Score MAE MSE RMSE 

relu 97.14/95.26 93.5 0.016 1.6524 × 10− 3 0.0407 
sigmoid 97.14/96.82 95.6 0.012 1.1302 × 10− 3 0.0336 
softplus 97.40/96.88 95.8 0.016 1.0807 × 10¡3 0.0329 
softmax 94.27/95.26 − 0.037 0.140 2.6509 × 10− 3 0.1628 
softsign 97.66/95.31 94.1 0.021 1.5106 × 10− 3 0.0385 
selu 96.88/95.26 93.3 0.024 1.7026 × 10− 3 0.0413 
elu 97.40/96.88 94.4 0.019 1.4438 × 10− 3 0.0379 
tanh 97.92/95.26 93.9 0.022 1.5499 × 10− 3 0.0394  
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virtual clone based on artificial neural networks (ANNs) has been developed to mimic any experimental model and CFD as a balanced 
model (with less mean absolute error) and to find the dataset’s optimal point, ensuring the highest Cp. In this study, a supervised 
machine learning model has been created. When an ML model uses labelled data, all possible input combinations for the training data’s 
outputs are known. The ANN model can estimate the best potential output from any unknown input combinations with the right 
learning of the dataset. In 1943, Warren et al. [84] proposed the perceptron model for supervised techniques and the use of the neural 
network in non-linear modelling [77]. 

Fig. 7 shows the very basic model structure of an ANN. According to this figure, the artificial neurons in this case have synapses, an 
activation function, a summation point, and a bias. The intermediate links between the input and summation nodes are referred to as 
synapses, also referred to as weights. The input variables and synaptic weight are combined linearly via the summing node (Σ) 
(multiply them and add them together). The summing node typically outputs a greater number because of its internal calculation; in 
this case, an activation function φ(.) should be employed to determine the output within a specific range. The bias is also used to 
interrupt the summing value at node Σ (by increasing or decreasing). 

Both single-layer and multilayer perceptron can be used in the ANN (MLP). The MLP is very suitable for many issue analyses, 
including multivariable regression, fitting, time series analysis, etc., according to the most recent research [85]. It has been established 
that MLP is a general function approximator with specific characteristics [86]. The non-linear multivariable input-output problem 
analysis that may be carried out using the MLP paired with the back propagation technique is best suited for the suggested thesis 
domain [85]. Between the input and output layers, the MLP architecture has one or more hidden layers. The number of hidden layers, 
learning rate, node count, and many other variables pertaining to the problem type can all be determined using a variety of techniques. 
The hyperparameter tuning methodology has been applied in this work, utilizing the random search method. Although one hidden 
layer is seen as the ideal amount for multivariable regression problems, using too many hidden layers can result in increased local 
minima or unstable gradients [77]. 

Therefore, a fully connected MLP with two hidden layers has been used in the current research area. An MLP neural network that is 
fully connected is shown in Fig. 8. One input layer, one output layer, and two hidden layers are shown in this diagram. The input layer 
links the hidden layers to the provided input variables in a similar manner to how the synaptic connection between the hidden layer 
and output layer is constructed. 

In the present work, the Google CoLab, an online machine learning, deep learning, and data analysis platform with Python code 
execution, was used to incorporate the proposed approach. A total of 56 ANN-based virtual clones were initially developed with the 
mentioned activation functions and optimizer, and finally the best-fit model was determined by selecting the optimal model speci-
fication through trial and error (for choosing the activation function and optimizer) and random search (for obtaining proper HL and 
learning rate). 

Table 11 
Comparison of the proposed model with Storti’s model in Case I.  

Parameters Storti’s model Proposed model 

Input 6 6 
Output 1 1 
Training data size 300 300 
Validation data size 50 50 
HL 1 to 3 3 
Activation Function for HL Log-sigmoid elu 
Activation Function for OL Log-sigmoid linear 
No. of epochs 1500 1500 
MSE 2.154 × 10¡4 1.353 × 10¡5 

RMSE ——— 0.0037 
MAE 7.7 × 10¡3 2.98 × 10¡3 

R2_Score 97 93.9 
MSLE ———— 1.4 × 10¡5  

Fig. 7. Block diagram of a basic ANN architecture.  
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3.4.1. Hyper-parameter tuning (random search) 
An AI-based model’s performance depends on its optimal specification. The appropriate selection criteria reduce the NN complexity 

and ensure smooth execution with minimal execution time. The best-bit model needs to acquire the appropriate number of neurons, 
hidden layers, and learning rate for the specific dataset. Manual selection of these mentioned parameters’ values cannot ensure an 
exact match; moreover, these are time-consuming, whereas the hyperparameter tuning approach has been used to determine the 
optimal learning rate, number of HL, and number of nodes in the hidden layers. Compared to the conventional trial-and-error method, 
this method is quicker and more efficient in confirming the model’s best performance. This technique is reliable for selecting the 
convenient NN model’s parameter. In this study, the best fit HL and learning rate were determined as 3 and 0.001, respectively, by the 
automated approach. 

