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Abstract

Background: Yersinia ruckeri is a pathogen that can cause enteric redmouth disease in salmonid species, damaging
global production of economically important fish including rainbow trout (Oncorhynchus mykiss). Herein, we
conducted the transcriptomic profiling of spleen samples from rainbow trout at 24 h post-Y. ruckeri infection via
RNA-seq in an effort to more fully understand their immunological responses.

Results: We identified 2498 differentially expressed genes (DEGs), of which 2083 and 415 were up- and down-
regulated, respectively. We then conducted a more in-depth assessment of 78 DEGs associated with the immune
system including CCR9, CXCL11, IL-183, CARD9, IFN, TNF, CASP8, NF-kB, NOD1, TLR8a2, HSP90, and MAPKT1, revealing
these genes to be associated with 20 different immunological KEGG pathways including the Cytokine-cytokine
receptor interaction, Toll-like receptor signaling, RIG-I-like receptor signaling, NOD-like receptor signaling, and MAPK
signaling pathways. Additionally, the differential expression of 8 of these DEGs was validated by a gRT-PCR
approach and their immunological importance was then discussed.

Conclusions: Our findings provide preliminary insight on molecular mechanism underlying the immune responses of
rainbow trout following Y. ruckeri infection and the base for future studies of host-pathogen interactions in rainbow trout.
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Background

Yersinia ruckeri is a pathogen that can cause enteric
redmouth disease (ERM) or vyersiniosis, resulting in
significant mortality and economic losses associated with
the global production of rainbow trout (Oncorhynchus
mykiss). Rainbow trout are highly susceptible to ERM,
although other species of fish can also be affected by this
disease [1, 2]. Multiple studies have sought to clarify the
immunological responses of fish species to Y. ruckeri
infection [3, 4]. In one study, Raida et al. determined
that very susceptible trout species exhibited a robust and
rapid-onset septicemic response to infection associated
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with the production of high levels of pro-inflammatory
cytokines [5]. Similarly, these pro-inflammatory cytokines
were also upregulated in the spleen of the vaccinated rain-
bow trout following Y. ruckeri challenge, albeit to a lesser
extent than in naive fish [6]. The spleen is a key secondary
lymphoid organ that is thus closely associated with rainbow
trout responses to Y. ruckeri infection, and significant
changes in the expression of splenic immune-related genes
have been detected following Y. ruckeri challenge [7, 8].
However, no systematic analyses of patterns of rainbow
trout splenic gene expression after Y. ruckeri infection have
been conducted to date.

RNA sequencing (RNA-seq) is a high-throughput ap-
proach to analyzing transcriptomes that has frequently
been employed in studies of fish species [9]. Several re-
cent studies based on RNA-Seq analysis have explored
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rainbow trout responses to a range of pathogen types,
such as splenic responses to Aeromonas salmonicida
[10, 11], infectious hematopoietic necrosis virus (IHNV)
[12], and Ichthyophthirius multifiliis [13]. Such transcrip-
tomic analyses have offered new insights into the etiology
of these diseases, and similar studies of Y. ruckeri infections
may highlight viable approaches for treating or preventing
yersiniosis in rainbow trout farming.

As such, we herein conducted a transcriptomic study
assessing rainbow trout splenic immune responses to Y.
ruckeri infection. After identifying infection-related
differentially expressed genes (DEGs), we validated a
subset of these genes via qRT-PCR and conducted the
functional annotation of immune-associated DEGs.
Together, our data offer a preliminary insight for future
research regarding the immunological mechanisms
involved in rainbow trout defensive response against Y.
ruckeri.

Results
RNA-sequencing and data processing
Genes associated with rainbow trout immune response
to Y. ruckeri infection were identified by assessing spleen
samples from YR-infected and control uninfected fish
via RNA-sEq. In total, six cDNA libraries were prepared
(from 3 per group), and raw data were generated (Table S1)
and deposited in the NCBI Sequence Read Archive (SRA)
under accession number SRR13014589 ~ SRR13014594.

