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Neuroscience studies require considerable bioinformatic support and expertise.

Numerous high-dimensional and multimodal datasets must be preprocessed and

integrated to create robust and reproducible analysis pipelines. We describe a common

data elements and scalable data management infrastructure that allowsmultiple analytics

workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data.

The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI,

fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other

datasets such as Fitbit and flexibility for developers to customize the integration of

new types of data. Exemplar results from 200+ participants and 11 different pipelines

demonstrate the utility of the infrastructure.

Keywords: human brain, neuroimaging, multi-level assessment, large-scale studies, common data element, data

processing pipelines, scalable analytics, bids format

INTRODUCTION

Neuroimaging studies such as ABCD, ADNI, Human Connectome, and Tulsa 1,000 studies
are significant contributors to the rapid growth of big data (1–4). In addition to the usual
high-dimensional data that accompany clinical studies (e.g., genetic, cellular, and clinical
assessments), neuroscience studies include multimodal data for the brain [e.g., MRI, Perfusion
MRI [pMRI], diffusion MRI [dMRI], functional MRI [fMRI] and Electroencephalography [EEG]].
The use of various data acquisition modalities and differences in studies’ experimental designs
make it challenging to provide a common data architecture that would offer easy access, scalability,
management and sharing, including the ability to build analytic workflows and to run large scale
analyses with increasingly large numbers of subjects. Here, we propose possible solutions to these
challenges and described our specific working implementation.

As a part of the Neuroscience-Based Mental Health Assessment and Prediction (NeuroMAP)
Center of Biomedical Research Excellence (CoBRE) award from National Institute of General
Medical Sciences (NIGMS/NIH), the NeuroMAP Research Core provides research infrastructure
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to conduct advanced neuroscience research and is also
responsible for providing active data management and analysis
support, which includes standardization of all acquired data.
Data collected for NeuroMAP consist of a core baseline
assessment as well as subsequent individual projects sharing
various common data elements. Briefly, the research core
protocol contains neuroimaging (two sessions—one functional
with concurrent EEG lasting 2 h and one structural lasting 1 h),
behavioral, self-report, biomarker, and actigraphy data acquired
from large cohorts of participants who are then enrolled in
the various other projects. Full details can be found in the
supplement, especially see Supplementary Figure 1 for an
overview of the core. Ongoing human recruitment into the
core protocol is roughly 100 participants per year in phase I (5
years, with a possible extension to 10 years), so that this cohort
is anticipated to reach 400+ participants. Currently at year 3,
310 participants have been enrolled, with 291 completing all
core assessments (see Supplementary Table 1 for general sample
characteristics). A large and growing cohort size combined with
several acquisition modalities amounts to a large and increasing
set of heterogenous and complex data.

Large-scale data collection pipelines are complex to establish
while maintaining standardized experimental protocols on both
the data-acquisition hardware level and on the clinical data
management level. Follow-up analyses also require further
standardization, which is often implemented in ad hoc software
systems at different institutions and may even vary between
labs within an institution. Home-grown solutions can work
adequately, and over the past decade we have collected
neuroimaging data from thousands of individuals using our own
internal solutions. However, in recent years, progress has been
made in the scientific community toward consensus solutions to
improve data management and mechanisms for data sharing (5).

There are a number of substantial costs when using custom
data management solutions, not the least of which is developing
the data processing standards, which can be difficult for
researchers without informatics training. Practically speaking,
the naming conventions and processing steps used in a study
are often neither well-documented nor reproduceable. In the best
case, idiosyncratic naming conventions and directory structures
simply add overhead when sharing datasets and analysis code
that was developed for specific file structures. For example, a
researcher unfamiliar with a particular dataset would need to
learn about its conventions along with the details of the study.
Sometimes, the first thing researchers do when working with
a new dataset is reformat it to match a form they are familiar
with, which is extra effort that could be avoided if standard
formats were used. Similarly, reusing analysis code (e.g., scripts
and software) often requires either extensive reworking to be
compatible with a new dataset, or reformatting the target data
to be compatible with the existing code.

One possible solution is the development of a complex data
management system used to store, access, and even analyze
neuroimaging and associated data. There have been several
projects to produce such extensive systems over the past 15 years
(6–12); however, they can come with significant overhead in
installation, maintenance, and user training. In fact, our institute

spent considerable time and resources attempting to implement
one of these systems, a project which we ultimately abandoned
due to excessive cost and technical difficulties.