To declare the best optimizers for the model, trial-and-error was used to study the activation functions. A thorough comparative 
analysis of the set of activation functions and optimizers has been undertaken. Table 7 shows the optimized specification of the 
developed ANN-based virtual clone for both the case I and case II datasets, with which the developed models produce nearly the same 
output as the experimental values. Additionally, the dropout of 0.2 was used as the regularization of the proposed clone to ensure a 
balanced model free from underfitting or overfitting issues. Following that, the best-fitting and most balanced virtual clone was used to 
test its adaptation to the feeding data on the mentioned dataset. The models’ best performance is conspicuous by the value of the 
individual performance metrics addressed in this analysis. The least prediction error (MSE, RMSE, and MAE) was confirmed later by 
the improved virtual clone. For Case II data, the created model validated the correctness at 98.44 (%), with a coefficient (R_Squared) 
value of 95.8, a MSE of 1.081 10− 3, a RMSE of 0.033, and a MAE of 0.016, as described in Table 12. The least error value is the best 
outcome from this model, which was much better and reasonably close to the labelled output. Moreover, the comparative analysis with 
Storti’s model is listed in Table 11. 

4. Results and discussion 

For both the Case I and Case II datasets, a neural network (NN) model has been created with various properties. The finest selective 
(compared) parameters, such as the activation function, learning rate, and optimizer, were used to construct the optimal model, and 
their best-matched value was assigned using extensive comparative analyses. The optimized virtual clone has confirmed the most 
efficient values for all the mentioned performance evaluation metrics. Among several evaluating metrics, the RMSE, MSE, MAE, and 
r2_score have been examined in this current work, which also performed the specific governing formula behind each of their individual 

Fig. 8. Multilayer perceptron with ANN model.  

Table 12 
Performance of the proposed model for Case II dataset.  

Parameters Specification 

Training/Validation percentage 97.40/96.88 
No. of epochs 500 
Mean Absolute Error 0.016 
Mean Squared Error 1.081 × 10− 3 

RMSE 0.033 
MSLE 0.001 
R2_Score 95.8 
Optimizer Adam 
Learning rate 0.001 
Activation function for HL softplus 
Activation function for output layer linear  
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calculations. Table 8 illustrates some of the most common and fundamental governing equations behind their calculations. 

4.1. Performance visualization for optimal activation function 

The performance of the proposed virtual clone model is further visualized with each of the individual activation functions, and the 
best-fit model is then determined considering the model accuracy and loss curve along with the performance metrics. Moreover, the 
corresponding accuracy and loss curves have been plotted for determining the number of epochs needed to find the best-fitting or most 
balanced model. With the Case I dataset, the activation function “elu” and the optimizer “Adam” demonstrated the best performance, 
as demonstrated in Table 9 in detail, whereas the Case II dataset revealed the best performance with the activation function “softplus” 
and the optimizer “Adam”. They represented it in Table 10. 

Fig. 9.1. Model accuracy and loss plot for Case I with different activation functions (a) “relu” (b) “sigmoid” (c) “softplus”.  
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4.1.1. Optimal activation function for case I 
Following the performance metric values in Tables 9 and it is evident that among all cited activation functions, “elu” confirmed its 

best suitability for the corresponding dataset (Case I). The investigation was done with the prior specification, considering the 
mentioned HL, learning rate, and optimizer, and the optimal activation function was then determined. The difference among all the 
functions addressed gets conspicuous in the graphical representation. For accuracy, all graphs are shown from Fig. 9.1(a) i to 9.1(h) i, 
whereas for model loss as the number of epochs changes, this is evident from Fig. 9.1(a) ii to 9.1(h) ii. 

The graphs show the connection between the virtual clone’s test and training performances. Although all of the activation functions 
used in this study have roughly the same shapes in terms of model correctness, the associated activation functions have seen very little 
shape change due to loss. 

Even though there was not a particularly noticeable shift in the loss function, in fact the activation function “elu” in Fig. 9.1(g) ii 

Fig. 9.1. Model accuracy and loss plot for Case I with different activation functions (d) “softmax” (e) “softsign” (f) “selu”.  
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has produced the best r2 score with a smooth change in the model loss. Consequently, with the particular dataset, the function “elu” 
can be declared to be the most appropriate for all calculated performance metric values. Additionally, “elu” verified the virtual clone’s 
effective implementation, as shown in Fig. 10. The relationship between the predicted and actual values depicted on the graph is quite 
similar. Again, the estimated curve overlaps the target curve with most of the data points, demonstrating the virtual clone’s excellent 
adaptability to the dataset. 

The activation function “elu” is shown to have the least model loss, which was noted in the loss function MSE as 1.3529 × 10¡5 

from the constructed model. All other functions listed, such as “sigmoid,” “softplus,” “softmax,” “softsign,” “selu,” and “tanh,” have 
been observed with their respective MSEs of 2.2471 × 10− 4, 2.7403 × 10− 5, 2.2348 × 10− 4, 2.0229 × 10− 5, 6.198 × 10− 5, and 3.1863 
× 10− 5. The activation function “relu” has ensured its MSE of 1.6823 × 10− 5. For all executed activation functions, Table 9 includes 
additional performance metric data. 