Following the completion of filtering, 44.07 G bp of
clean data were extracted, with over 93.15-93.55% of
the bases reads having a phred quality value > 30 in the
non-infected group compared to 92.87-93.43 % in the
YR-infected group. These quality scores were consistent
with excellent quality data. Reads from these two groups
exhibited GC contents of 49.14-49.64% and 49.00-
49.18 %, respectively (Table 1).

The total number of expressed genes detected in sam-
ples from uninfected rainbow trout was slightly higher
than that detected in YR-infected rainbow trout (Fig. 1).

Table 1 Characteristics of RNA-seq data
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Read mapping to the reference genome

Cleaned reads were mapped to the O. mykiss reference
genome, with 84.81-85.99 % of these reads ultimately
matching perfectly. Over 70 % of reads aligned to exonic
regions in each library, of which 78.05-78.24% in the
uninfected group and 78.53-79.11 % in the YR-infected
groups mapping to unique reads whereas 6.76-7.38 % in
the uninfected group and 6.81-7.17 % in the YR-infected
groups mapping to multiple reads. A total of 123.7985
(41.90 %) and 125.0329 (42.32 %) M reads in the unin-
fected and YR-infected groups mapped to reference gen-
ome sense and antisense strands, respectively (Table 2).
Besides, some new genes were detected and classified
with the NR, Swiss-Prot, GO, COG, KOG, Pfam, and
KEGG databases (Table S2).

DEG identification and analysis
The Pearson’s correlation coefficient values were used to
assess relative gene expression in the uninfected and
YR-infected groups (Fig. S1). A total of 2498 DEGs were
identified by comparing these groups, of which 2083
(83.39%) were up-regulated and 415 (16.61 %) were
down-regulated, in YR-infected fish compared to unin-
fected fish (Table S3). Volcano and MA plots were also
used to represent these gene expression trends (Fig. S2).
Of these DEGs, 2431 were classified successfully using
the NR, Swiss-Prot, GO, COG, KOG, Pfam, and KEGG
databases (Table 3). With respect to new genes, many
DEGs were annotated using the NR and eggNOG data-
bases, but few were annotated in the COG database.

To better understand the functional roles of detected
DEGs, GO annotation was next performed by categoriz-
ing these DEGs into 23 biological processes (BPs), 19
cellular components (CCs), and 16 molecular functions
(MFs). Cellular (42.07 %), single-organism (36.51 %),
metabolic (30.75 %), and biological (29.64 %) processes
were the most dominant categories of BPs, while

Samples Clean reads (M) Clean bases (Gb) GC Content (%) Q30 (%)
non-infected rainbow trout 1 269191 80181 49.14 93.18
non-infected rainbow trout 2 234555 6.9991 49.64 9355
non-infected rainbow trout 3 25.5238 76123 4933 93.15
YR-infected rainbow trout 1 22591 6.7523 49.18 92.87
YR-infected rainbow trout 2 235341 7.0248 49.00 9343
YR-infected rainbow trout 3 25.7487 7.6694 49.18 9332
Non-infected group 75.8984 226295 49.32 93.29
YR-infected group 72.0286 21.4465 4912 93.21
Total 147.927 44.076 49.25 93.25
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Fig. 1 A Venn diagram indicating the numbers of genes detected in YR-infected and uninfected rainbow trout spleen samples
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membrane (27.94 %), cell (26.34 %), cell part (25.66 %),
and membrane part (24.70 %) were the most enriched
CCs and binding (40.07 %) and catalytic activity (19.26 %)
were the most dominant MFs (Fig. 2).

In addition, KEGG pathway enrichment analyses were
performed to assess the functional roles of these DEGs
during Y. ruckeri infection in rainbow trout. Assembled
DEGs were analyzed with the KEGG database, leading to
their classification into 6 categories (Fig. S3). KEGG

Table 2 RNA-seq alignment details and mapping ratios

enrichment results, including the top 9 pathways enriched
for > 50 genes (P <0.05), are shown in Fig. 3. Four highly
enriched pathways were detected through this KEGG ana-
lysis, including the NOD-like receptor signaling, cytokine-
cytokine receptor interaction, Toll-like receptor signaling,
and RIG-I-like receptor signaling pathways. The preferen-
tial enrichment of these pathways suggests that many of the
genes differentially expressed between uninfected and YR-
infected rainbow trout were related to the immune system.