One of the main challenges is the need for a commonly
accepted data structure format that would provide a consistent
and standardized way to organize multi-level neuroimaging
data. The Brain Imaging Data Structure (BIDS) (5) was
introduced in 2016 and promises to alleviate some of the
difficulties in organizing, documenting and sharing data and
code while maintaining a simple, intuitive structure that is
easy to understand and work with. With metadata stored
directly on disk, either in the form of file names and locations
or associated JSON sidecars, BIDS avoids requiring overly
complex management software or databases. The BIDS format
is remarkably similar to our internally developed neuroimaging
data organization solution and we decided to transition to BIDS
for the NeuroMAP studies, common data elements and all
new projects going forward. Wide acceptance of BIDS provides
standardization across other datasets and facilitates sharing with
the scientific community.

The goal of this work is to provide a detailed description of
our computing and data management infrastructure, which will
contribute to common data structures and serve as a model for
other large studies and institutions. We also show results from a
few exemplar datasets/analyses as a proof of concept. The rest of
the manuscript is organized as follows: Methods describes our
architecture and workflows. Data Management Infrastructure
Design provides an overview of our overall infrastructure, with
BIDS Conversion containing details related to organization of
five different modalities and Analytic Workflows detailing the
analysis pipeline structure. Results shows some exemplar group
results from task and resting fMRI as well as EEG. Discussion
summarizes our current state and future directions.

METHODS

Data Management Infrastructure Design
The Common Data Elements and Scalable Data Managing
Infrastructure can integrate neuroimage data with various other
data types (Figure 1). The CDE data are in general composed
from multimodal MRI, fMRI, EEG, physiological recordings,
behavioral measures, self-reports measures, actigraphy from
wearable devices, and biospecimen samples (e.g., blood and
microbiome). All self-reported and clinical interview data are
collected directly into an internally-hosted instance of the
Research Electronic Data Capture (REDCap) (13) database.
REDCap is a secure (e.g., compliant with 21 CFR Part 11, FISMA,
HIPAA, and GDPR), web-based data collection system that is
currently used by over 3,200 institutions in 128 countries (14).
We adopted REDCap in 2014 to replace a combination of paper-
charts and a home-grown databasing solution. Full details of
the NeuroMAP core multilevel data collection are included in
Supplementary Materials. All original data sources (left side of
Figure 1) are processed and stored in order to produce a BIDS-
compliant dataset (right side of Figure 1). The middle part of
the figure shows intermediate steps and storage, while the right
shows the final BIDS dataset. BIDS conversion of each element is
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FIGURE 1 | Common Data Elements and Scalable Data Management Infrastructure. Data generated and represented with different colors (left) are converted into the

BIDS file structure (right), where colors of directories correspond to data types on left.

described in detail in Section BIDS Conversion. Colors are used
to show which raw data and samples correspond to particular
elements of the BIDS dataset in its final form.

BIDS Conversion
Self-Report/REDCap
Self-report and clinical measures (described in full in section S-
1.1.1) stored in REDCap are exported into a BIDS-compliant
format using the PyCap library built on top of the REDCap
API. The inputs/outputs of this process appear in orange in
Figure 1. In brief, an API key links a user and access rights
to a single project. Data returned from REDCap include a
table of subject data for the project as well as metadata about
the project and data collection instruments. The data are
converted to tsv format and stored in the phenotype folder
following BIDS specification. Similarly, the metadata describing
the data collection instruments are stored in JSON formatted
data dictionaries. The result is a JSON/tsv pair for each REDCap
form. This script can be setup for other redcap projects and is
available on GitHub (https://github.com/laureate-institute-for-
brain-research/redcap-to-bids).

Neuroimaging and Associated Physiological Data
This section describes the collection and organization of
neuroimaging and associated data across all studies. For specific
details regarding the NeuroMAP Core, see section S1.2 of the
supplement. Neuroimaging data are produced in two formats.