4.1.2. Optimal activation function for case II 
For Case II, the sequential keras model’s optimal activation function and optimizer were chosen using the same analysis as was 

done for Case I. Eight activation functions in all have been added to this model; the list, together with their accuracy and corresponding 
loss (performance metrics), is shown in Table 10. After a thorough comparative analysis (trial-and-error) represented in the table, it 
can be stated that the activation function “softplus” shows the best performance with the corresponding dataset (Case II) among the 
other listed functions. 

To visualize the models’ execution with that of the Case II dataset, a couple of sudden fluctuations have been observed, which are 
shown in Fig. 9.2(a) i to 9.2(h) i for the accuracy and Fig. 9.2(a) ii to 9.2(h) iifig10a for the model loss with the change of number of 
epochs. 

The model accuracy was found with the activation “relu” at 98.7% for the training set and 98.44% for the test set, whereas the 
accuracy with “sigmoid” was (97.4/96.88) as a train/test percentage. This represents an abrupt change on the accuracy graph with the 
respective activation functions. The “softmax” has verified its accuracy as 94.97/95.25, demonstrating the virtual clone’s consistent 
and well-balanced performance. The accuracy of the functions “softsign,” “selu,” “elu,” and “tanh” has been verified as 97.66/95.31, 
95.83/95.31, 97.40/96.88, and 97.66/95.26, respectively. The maximum model accuracy, as determined by the activation function 
“softplus,” was 98.44/98.44, highlighting the fully balanced model in comparison. This model also confirmed the lowest MSE, which 
was 1.2602 × 10¡3. Table 10 includes the values for MSE and other performance metrics for each related function. 

Fig. 9.1. Model accuracy and loss plot for Case I with different activation functions (g) “elu” (h) “tanh”.  
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The best-fit and most balanced model for case II has been confirmed by Fig. 9.2(c) with the function “softplus”. In this instance, as 
opposed to others, the model’s accuracy with the train and test response was observed to be smooth. Additionally, the activation 
function has validated the best value of the various performance metrics. Finally, as shown in Table 10, “softplus” for both hidden 
layers and “linear” for the output layer provided the best fit model for the specific dataset of all the activation functions used to 
develop the keras sequential model. Fig. 12, with the function “softplus,” illustrates the relation between the actual and predicted 
values of Case II. The majority of the data points on the predicted curve overlap the target curve, demonstrating the virtual clone’s 
perfect match with the dataset. 

Fig. 9.2. Model accuracy and loss plot for Case II with different activation functions (a) “relu” (b) “sigmoid” (c) “softplus”.  
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4.2. Comparative analysis of the proposed model with Storti’s model 

With the Case I dataset as its initial implementation, the suggested virtual clone performed significantly better than the earlier work 
described in Storti et al. [52]. All performance metrics were cited in this study with superior results. Table 11 provides an illustration of 
the comparative analysis. 

The proposed model is best suited for the given dataset after making just a few minor changes to the model specifications. Apart 
from the r2 score, where the change is not very great, performance metrics as shown in Table 11 appeared to be substantially better 
with the proposed model. Additionally, this clone model is ideal because the MSE is 1.353 × 10− 5 and the MAE is 2.98 × 10− 3 with a 
modified optimizer and activation function. As a result, when all evaluation metrics are taken into account, the virtual clone has been 
found to be the best alternative to the model described in the earlier work [52]. 

Fig. 9.2. Model accuracy and loss plot for Case II with different activation functions (d) “softmax” (e) “softsign” (f) “selu”.  
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4.3. Performance of the virtual clone with the case II dataset 

The overall specification as well as the outcomes (evaluation metrics) of the developed virtual clone are shown in Table 12. As the 
experimental dataset has been used to construct a clone model for the very first time, the performance of the NN models is the 
benchmark. The suggested model can assist in developing a balanced model and prevent problems with overfitting and underfitting. 
After the thorough analysis, it can be declared that the generated model reported in this work was fully balanced with the appropriate 
activation function, learning rate, optimizer, and other variables. 

Among 56 ANN-based virtual clones, the best suit model is selected as the optimized model, considering the bright match of the 

Fig. 9.2. Model accuracy and loss plot for Case II with different activation functions (g) “elu” (h) “tanh”.  

Fig. 10. Virtual clone’s performance under optimal specification for Case I dataset.  
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activation function, optimizer, and learning rate described in Table 7. The final model indicates the best engagement with the 
experimental sample dataset for both cases compared to all the previously developed models. For Case I, the developed clone leads all 
the mentioned performance metrics of the prior Storti model except the r2_score, which is still a close value. All the other metrics 
recorded are much better than the previous model compared in Table 11. Thus, the proposed model in this work outweighs the 
performance of the prior metamodel. Again, with Case II, the substantially reduced loss functions and higher gain values confirm the 
optimized virtual clone described in Table 12. 