Samples Total reads (M) Mapped Uniq mapped Multiple map Reads map to ‘+' Reads map to -
reads (M) reads (M) reads (M)
Non-infected rainbow trout 1 53.8382 456616 (84.81%) 420247 (7806%) 3.6369 224170 (41.64 %) 22.6348 (42.04 %)
(6.76 %)
Non-infected rainbow trout 2 46.9109 40.1607 (85.61%)  36.7008 (7824 %)  3.4599 19.7468 (42.09 %) 19.9220 (42.47 %)
(7.38%)
Non-infected rainbow trout 3 51.0477 433188 (84.86 %) 39.8427 (7805%) 34761 213261 (41.78 %) 214872 (42.09 %)
(6.81 %)
YR-infected rainbow trout 1 451922 38.7941 (85.84%) 355522 (7867 %) 32418 19.0209 (42.09 %) 19.2198 (42.53 %)
(7.17 %)
YR-infected rainbow trout 2 47.0682 404739 (8599%) 372354 (79.11 %) 3.2386 19.7989 (42.06 %) 20.0358 (42.57 %)
(6.88 %)
YR-infected rainbow trout 3 514973 439318 (8531 %) 404383 (7853%) 34934 214897 (41.73 %) 21.7333 (42.20 %)
(6.78 %)
Non-infected group 50.5989 129.1411 1185682 10.5729 634899 64.0440
(85.09 %) (78.12 %) (6.98 %) (41.84 %) (42.20 %)
YR-infected group 479192 123.1998 1132259 99738 60.3095 60.9889
(85.71 %) (78.77 %) (6.94 %) (41.96 %) (42.43 %)
Total 295.5624 2523409 231.7941 20.5467 123.7985 125.0329
(85.40 %) (78.44 %) (6.96 %) (41.90 %) (42.32 %)
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Table 3 Summary statistics regarding DEG functional annotation
Annotated databases NR Swiss-Prot GO COG KOG Pfam KEGG eggNOG All
DEGs number 2421 1679 1766 584 1539 2116 1533 2295 2431
Ratio (%) 99.59 69.07 72.65 24.02 63.31 87.04 63.06 94.41

Identification of immune-related DEGs

To better understand the intracellular signaling path-
ways during Y. ruckeri infection in rainbow trout, we
therefore focused on 78 immune response-related DEGs
identified in this study, including two new genes (Table S4).
A heatmap was constructed based upon the fold-change
expression values for these DEGs (Fig. 4), clearly demon-
strating that almost all of these genes (74) were upregulated
in spleen samples from YR-infected fish compared to
spleen samples from uninfected fish, whereas only 4 genes
were down-regulated after infection.

Further analysis of these immune-related DEGs re-
vealed them to be primarily associated with 20 immuno-
logical KEGG pathways, including the MAPK signaling,
Cytokine-cytokine receptor interaction, Toll-like recep-
tor signaling, RIG-I-like receptor signaling, NOD-like
receptor signaling, FoxO signaling, mTOR signaling,
apoptosis, TGF-beta signaling, regulation of autophagy,
ErbB signaling, cell adhesion molecule (CAM), intestinal
immune network for IgA production, cytosolic DNA-
sensing, phosphatidylinositol signaling system, and p53
signaling pathways (Table 4). The top 3 pathways
enriched in these genes included the NOD-like receptor
signaling (31 genes), RIG-I-like signaling (35 genes), and
Toll-like receptor signaling (51 genes) pathways (Fig. 5).

Validation of selected DEGs by qRT-PCR
As expected, all the eight immune-related DEGs exhib-

ited similar expression trends when measured via both
qPCR and RNA-Seq analysis, confirming the reliability
of our analytical techniques (Fig. 6).