Source DICOM images are reconstructed and generated by the
scanner and permanently stored in a read-only central location.
The default organization from GEDICOM file structure has each
scan stored three-folders deep (e.g., pXXX/eYYY/sZZZ, where p,
e, and s refer to patient, exam, and series). For each completed
scan and patient exam, these DICOM images are automatically
extracted, transferred to scanner-dedicated local storage and
reorganized by custom developed real-time MRI scanner data
management software. To reduce the storage burden associated
with hundreds of thousands of individual files, DICOM folders
are packaged in.tar.gz format at the exam directory level. This
reduces the number of individual files stored by a factor of 105,
and also saves significant storage space when individual files
are smaller than the storage block size. Each DICOM image
contains standardmetadata indicating the subject ID, date, study,
scan, and various imaging parameters: everything necessary to
associate a scan with its final BIDS-compliant name and location.
However, parsing through the DICOM folders and extracting
metadata is an expensive operation, even before considering
the compressed format. We solved this problem by creating
a REDCap project called the MRI Catalog, which contains all
relevant DICOM metadata. New DICOM images from MRI
scans are processed and metadata describing them are imported
into REDCap nightly. Our real-time MRI software also produces
a unique exam folder (on scanner-attached and dedicated real-
time processing Linux workstations), which contains AFNI
formatted imaging data that are uploaded and created in real
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FIGURE 2 | Preprocessing pipelines operate on BIDS-formatted inputs and create output in tabulated form for group level analysis. Derived data are colored to match

raw data sources.

time from a given session, along with any associated concurrent
physiological recordings (pulse oximeter, respiratory belt, pre-
processed EEG), electronic documentation for each scan with
imaging parameters, DICOM file count and location on the local
storage after extraction from theMRI scanner host computer and
image database.

Raw EEG data (without any preprocessing) acquired
concurrent with fMRI are initially stored locally on a dedicated
EEG recording computer and then synchronized and transferred
to network storage nightly. Similarly, behavioral responses
collected during scanning tasks are initially stored on a stimulus
laptop and then moved to network storage immediately upon
session completion. The decision to store data locally first,
then move it to network storage was based on reliability and
latency considerations, so that networking issues do not affect
data collection.

Neuroimaging and associated physiological data are organized
and converted to BIDS format by a nightly batch process.
This process handles the neuroimaging and behavioral data
separately. In the first step, an export of all current MRI Catalog
data necessary for organization is extracted from REDCap.
The organization process parses through these data looking for
project and scan IDs matching lists for a particular project.
Newly acquired matching scans are converted to nii.gz format
and sent to the appropriate BIDS folder with an associated
JSON sidecar. Importantly, the DICOMmetadata also contains a
pointer to the appropriate exam folder and series number, which
is used to extract the associated physiological data. Technical
issues often make data collection imperfect, e.g., scans may
be aborted/restarted due to participant discomfort or imaging

artifacts. Therefore, quality checks take place to help maintain
data fidelity. The two most relevant checks include subject and
duration matching. REDCap contains a list of subjects who have
been consented for each study, so any subject ID in the MRI
Catalog that does not match a consented subject for the study
in question is not included. This happens, for example, with
technical scans, which should not appear in the final dataset. The
case where scans are repeated, producing multiple scans of the
same type is handled by matching on expected duration. Any
scan that does not have the expected duration is discarded, since
shortened duration indicates an incomplete scan.

The second part of the organization process handles new
behavioral data found on network storage. These data are stored
in a folder unique to the study and completion date/time of
the session. Each behavioral folder should contain data from
one subject at one visit, and any folders that contain multiple
subjects or visits generate an error and are skipped until they are
manually corrected. Reformatting raw behavioral data involves
converting from csv to tsv, creation of a new header, and then
placement in the final BIDS data structure. Raw EEG data are
named according to subject ID, and quality control involves
matching on subject ID, date/time, and duration, similar to what
is done for imaging data.

Behavioral Data
Data management for behavioral sessions completed outside
the scanner mirrors that for the behavioral data from
scanning sessions, where raw files are initially stored locally,
moved to network storage at the end of the session, and
then parsed/organized nightly. The behavioral session also
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FIGURE 3 | Exemplar voxel-wise task activation maps produced by three different pipelines. (A) Monetary Incentive Delay P5–P0 contrast from n = 93 participants at

p < 0.001. (B) Stop Signal Stop–NoStop contrast from n = 49 subjects at p < 0.001.

includes physiological data acquired using Acknowledge software
(BIOPAC Systems, Inc.). These data are initially stored as a single
continuous file in.acq format covering the entire session. Bioread
(https://github.com/uwmadison-chm/bioread) is used to convert
to plain text format, which is then sliced into and saved as
individual tsv.gz files for each task and run. Synchronization is
done using the parallel port, with a unique code indicating the
start and end of each task. The appropriate header values are also
extracted and stored in a JSON sidecar to be BIDS compliant.