4.4. General discussion 

The “linear search” machine learning technique was used to provide an additional feature to the virtual clone. From the whole 
dataset, the generated clone can identify the input combinations from which the SWT derives the best value for CP. For the enriched 
dataset, where the manual finding approach may be difficult or time-consuming, this process can provide a good solution. For the Case 
II dataset, the power coefficient of the SWT was determined from the x_test dataset and then compared with the labelled values. From 
the entire test data, the best three input combinations were observed (blade no., wind speed, TSR, turbine speed, torque coefficient, 
predicted clearance, clearance error) as [(40, 7.5, 0.019, 8.976, 32.309, 0.5, 2.04; (40, 8.5, 0.032, 16.999, 15.883, 0.5, 2.04; (48, 8.5, 
0.009, 46.152, 62.836, 3.00, 1.69)], respectively, and the highest power coefficient for the corresponding combination was indicated 
as 0.499, 0.493, and 0.485. The predicted values were very close to the actual value for individual inputs, which also indicates the 
accuracy of the proposed model as a viable tool for evaluating SWTs’ performance. Some positive combinations of this study are found 
to be valuable in addition to the ideal estimating method with minimal error. 

Table 13(a) depicts the total computational time recorded for Storti’s model and the proposed model. The proposed ANN-based 
virtual clone model required 5.23 min; in contrast, Storti’s model needed 27.17 min for the total execution. The proposed model’s 
execution period is 5.2 times faster (i.e., a saving of 81%). Finally, the proposed models’ performance was validated with the 
experimental data from Case II, which showed over 98% fidelity. The predicted power coefficient value and experimental value 
matched together as shown in Table 13(b), which also confirms the model’s best adaptation to the experimental dataset. The close 
agreement indicates the reliability and suitability of the developed ANN-based virtual clone model for wind turbine blade design and 
performance prediction. 

5. Implications for industry of the developed virtual clone model 

The developed ANN-based virtual clone model can ensure its viability in a variety of potential domains, including wind turbine 
technology, aircraft aerodynamic shape analysis, road vehicle aerodynamic performance optimization, and others [89,90]. Aero-
dynamic shape and performance optimization starts with a sampled parametric dataset, where the initial step is to design the 3D model 
of the intended system or device and then develop the critical simulation environment (CFD, FFT, etc.) or incorporate the experimental 
setup for a certain test. 

Fig. 11. Virtual clone’s performance with optimal specification for Case II dataset.  

Table 13 (a) 
Computational cost of Storti’s model and proposed model.  

Description Storti’s study Current study 

Metamodels training 1620 s 310 s 
Time for Model’s Cp estimation 10 s 4 s 
Total time 27.17 min 5.23 min 
Time saved – 80.75%  
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a) Wind Turbine Technology 

The majority of wind turbine designs are carried out using computational fluid dynamics modelling and/or wind tunnel testing. 
These conventional approaches can be replaced with the developed model for optimizing the airfoil shape, number of blades, rotor 
diameter, aspect ratio, overlap ratio, and other aerodynamic parameters of any specific turbine. Additionally, the proposed model can 
also be utilized for wind mapping and wind-speed prediction for any potential wind farms.  

b) Aircraft and Road Vehicle Aerodynamic Performance Optimization 

Aerodynamic shape optimization is critical for the performance of aircraft and road vehicles. The outer shape of the vehicle, 
aircraft, or spacecraft must be aerodynamically efficient in order to reduce aerodynamic drag. The proposed virtual clone model can be 
implemented to optimize the better aerodynamic structure and reduce the cost.  

c) Mechanical Parts Performance Analysis 

Although beyond the scope of this study, the proposed ANN-based virtual clone model can be used to analyze the parametric value 
for the design and development of mechanical equipment such as gears, shafts, and rotors. When using the traditional simulation 
method, prior investigation of the sampled variables on the developed model can speed up the efficient design and installation of the 
mentioned quantities. 

6. Conclusions 

The aim of the study was to develop an ANN-based virtual clone model to determine and optimize wind turbine performance with 
minimal time, cost, and effort, independent of existing computational fluid dynamics or experimental methods. An artificial neural 
network (ANN)-based virtual clone model has been developed, incorporating computational and experimental data available in the 
public domain, to achieve this objective. 

The following are the major findings: 

1) The developed ANN-based virtual clone model is much faster compared to existing simulation models, thereby saving computa-
tional time.  

2) The validation of the proposed model against experimental data is at over 98% fidelity. The close agreement indicates the reliability 
and suitability of the developed ANN-based virtual clone model for wind turbine blade design and performance prediction. This 
will enable an alternative method of determining, optimizing, and augmenting wind turbine efficiency.  

3) Using the developed ANN-based virtual clone model and the embedded linear search technique, the optimal input combination for 
determining the SWT’s power coefficient can be identified. The power coefficient is one of the major decision-making parameters 
for efficient and optimized wind turbines.  

4) The developed ANN-based virtual clone model has significant industrial implications as it can offer an accelerated design process 
not only in wind turbine design but also in other closely related fields such as aeronautical and aerospace engineering, road vehicle 
and high-speed train design, and wind resource mapping.  

5) The efficacy of the developed ANN-based virtual clone model can be further enhanced by using larger input data sets, including 
complex in-situ turbulence characteristics and wind statistical information. 

Author contribution statement 

Abdullah Al Noman: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; 
Wrote the paper. 

Zinat Tasneem: Conceived and designed the experiments; Analyzed and interpreted the data. 
Sarafat Hussain Abhi, Faisal R Badal: Analyzed and interpreted the data. 
Md Rafsanzane, Md Robiul Islam, Firoz Alam: Contributed reagents, materials, analysis tools or data. 