Discussion
ERM is a serious disease that impacts global salmonid

populations [14]. While some studies have begun to
characterize rainbow trout immune responses to Y.
ruckeri infection [8, 15], no systematic transcriptomic
analyses of these responses have been conducted to date.
The spleen plays central roles in orchestrating innate
and adaptive immune responses in fish. Herein, we
sequenced the spleen transcriptomes of rainbow trout
infected with YR in comparison with those of control
uninfected rainbow trout and we identified 2498 DEGs
between these populations, of which 2083 were up-
regulated whereas 415 were down-regulated in infected
rainbow trout. Immune response-related DEGs were
then assessed in additional detail in an effort to explore

the basis of immune responses against Y. ruckeri infec-

tion in rainbow trout.

Cytokines are secreted by a range of cell types, and
they act as immune response regulators that can be
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Fig. 2 GO annotation of DEGs. DEGs were classified based on their enrichment in specific biological processes, cellular components, and
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Fig. 3 KEGG pathway enrichment results. Rich factor corresponds to the ratio of the total DEGs relative to total genes in the indicated pathways.
a KEGG pathway enrichment results for all DEGs. b KEGG pathway enrichment results for those DEGs only involved in the top 9 pathways
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Fig. 4 Immune-related DEGs in the non-infected and YR-infected rainbow trout
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Gene ID Type Log,Fold Putative homolog protein KEGG pathway

Gene 10,807 up 12,0338 Interleukin-1 beta ko04620: Toll-like receptor signaling pathway
Gene 24,642 up 10.6682 Interleukin-8 ko04060: Cytokine-cytokine receptor interaction
Gene 22,618 up 93812 Interleukin-8 ko04621: NOD-like receptor signaling pathway
Gene 4948 up 84892 Tumor necrosis factor ko04150: mTOR signaling pathway

Gene 28,337 down -2.5818 Mitogen-activated protein kinase 11 ko04010: MAPK signaling pathway

Gene 25,622 up 10.1562 Interleukin-6 ko04060: Cytokine-cytokine receptor interaction
Gene 34,157 up 9.0084 Interleukin-6 ko04060: Cytokine-cytokine receptor interaction
Gene 34,403 up 6.5996 Tumor necrosis factor ko04060: Cytokine-cytokine receptor interaction
Gene 25,550 up 6.1699 Tumor necrosis factor ko04060: Cytokine-cytokine receptor interaction
Gene 22,142 up 3.1333 Interferon ko04060: Cytokine-cytokine receptor interaction
Gene 2178 down -1.1786 NOD1 ko04621: NOD-like receptor signaling pathway
Gene 20,638 up 46720 Small cytokines (intecrine/chemokine) ko04060: Cytokine-cytokine receptor interaction
newGene59965 down -1.4640 Toll-like receptor 8 ko04620: Toll-like receptor signaling pathway
Gene 26,188 up 3.7094 Mab-21 protein ko04623: Cytosolic DNA-sensing pathway

Gene 44,284 up 3.1644 Immunoglobulin V-set domain ko04514: Cell adhesion molecules (CAMs)

Gene 23,752 up 2.9294 Phosphoinositide 3-kinase regulatory subunit ko04012: ErbB signaling pathway

Gene 5944 up 24306 Interferon alpha/beta receptor ko04060: Cytokine-cytokine receptor interaction

classified as interleukins (ILs), interferons (IFNs), tumor
necrosis factors (TNFs), and chemokines [16]. Of the 78
immune-associated DEGs in the present study, 31 were

classified into the cytokine-cytokine

pathway, including chemokine (C-X-C motif) ligand

receptor interaction

(CXCL11), C-C motif chemokine receptor 9 (CCR9), cas-
pase recruitment domain-containing protein (CARD9),
IL-12, IL-1fB, IFN and TNF. Chemokines control the mi-
gration of particular immune cell subsets and coordinate
both adaptive and innate immune responses to stressors
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Fig. 5 KEGG pathways enriched in genes differentially expressed between uninfected and YR-infected rainbow trout