Biospecimens
A detailed description of initial processing and storage of
biospecimens is in the supplement (S 1.4). Final processing of
the collected samples may be carried out by a contract laboratory
or done in-house and produces datasets of varying size. Blood
samples are used to quantify a limited number of analytes (e.g.,
<50) describing inflammatory and metabolic states. These data
are parsed and imported into REDCap for permanent storage,
and then later exported into BIDS format in the same way as
self-report scales. Blood samples are also sent for genotyping,
which produces 650,000 or more values per participant. These
data are not suitable for storage in REDCap, so they are stored in
a separate repository where the location and genetic descriptors
are identified in the BIDS data description. Microbiome samples
produce similarly large datasets through 16S sequencing or other
technologies, which again are identified in the data description
to be BIDS compliant and do not have permanent storage
within REDCap.

Actigraphy/FitBit
FitBit data are initially stored in a third-party database
(Fitabase https://www.fitabase.com/, accessed 2/18/2021), which
handles most of the overhead related to FitBit account
creation/management and aggregation of many participants’
data. Data exported from Fitabase may be divided into
daily summaries and momentary assessments. Due to account
management details, daily summary data often include time
periods outside of the assessment windows for each subject.
Start and end dates, entered into REDCap by the researcher
deploying the FitBit, are used to trim the summary data down
to the appropriate timeframe. These daily summaries are stored
in a single table under the phenotype folder and include overall
activity levels, sleep duration and quality. Momentary assessment
data including minute-wise heart rate estimates are stored in
each subject’s wearable folder and are in many ways similar to
behavioral outputs. Fitabase provides FitBit data in four different
time intervals: 30 s, 1min, 1 h, and 24 h. Thirty-second interval
data only includes sleep stages. Minute interval data include
calories burned, activity intensity, metabolic equivalent of tasks
(METs), current sleep stage, heart rate, and number of steps. One-
hour interval data include calories burned, activity intensity, and
number of steps. Twenty-four-hour interval data include activity
summaries, calories burned, number of steps, and sleep.

Analytic Workflows
Along with the conversion of raw data into BIDS format, the
Research Core also provides a set of analysis pipelines, training,
and support.
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FIGURE 4 | The set of group average correlation matrices from resting state with: P01 (linear registration), P02 (nonlinear registration+RETROICOR correction), P03

(fMRIPrep), P04 (P02 + aEREMCOR).

Computational Environment
All data and analyses are hosted and completed on-site, providing
full control of the systems’ configuration and operation.
Our specific implementation of the primary data storage is
accomplished using a network attached storage cluster running
the open-source Ceph file system (CephFS). We would like
to note that any modern storage hardware/solution and/or
mixed local storage with cloud storage should provide alternative
option for another site implementation. We selected CephFS
as a scalable solution installed on commodity hardware, which
allows administrators to add storage incrementally without

rebuilding the entire cluster like some other solutions require.
Performance scales with the size of the cluster, as data are
not accessed through a fixed set of head nodes. The Laureate
Institute for Brain Research (LIBR) currently has two petabytes
of raw storage, which is 1PB of usable space after data
duplication. Additionally, there is a full off-site backup copy
stored roughly 100 miles away on an identical Ceph cluster. As
a final precaution, LIBR also sends periodic tape backups to
Iron Mountain using a Spectra BlackPearl appliance. Additional
technical details relating to IT operations can be found in the
supplement, Section 1.6.
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FIGURE 5 | Node-to-node correlations measured for individual subjects. Each point represents the connectivity measured for one pair of ROIs and one subject, with

the X and Y values representing the connectivity measured obtained with two different pipelines. 20,000 points were randomly sampled for plotting.

LIBR has eight high-performance servers configured with the
slurm workload manager (https://slurm.schedmd.com/). Each
server has 24 physical cores, allowing up to 192 jobs to run in
parallel and a total of over 24,000 GFlops/second. Jobs optimized
to run on GPUs can take advantage of 4 Nvidia Tesla P100 cards,
providing an additional 75,200 GFlops/second of computing
power. Nodes are configured with 187 or 376 GB of RAM and
overall networking throughput is 320 Gbps. This centralized
processing infrastructure helps mitigate the bottleneck associated
with network attached storage by providing 40Gbps connections,
which far outperform standard 1 Gbps connections used in
modern ethernet.