Data availability statement 

The authors do not have permission to share data. 

Table 13 (b) 
STW’s coefficient of power from both the experimental and ANN-based virtual clone approaches 
with the Case II dataset.  

Approach Average Coefficient of Power (Cp) 

Loganathan’s experimental study 0.2421 
Proposed ANN based virtual clone model 0.2351  

A. Al Noman et al.                                                                                                                                                                                                    



Heliyon 9 (2023) e15672

21

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

References 

[1] B.R. Loganathan, Aerodynamic Study of Single Stage Multi-Blade Drag-Based Vertical Axis Wind Turbines”, PhD Thesis, School of Engineering, RMIT University, 
2018. 

[2] Global Wind Report 2022 - Global Wind Energy Council. https://gwec.net/global-wind-report-2022/. (Accessed 25 August 2022) accessed. 
[3] Z. Tasneem, A.A. Noman, S.K. Das, D.K. Saha, M.R. Islam, M.F. Ali, M.F.R. Badal, M.H. Ahamed, S.I. Muyeen, F. Alam, An analytical review on the evaluation of 

wind resource and wind turbine for urban application: prospect and challenges, Develop. Built Environ. 4 (2020), 100033, Nov, https://doi: 10.1016/j.dibe. 
2020.100033. 

[4] Why is renewable energy important? - REN21. https://www.ren21.net/why-is-renewable-energy-important/. (Accessed 25 August 2022) accessed. 
[5] T. Stathopoulos, H. Alrawashed, A. Al-Quraan, B. Blocken, A. Dilimulati, M. Paraschivoiu, P. Pilay, Urban wind energy: some views on potential and challenges, 

J. Wind Eng. Ind. Aerod. 179 (2018) 146–157, https://doi.org/10.1016/j.jweia.2018.05.018. Aug. 
[6] F. Toja-Silva, A. Colmenar-Santos, M. Castro-Gil, Urban wind energy exploitation systems: behaviour under multidirectional flow conditions - opportunities and 

challenges, Renew. Sustain. Energy Rev. 24 (2013) 364–378, https://doi.org/10.1016/j.rser.2013.03.052. Aug. 01. 
[7] B. Loganathan, I. Mustary, H. Chowdhury, F. Alam, Effect of sizing of a Savonius type vertical axis micro wind turbine, Energy Procedia 110 (2017) 555–560, 

https://doi.org/10.1016/j.egypro.2017.03.184. 
[8] M.R. Islam, S. Mekhilef, R. Saidur, Progress and recent trends of wind energy technology, Renew. Sustain. Energy Rev. 21 (2013) 456–468, https://doi.org/ 

10.1016/j.rser.2013.01.007. May 01. 
[9] R. Saidur, N.A. Rahim, M.R. Islam, K.H. Solangi, Environmental impact of wind energy, Renew. Sustain. Energy Rev. 15 (5) (2011) 2423–2430, Jun, https://doi. 

org/10.1016/j.rser.2011.02.024, 01. 
[10] S.S. Bhuyan, A. Biswas, Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors, Energy 

Convers. Manag. 87 (Aug. 2014) 859–867, https://doi.org/10.1016/j.enconman.2014.07.056. 
[11] F. Balduzzi, A. Bianchini, E.A. Carnevale, L. Ferrari, S. Magnani, Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a 

building, Appl. Energy 97 (Sep. 2012) 921–929, https://doi.org/10.1016/j.apenergy.2011.12.008. 
[12] J. Chen, H. Yang, M. Yang, H. Xu, Z. Hu, A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine, 

Renew. Sustain. Energy Rev. 51 (2015) 1709–1720, https://doi.org/10.1016/j.rser.2015.07.065. Aug. 11. 
[13] M. Ghasemian, Z.N. Ashrafi, A. Sedaghat, A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines, Energy 

Convers. Manag. 149 (2017) 87–100, https://doi.org/10.1016/j.enconman.2017.07.016. Oct. 01. 
[14] B. Hand, G. Kelly, A. Cashman, Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: a comprehensive review, Renew. 

Sustain. Energy Rev. 139 (2021), https://doi.org/10.1016/j.rser.2020.110699, 110699, Apr. 01. 
[15] P.M. Kumar, K. Sivalingam, S. Narasimalu, T.-C. Lim, S. Ramakrishna, H. Wei, A review on the evolution of darrieus vertical Axis wind turbine: small wind 

turbines, J. Power Energy Eng. 7 (4) (2019) 27–44, https://doi.org/10.4236/jpee.2019.74002. Apr. 
[16] R.K. Reja, R. Amin, Z. Tasneem, M.F. Ali, M.R. Islam, D.K. Saha, F.R. Badal, M.H. Ahamed, S.I. Muyeen, S.K. Das, A review of the evaluation of urban wind 

resources: challenges and perspectives, Energy Build. 257 (2022), 111781, https://doi.org/10.1016/j.enbuild.2021.111781. 
[17] R. Kumar, K. Raahemifar, A.S. Fung, A critical review of vertical axis wind turbines for urban applications, Renew. Sustain. Energy Rev. 89 (2018) 281–291, 