Wang et al. BMC Genomics (2021) 22:292

Page 7 of 11

Relative fold change
N
|

IL-1p IL-8

gRT-PCR 13.2516 8.9521 6.0057

8 -
I
| [
4 1
N T

TNF NODI1
BMRNA-Seq 12.0338 10.6682 6.1699 -1.1786 3.9005 3.6392 -1.4627 -1.3931
-1.6381 4.6270 3.3378

Fig. 6 Comparison of DEG expression in gPCR and RNA-seq analyses. Relative gene expression levels were normalized to EF-1a

_ N

HSP90 CCR9 CARD9 TLR8a2

-1.3722 -1.3774

[17]. The transcription of CXCd in rainbow trout has
previously been shown to be induced in response to Y.
ruckeri infection [18]. Herein, we observed the upregula-
tion of both CXCL11 and CCR?Y in the spleens of rain-
bow trout infected with this bacterium, consistent with
the pathogen-induced chemokine regulation. CARDSY,
which is normally activated by CLRs [19], was 1.39-fold
downregulated in response to Y. ruckeri. Zuo et al. [8]
investigated the immune gene expression in rainbow
trout to Y. ruckeri infection by qRT-PCR and indicated
that the genes encoding inflammatory cytokines (IL-15,
IL-2 A, IL-6 A, IL-8, IL-10 A, IL-12, IL-17 A/F2A, IL-
17C1, IL-17C2, IL-22, TNFax) were generally upregulated
in spleen, gills and liver. Our findings also showed the
same results on the cytokines expression during Y. ruck-
eri infection, suggesting involvement of these immune-
related genes in response of rainbow trout to bacterial
infection (Table 4).

Apoptosis is an important determinant of cellular sur-
vival in both physiological and pathological contexts,
and can be triggered by factors such as hypoxia, chem-
ical exposure, temperature stress, or immune responses
to particular stimuli. Upon bacterial infection, a host’s
cells may undergo apoptotic death to mitigate the spread
of the pathogen within host tissues [20]. Herein, we
observed the upregulation of caspase 8 (CASPS),
receptor-interacting serine/threonine-protein kinase 1-
like (RIPK1) and NF-kappa-B inhibitor alpha-like (/xBa)
following YR infection in rainbow trout. Caspases are
proteases that serve as essential regulators of apoptotic

cell death, with CASP8 having showed to be an upstream
regulator of apoptotic cascades in fish [21]. Marked
CASP8 upregulation has also previously been detected in
head-kidney and spleen leukocytes of Totoaba macdo-
naldi at 24 h post-infection with Vibrio parahaemolyti-
cus and Aeromonas veronii [22]. RIPK1 was identified as
a central driver of inflammation in atherosclerosis by its
ability to activate the NF-xB pathway and promote in-
flammatory cytokine release in mice (Mus musculus)
[23]. NF-kB can control innate and adaptive immune-
related gene expression, inducing apoptosis in response
to numerous stimuli [24]. At the same time, NF-xB
activation induces IkBa expression in rainbow trout, in
turn resulting in the feedback inhibition of NF-xB [25].
Upregulation of IkBa, IAPs and RIPKI detected in this
study can suggest the compensatory activation of some
inhibitors of apoptotic cell death, underscoring the com-
plexities of cellular responses to Y. ruckeri in rainbow
trout. Additional work must be done in order to under-
stand in depth how the apoptotic processes.