The storage and computing infrastructure just described
was designed and developed incrementally to balance cost
with performance, security, and overhead for training and
maintenance. As we noted above, our data organization and
processing workflows, however, do not depend on the physical
details of our environment and could be implemented on a
variety of systems or in the cloud.

Pipeline Architecture Overview
Subject and group level analyses are conducted separately.
Processing pipelines are implemented to service an individual

subject and analysis, where an analysis typically deals with one
task and set of processing parameters (Figure 2). This allows for
parallelization at the subject plus pipeline level, with separate jobs
submitted for each subject.

All single-subject analyses are submitted to the batch
scheduler using a script named preprocess-all-BIDS.py. This
wrapper reads in a configuration file with pointers to the root of
the source data directory (i.e., the root of one BIDS dataset), the
desired root of the output directory tree and which pipeline to
run. The output directory structure mirrors the BIDS formatted
input, so that individual subject/session/pipeline results are
stored in [Results Root]/sub-[subject]/ses-[session]/[leaf].
preprocess-all-BIDS.py traverses the input folder structure, and
for every subject/session checks to see if a job has already been
submitted, based on the existence of specially named status-
indicating files in the output directory. If this subject/session
combination has not been run for this pipeline, the output
directory is created and a job is submitted.

Results for an individual subject/session/task/pipeline include
derived values to be tabulated, quality control images in png
or jpg format, and larger format derived data, like voxelwise
statistics. Derived values include metrics like subject head
motion, subject performance including mean reaction times and
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accuracy, physiological measures including heart rate, and in
the case of imaging tasks, extracted activations, contrasts, and
volumes from atlas-based regions of interest. All derived values
are stored in files ending in the.longformat suffix, where these are
simple text files in attribute-value format. After processing data
for all subjects, all values found in.longformat files are combined,
producing a consolidated table with a single row per subject and
session and one column per attribute. This consolidated format,
ready for use in various statistics applications, is saved as in.csv
and, RData formats, the later binary being preferable for large
imaging datasets with tens of thousands of variables, which can
lead to performance issues when reading in text data.

Anymanual quality control processes are simplified by storing
appropriate images in jpg or png format. For examples, this may
include EKG traces with identified R wave peaks, or montages
showing alignment and normalization of neuroimaging data.
This allows the user to flip through QC images for a dataset
relatively quickly without, for example, needing to open
neuroimaging data in specialized software.

Neuroimaging Pipeline Options

fMRI Pipelines
Neuroimaging processing pipelines necessarily include
numerous decisions, such as which software to use, whether to
include linear or non-linear normalization to standard space,
what smoothing kernel to apply, what nuisance regressors to
use at the regression step and so on. These analysis decisions
can impact the final results and interpretation of a study, which
was recently illustrated through divergent results obtained by
70 independent groups of researchers who all analyzed the
same data (15). Therefore, frameworks like ours that allow the
sharing of analysis workflows are essential for reproducibility
and replicability. An individual researcher may customize a
particular pipeline or use one of our 3 standard options for
each fMRI task, labeled P01 through P03. P01 is a traditional
approach using AFNI (16) and includes removal of the first
3 volumes, despiking, slice-timing correction, co-registration
between functional and structural volumes, motion correction,
4mm of gaussian blur, and an affine transformation to standard
space. P02 is similar to P01, except that it includes a non-linear
warp to standard space and RETROICOR correction (17), which
helps remove physiological noise but requires the collection of
pulse oximeter and respiratory belt data.

P03 takes a completely different approach, instead using
fMRIPrep (18) to do all preprocessing up until the regression
step, which still uses AFNI’s 3dDeconvolve. Preprocessing with
fMRIPrep uses mainly default parameters, so that a combination
of tools are used to (1) select a reference fMRI volume (mean of
high contrast available in initial pre T1-saturation or pre Steady
State Free Precession fMRI volume); (2) perform boundary based
registration with the T1-weighted images (3, 19) estimate head
motion prior to any spatiotemporal filtering using mcflirt in
FSL 5.0.9 (4, 20) perform slice timing correction using AFNI
(5, 16) perform nuisance regression including regressors for
Framewise Displacement and DVARS (21); average CSF, white
matter, andwhole brain signals, as well as physiological regressors
using CompCor (22). Regardless of the pipeline, standard derived

data from task-based fMRI include regression coefficients and
contrasts extracted for each ROI in several atlases and summaries
of head motion for quality control.