https://doi.org/10.1016/j.rser.2018.03.033. Jun. 01. 
[18] A.A. Noman, Z. Tasneem, M.F. Sahed, S.M. Muyeen, S.K. Das, F. Alam, Towards next generation Savonius wind turbine: artificial intelligence in blade design 

trends and framework, Renew. Sustain. Energy Rev. 168 (2022), 112531, https://doi.org/10.1016/j.rser.2022.112531. 
[19] I. Antonopoulos, V. Robu, B. Couraud, D. Kirli, S. Norbu, A. Kiprakis, D. Flynn, S.E. Gonzalez, S. Wattam, Artificial intelligence and machine learning approaches 

to energy demand-side response: a systematic review, Renew. Sustain. Energy Rev. 130 (2020), https://doi.org/10.1016/j.rser.2020.109899, 109899, Sep. 
[20] C.M. Corcoran, G.A. Cecchi, Using Language processing and speech analysis for the identification of psychosis and other disorders, Biol. Psychiatr.: Cogn. 

Neurosci. Neuroimag. 5 (8) (2020) 770–779, https://doi.org/10.1016/j.bpsc.2020.06.004. Aug. 01. 
[21] C.W. Transform, C. Neural, A novel approach to detect cardiac arrhythmia based on continuous wavelet transform and convolutional neural network, MIST Int. 

J. Sci. Tech. 10 (2022) 37–41. December. 
[22] A. Aboelezz, P. Makeen, H.A. Ghali, G. Elbayomi, M.M. Abdelrahman, Electric Vehicle Battery Charging Framework Using Artificial Intelligence Modeling of a 

Small Wind Turbine Based on Experimental Characterization, Clean Technologies and Environmental Policy, 2022, 0123456789, https://doi.org/10.1007/ 
s10098-022-02430-x. 

[23] S. Higgins, T. Stathopoulos, Application of artificial intelligence to urban wind energy, Build. Environ. 197 (2021), https://doi.org/10.1016/j. 
buildenv.2021.107848. April. 

[24] M. Trisakti, L. Halim, B.M. Arthaya, Power Coefficient Analysis of Savionus Wind Turbine Using CFD Analysis,” Proc. 2019 International Conference on 
Mechatronics, Robotics and System Engineering MoRSE, 2019, pp. 24–29, https://doi.org/10.1109/MoRSE48060.2019.8998703. Dec. 2019. 

[25] D. Hilewit, E.A. Matida, A. Fereidooni, H.A. el Ella, F. Nitzsche, Power coefficient measurements of a novel vertical axis wind turbine, Energy Sci. Eng. 7 (6) 
(2019) 2373–2382, Dec, https://doi.org/10.1002/ese3.412. 

[26] K.S. Jeon, J.I. Jeong, J.K. Pan, K.W. Ryu, Effects of end plates with various shapes and sizes on helical Savonius wind turbines, Renew. Energy 79 (1) (Jul. 2015) 
167–176, https://doi.org/10.1016/j.renene.2014.11.035. 

[27] K.H. Wong, W.T. Chong, N.L. Sukiman, S.C. Poh, Y.C. Shiah, C.T. Wang, Performance enhancements on vertical axis wind turbines using flow augmentation 
systems: a review, Renew. Sustain. Energy Rev. 73 (2017) 904–921, https://doi.org/10.1016/j.rser.2017.01.160. Jun. 01. 

[28] U.K. Saha, S. Thotla, D. Maity, Optimum design configuration of Savonius rotor through wind tunnel experiments, J. Wind Eng. Ind. Aerod. 96 (8–9) (2008) 
1359–1375, Aug, https://doi.org/10.1016/j.jweia.2008.03.00. 

[29] J.L. Menet, A double-step Savonius rotor for local production of electricity: a design study, Renew. Energy 29 (11) (2004) 1843–1862, Sep, https://doi.org/ 
10.1016/j.renene.2004.02.011. 

[30] A. Damak, Z. Driss, M.S. Abid, Experimental investigation of helical Savonius rotor with a twist of 180, Renew. Energy 52 (Apr. 2013) 136–142, https://doi.org/ 
10.1016/j.renene.2012.10.043. 

[31] M. Zemamou, M. Aggour, A. Toumi, Review of Savonius Wind Turbine Design and Performance, vol. 141, Energy Procedia, Dec. 2017, pp. 383–388, https://doi. 
org/10.1016/j.egypro.2017.11.047. 

[32] A. Dewan, A. Gautam, R. Goyal, Savonius wind turbines: a review of recent advances in design and performance enhancements, Mater. Today Proc. (May 2021), 
https://doi.org/10.1016/j.matpr.2021.05.20. 

[33] S. Fanel Dorel, G. Adrian Mihai, D. Nicusor, Review of specific performance parameters of vertical wind turbine rotors based on the SAVONIUS type, Energies 14 
(7) (2021), 1962, Apr, https://doi: 10.3390/en14071962. 

[34] A. Banerjee, S. Roy, P. Mukherjee, U.K. Saha, Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine, Feb. 2014, https://doi.org/ 
10.1115/GTINDIA2014-8141. 

[35] M. Tartuferi, V. D’Alessandro, S. Montelpare, R. Ricci, Enhancement of savonius wind rotor aerodynamic performance: a computational study of new blade 
shapes and curtain systems, Energy 79 (Jan. 2015) 371–384, https://doi.org/10.1016/j.energy.2014.11.023. C. 

A. Al Noman et al.                                                                                                                                                                                                    

http://refhub.elsevier.com/S2405-8440(23)02879-7/sref1
http://refhub.elsevier.com/S2405-8440(23)02879-7/sref1
https://gwec.net/global-wind-report-2022/
https://doi:%2010.1016/j.dibe.2020.100033
https://doi:%2010.1016/j.dibe.2020.100033
https://www.ren21.net/why-is-renewable-energy-important/
https://doi.org/10.1016/j.jweia.2018.05.018
https://doi.org/10.1016/j.rser.2013.03.052
https://doi.org/10.1016/j.egypro.2017.03.184
https://doi.org/10.1016/j.rser.2013.01.007
https://doi.org/10.1016/j.rser.2013.01.007
https://doi.org/10.1016/j.rser.2011.02.024
https://doi.org/10.1016/j.rser.2011.02.024
https://doi.org/10.1016/j.enconman.2014.07.056
https://doi.org/10.1016/j.apenergy.2011.12.008
https://doi.org/10.1016/j.rser.2015.07.065
https://doi.org/10.1016/j.enconman.2017.07.016
https://doi.org/10.1016/j.rser.2020.110699
https://doi.org/10.4236/jpee.2019.74002
https://doi.org/10.1016/j.enbuild.2021.111781
https://doi.org/10.1016/j.rser.2018.03.033
https://doi.org/10.1016/j.rser.2022.112531
https://doi.org/10.1016/j.rser.2020.109899
https://doi.org/10.1016/j.bpsc.2020.06.004
http://refhub.elsevier.com/S2405-8440(23)02879-7/sref21
http://refhub.elsevier.com/S2405-8440(23)02879-7/sref21
https://doi.org/10.1007/s10098-022-02430-x
https://doi.org/10.1007/s10098-022-02430-x
https://doi.org/10.1016/j.buildenv.2021.107848
https://doi.org/10.1016/j.buildenv.2021.107848
https://doi.org/10.1109/MoRSE48060.2019.8998703
https://doi.org/10.1002/ese3.412
https://doi.org/10.1016/j.renene.2014.11.035
https://doi.org/10.1016/j.rser.2017.01.160
https://doi.org/10.1016/j.jweia.2008.03.00
https://doi.org/10.1016/j.renene.2004.02.011
https://doi.org/10.1016/j.renene.2004.02.011
https://doi.org/10.1016/j.renene.2012.10.043
https://doi.org/10.1016/j.renene.2012.10.043
https://doi.org/10.1016/j.egypro.2017.11.047
https://doi.org/10.1016/j.egypro.2017.11.047
https://doi.org/10.1016/j.matpr.2021.05.20
https://doi:%2010.3390/en14071962
https://doi.org/10.1115/GTINDIA2014-8141
https://doi.org/10.1115/GTINDIA2014-8141
https://doi.org/10.1016/j.energy.2014.11.023


Heliyon 9 (2023) e15672

22

[36] S. Sharma, R.K. Sharma, Performance improvement of Savonius rotor using multiple quarter blades – a CFD investigation, Energy Convers. Manag. 127 (2016) 
43–54, https://doi.org/10.1016/j.enconman.2016.08.087. Nov. 

[37] S. Sharma, R.K. Sharma, CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor, vol. 144, Energy 
Conversion and Management, Jul. 2017, pp. 275–285, https://doi.org/10.1016/j.enconman.2017.04.059. 

[38] B. Emmanuel, W. Jun, Numerical study of a six-bladed savonius wind turbine, J. Sol. Energy Eng. 133 (4) (2011), https://doi.org/10.1115/1.4004549. Nov. 
[39] N. Alom, U.K. Saha, Four decades of research into the augmentation techniques of savonius wind turbine rotor, J. Energy Resour. Technol. 140 (5) (May 2018), 

https://doi.org/10.1115/1.4038785. 
[40] C. Harsito, D.D.D.P. Tjahjana, B. Kristiawan, Savonius turbine performance with slotted blades, AIP Conf. Proceed. 2217 (1) (2020), 030071, https://doi.org/ 

10.1063/5.0000797. 
[41] S. Roy, P. Mukherjee, U.K. Saha, Aerodynamic Performance Evaluation of a Novel Savonius-Style Wind Turbine under an Oriented Jet,” Gas Turbine India 

Conference, Feb. 2014, https://doi.org/10.1115/GTINDIA2014-8152. 
[42] A.J. Alexander, B.P. Holownia, Wind tunnel tests on a savonius rotor, J. Wind Eng. Ind. Aerod. 3 (4) (Jan. 1978) 343–351, https://doi.org/10.1016/0167-6105 

(78)90037-5. 
[43] S. Acarer, Ç. Uyulan, Z.H. Karadeniz, Optimization of radial inflow wind turbines for urban wind energy harvesting, Energy 202 (2020), https://doi.org/ 

10.1016/j.energy.2020.117772, 117772, Jul. 
[44] T. Ogawa, H. Yoshida, Y. Yokota, Development of rotational speed control systems for a savonius-type wind turbine, J. Fluid. Eng. Trans. ASME 111 (1) (Mar. 