Resting state preprocessing P04 pipeline includes the same
options as task data, with the addition of a fourth option, which
is similar to P02 pipeline but also includes additional motion
correction prior to slice timing correction via an automatic EEG
assisted slice-specific motion correction for fMRI (aEREMCOR)
(23). While it would be possible to include this additional
motion correction step for task-based data, it is particularly
important in resting state, where the residual effects of head
motion are well known, and they might differ for each acquired
slice (24). Standard derived data from resting-state fMRI include
a correlation matrix between pairs of ROIs from multiple atlases
[e.g., the Brainnetome (25)] and summaries of head motion.

EEG Pipelines
Simultaneous EEG-fMRI offers several benefits to measure
and study the human brain’s spatial and temporal dynamics
in health and disease. However, EEG data collected during
fMRI acquisition are contaminated with MRI gradients
and ballistocardiogram artifacts, in addition to artifacts of
physiological origin (eye blinks, muscle, motion), these artifacts
need to be detected and suppressed before further data analysis
(26). We have developed in house a comprehensive automated
pipeline for EEG artifact reduction (APPEAR) recorded during
fMRI, which we have incorporated into the BIDS preprocessing
pipeline architecture (Figure 2). APPEAR is capable of reducing
all main EEG artifacts, including MRI gradients, BCG, eye
blinks, muscle, and motion artifacts, and can be applied to
large (i.e., hundreds of subjects) EEG-fMRI datasets. APPEAR
was evaluated, tested and compared to manual pre-processing
EEG data for both resting EEG-fMRI recording as well as for
event-related potential or task-based EEG-fMRI experiments in
an exemplar eight subject EEG-fMRI dataset.

RESULTS

We provide examples illustrating pipelines P01 through P04 to
help demonstrate the utility of the processing infrastructure. The
full sample of participants who completed the NeuroMAP Core
is summarized in Supplementary Table 1, and different subsets
of these participants were used to provide example results from
each pipeline.

Task fMRI Results
The Monetary Incentive Delay and Stop Signal tasks were
included in NeuroMAP projects to probe the neural processing
of reward and executive function (see Supplementary Material

for task details). We have processed exemplar CDE data for each
of these tasks and present the results in Figure 3. Figure 3A
shows voxel-wise maps for the P5–P0 contrast in the MID as
produced by pipelines P01 through P03. All three pipelines
produce the expected activity in reward circuitry, however with
some qualitative differences: For example, P01 produces the most
widespread activation results, while P03 seems to identify more
circumscribed areas. Data from 93 participants are included here,
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FIGURE 6 | The correlation matrix of 3,032 EEG features extracted using comprehensive EEG features extraction for resting-state condition. Five different subsets of

features were extracted including Amplitude (31 Channels × 5 bands× 6 types = 930 features), connectivity (24 features), FD (31 Channels × 1 Feature=31), range

(31 Channels × 5 bands× 8 types = 1240 features) and spectral power features (31 Channels × 5 bands× 5 types + 31 Channels ×1 Feature = 806 features). For

more details about each subset of features, please see (28).

with pipelines P01 through P03 taking ∼1.3, 4, and 5 CPU
hours per subject to complete. With the architecture detailed
in Section Pipeline Architecture Overview, processing for all
three sets of data could be completed in under 1 day when all
resources are available. The alignment QC images produced by
each pipeline make it possible to complete all manual QC for
roughly 100 participants and one pipeline in <1 h. Figure 3B
shows voxelwise maps of the Stop—NoStop contrast from the
stop signal task, again produced by pipelines P01 through P03.
These maps include data from 49 participants. Again, maps
show the expected activation (here primarily in parts of the
executive control network), but with some qualitative differences.
For example, P01 and P02 both identify negative activation in the
motor cortex, which is not apparent in P03.

Resting State fMRI Results
Exemplar CDE data have also been processed for resting-state
fMRI using all four pipelines, P01-P04. Figure 4 shows the
average connectivity matrix extracted from the Brainnetome atlas
and organized by approximate networks identified using the Yeo
7-network atlas (27). All pipelines produce qualitatively similar

results at the group level, with functional networks apparent as
colored squares on the diagonal.

In these data, and with the parameters we chose, P03 seems
to identify consistently larger connectivity strengths compared
to the other three pipelines. Figure 5 shows the relationship
between individual features (correlation strengths) measured
with different pipelines. Points on the 45 degree line indicate
complete agreement between methods, while divergence from
that line illustrates differences between pipelines. This again
illustrates the tendency for P03 to produce stronger correlations
between pairs of ROIs. Of note, correlations between pairs of
methods ranged from 0.5 to 0.9, meaning they only shared
between approximately 25-80 percent variance. We cannot say
which pipeline is best, but would highlight the large effect that
selecting a particular pipeline may have on a the final results
of a study.

EEG Preprocessing
We have utilized the APPEAR pipeline to preprocess EEG
data acquired concurrently with fMRI, and then applied
comprehensive EEG feature extraction from five subsets of EEG
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features including amplitude, connectivity, fractal dimension
(FD), range and spectral power features. Furthermore, each
subset of features was applied to Alpha [8–13] Hz, Beta [15–
30] Hz, Theta [4–7] Hz, Delta [0.5–4] Hz, Gamma [30–40] Hz
and whole range of EEG frequency [0.5–40] Hz. An exemplar
EEG feature correlation matrix is shown in Figure 6. The
exemplar use of the extracted EEG features and automated EEG
preprocessing can found elsewhere [https://github.com/obada-
alzoubi/Comprehensive_EEG_Features_Extraction].

DISCUSSION

The proliferation of high-throughput data-generating
technologies in biomedical research has led to data analytics
challenges for creating easily reusable and reproducible
pipelines. These challenges are especially salient for neuroscience
studies, which not only involve the usual high-dimensional
data but also include multiple neuroimage-specific data
types and complex psychological trait data. The current
study describes a scalable environment and set of software
pipelines to preprocess neuroimaging (MRI, fMRI, and
EEG) and behavioral data while integrating them with other
subject-level high-dimensional data to perform sharable,
reproducible analyses.

The services and computational environment developed by
the Research Core provide a set of tangible benefits to ongoing
research.Massive amounts of complex neuroimaging data are put
into a standard (BIDS) format with minimal human interaction
in an ongoing basis. The architecture for converting data to BIDS
format is flexible and scalable, so that new studies often have
compliant data from day 1.

Once the data for a study are in BIDS format,
running any of our standard preprocessing pipelines
becomes a quick process. With relatively little human
intervention, preprocessing jobs can be created for
hundreds or thousands of participants, and the processing
and network storage infrastructure can produce results
in days rather than weeks. Having multiple pipelines
available for the same tasks gives researchers the ability
to verify that their results are robust to the details
of the preprocessing pipeline, as others have shown
the wide variation in analysis results to be a serious
concern (15).

In this work, we provide exemplar results 11 different
pipelines (three pipelines on each of two fMRI tasks,
four pipelines on resting-state fMRI, and one pipeline on
resting EEG) to demonstrate the utility of our infrastructure.
Additionally, ROI-level results from our standard pipelines
have been used in studies of cannabis (29) and stimulant/opioid
use (30), while voxelwise results have appeared in studies
of neighborhood effects (31) and inflammation (32), and
clinical data have been used to predict head motion during
scanning (33). We have also used EEG derived features
have to differentiate participants with mood and anxiety
disorders from healthy controls (34) and to predict participant
age (28).

Our workflow incorporates many diverse processing and
analysis tools such as afni, freesurfer, fmriprep and uses
the BIDS format. However, it has been noted that the large
number of analysis degrees of freedom in neuroscience
increases the risk of false discoveries due p-value hacking
or “researcher degrees of freedom” (35). Each analysis
step can result in an expanding decision tree of potential
analyses. Determining the best workflow software or pipeline
option for a given experiment is an ongoing question,
but the current software provides standard selections
for the many analysis options. As the field evolves and
standards consolidate, the default processing and analysis
parameters will converge to standards with lower variation and
increased replicability.

In addition to neuroimaging data, our current pipelines
include other common data types and can be easily extended to
other high-throughput data, such as genetic and gene expression.
Many neuroscience studies also include large non-neuroimage
datasets, such as GWAS, which has its own relatively complex
file format known as Plink. BIDS is opensource and under active
development, and integration with these other datasets will be
straightforward extensions of BIDS.

We hope the data management and processing infrastructure
presented here may act as a blueprint for other organizations
seeking to standardize data collection and processing. We also
hope this serves as a testament to the growing widespread
adoption of BIDS as a common standard. Some of our tools are
publicly available on GitHub (where noted above), and others
may be shared on reasonable request.
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