1989) 53–58, https://doi.org/10.1115/1.3243598. 
[45] A.S. Grinspan, U.K. Saha, P. Mahanta, Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor, Apr. 2004. 
[46] K. Kacprzak, G. Liskiewicz, K. Sobczak, Numerical investigation of conventional and modified Savonius wind turbines, Renew. Energy 60 (Dec. 2013) 578–585, 

https://doi.org/10.1016/j.renene.2013.06.009. 
[47] L. Song, Z.X. Yang, R.T. Deng, X.G. Yang, Performance and Structure Optimization for a New Type of Vertical axis Wind Turbine,” International Conference on 

Advanced Mechatronic Systems, ICAMechS, 2013, pp. 687–692, https://doi.org/10.1109/ICAMechS.2013.6681730. 
[48] G.G. Muscolo, R. Molfino, From Savonius to Bronzinus: a comparison among vertical wind turbines, Energy Procedia 50 (2014) 10–18, https://doi.org/ 

10.1016/j.egypro.2014.06.002. 
[49] N. Alom, S.C. Kolaparthi, S.C. Gadde, U.K. Saha, Aerodynamic design optimization of elliptical-bladed savonius-style wind turbine by numerical simulations, in: 

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 6, Oct. 2016, https://doi.org/10.1115/OMAE2016-55095. 
[50] M. Mari, M. Venturini, A. Beyene, A novel geometry for vertical axis wind turbines based on the savonius concept, J. Energy Res. Techn. Trans. ASME 139 (6) 

(2017), https://doi.org/10.1115/1.4036964. Nov. 
[51] Y. Kurniawan, D. Danardono, D. Prija Tjahjana, B. Santoso, Experimental study of savonius wind turbine performance with blade layer addition, J. Adv. Res. 

Fluid Mech. Ther. Sci. 69 (2020) 23–33, https://doi.org/10.37934/arfmts.69.1.2333. 
[52] B.A. Storti, J.J. Dorella, N.D. Roman, I. Peralta, A.E. Albanesi, Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a 

metamodel-based optimization approach, Energy 186 (2019), https://doi.org/10.1016/j.energy.2019.07.144, 115814, Nov. 
[53] C.M. Chan, H.L. Bai, D.Q. He, Blade shape optimization of the Savonius wind turbine using a genetic algorithm, Appl. Energy 213 (Mar. 2018) 148–157, https:// 

doi.org/10.1016/j.apenergy.2018.01.029. 
[54] M. Masdari, M. Tahani, M.H. Naderi, N. Babayan, Optimization of airfoil Based Savonius wind turbine using coupled discrete vortex method and salp swarm 

algorithm, J. Clean. Prod. 222 (Jun. 2019) 47–56, https://doi.org/10.1016/j.jclepro.2019.02.237. 
[55] M.J. Chern, D. Goytom Tewolde, C.C. Kao, N. Vaziri, Vertical-Axis wind turbine blade-shape optimization using a genetic algorithm and direct-forcing immersed 

boundary method, J. Energy Eng. 147 (2) (2021), https://doi.org/10.1061/(asce)ey.1943-7897.0000741, 04020091, Apr. 
[56] W.A. El-Askary, M.H. Nasef, A.A. AbdEL-hamid, H.E. Gad, Harvesting wind energy for improving performance of savonius rotor, J. Wind Eng. Ind. Aerod. 139 

(Apr. 2015) 8–15, https://doi.org/10.1016/j.jweia.2015.01.003. 
[57] M.B. Salleh, N.M. Kamaruddin, Z. Mohamed-Kassim, The effects of deflector longitudinal position and height on the power performance of a conventional 

Savonius turbine, Energy Convers. Manag. 226 (2020), https://doi.org/10.1016/j.enconman.2020.113584, 113584, Dec. 
[58] S.M. Morcos, M.G. Khalafallah, H.A. Heikel, S.M. Morcos, M.G. Khalafallah, H.A. Heikel, The effect of shielding on the aerodynamic performance of Savonius 

wind turbines, IECE 2 (1981) 2037–2040. 
[59] T. Ogawa, H. Yoshida, The effects of a deflecting plate and rotor end plates on performances of savonius-type wind turbine, Bullet. JSME 29 (253) (1986) 

2115–2121, https://doi.org/10.1299/jsme1958.29.2115. 
[60] P. Reupke, S.D. Probert, Slatted-blade savonius wind-rotors, Appl. Energy 40 (1) (Jan. 1991) 65–75, https://doi.org/10.1016/0306-2619(91)90051-X. 
[61] B.D. Altan, M. Atilgan, The use of a curtain design to increase the performance level of a Savonius wind rotors, Renew. Energy 35 (4) (Apr. 2010) 821–829, 

https://doi.org/10.1016/j.renene.2009.08.025. 
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