Pattern recognition receptors (PRRs) serve as innate
sensors that can rapidly detect and respond to conserved
damage- and pathogen-associated molecular patterns
(DAMPs and PAMPs, respectively), resulting in the
induction of immune-related gene expression and anti-
pathogen responses. PRRs detected in aquatic species to
date include TLRs, NLRs, RLRs, and CLRs [26]. In the
present study, we identified several DEGs belonging to
TLR, NLR, and RLR gene families in the spleens of rain-
bow trout at 24 h post-Y. ruckeri infection, including
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nucleotide-binding oligomerization domain-containing
protein 1-like (NOD1I), toll-like receptor 8a2 (TLR8x2),
etc. NODI modulates the innate immune response of
fish to bacterial peptidoglycan. Loss- and gain-of-
function experiments have suggested that NODI can
control rainbow trout pro-inflammatory cytokines in
rainbow trout [27]. Palti et al. first reported the presence
of the TLR8a2 gene in rainbow trout, which they found
to be somewhat downregulated in response to treatment
with the human agonist of TLR7/8 known as R848 [28].
Here we found that both NODI1 and TLR8a2 were
downregulated in rainbow trout spleen during the early
stages of Y. ruckeri infection. KEGG pathway analysis in-
dicated that many DEGs were involved in TLR signaling
pathway, NLR signaling pathway and RLR signaling
pathway, such as heat shock protein 90 (HSP90), tumor
necrosis factor alpha-induced protein 3-like (TNFAIP3),
transcription factor AP-1, IL-1, IL-12, NF-xB, RIPKI,
CASP8 and so on. HSPs are important regulators of fish
immune responses [29, 30], and HSP90 upregulation
detected in the present research may be linked to the
rainbow trout innate immune defenses to Y. ruckeri
infection. Of interest, a pathogen-specific expression pat-
tern of HSP90 was observed in channel catfish (Ictalurus
punctatus) and it showed different expression patterns
following Flavobacterium columnare and Edwardsiella
ictaluri infection [31]. TNFAIP3 (A20) acts as a negative
feedback regulator of RIG-I pathway for the establish-
ment of an antiviral state in teleost. TNFAIP3 inter-
rupted RIG-I signaling at the level of TBK1 kinase, a
critical point of convergence for many different path-
ways that activates important transcription factors
involved in the expression of many cytokines [32]. In the
present study, TNFAIP3 was found to be upregulated
after Y. ruckeri infection, demonstrating that this gene
was involved in immune response of rainbow trout dur-
ing bacterial infection. Overall, these findings suggest
that the PRRs were differentially expressed in rainbow
trout and may be important mediators of the initial induc-
tion of immunological responses to bacterial infection.
The MAPK signaling pathway is responsive to diverse
extracellular stimuli and can modulate transcription
factor expression and activation, controlling a range of
biological processes including proliferation, apoptosis,
and gene transcription. Recent evidence indicates that
fish MAPKs can be induced by a range of stimuli. For
example, flagellin treatment is associated with MAPKII
upregulation in the head kidney of rock bream (Opleg-
nathus fasciatus) [33]. In contrast, in the present study
we observed a 2.58-fold decrease of MAPKII expression
in the spleen of rainbow trout following Y. ruckeri infec-
tion, although additional validation of these results is
warranted. MAPKS (/ukl) has been identified in many
fish species and its expression pattern varies by different
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stimuli [34, 35]. Infection with Aeromonas hydrophila
and Bacillus subtilis could induce significant expressions
of the jnkl gene in Labeo rohita [36]. We also observed
a significant MAPKS8 upregulation upon Y. ruckeri infec-
tion in rainbow trout, suggesting that these MAPKs
might play a crucial role during the bacterial pathogen-
esis in rainbow trout. Moreover, a total of 22 DEGs
involved in the MAPK signaling pathway seems to play
key roles in the rainbow trout response to infection with
this bacterium.

Conclusions

In summary, we conducted a transcriptomic analysis of
spleen samples from rainbow trout infected with Y. ruck-
eri in an effort to better understand the immunological
basis for responses to this pathogen, leading to the iden-
tification of several key immune-related DEGs. Overall,
our results will provide a preliminary insight on the
immune responses of rainbow trout following Y. ruckeri
infection and the base for future studies of host-
pathogen interactions in rainbow trout.

Methods

Experimental fish and bacteria

Healthy rainbow trout (~10 g) were obtained from
Benxi Agrimarine Industries Inc. and maintained in a
540 L fiberglass circulating water tank at a constant
temperature of 14+ 0.2°C with a 12 h light/dark cycle
and an 8.0 mg/L oxygen saturation. Fish were main-
tained under these conditions for 2 weeks and were fed
commercial rainbow trout feed.

Y. ruckeri strain BH1206 was isolated from infected
rainbow trout, confirmed to be pathogenic, and used for
challenge experiments as previously published [37]. Bac-
teria were grown for 24 h in TSB medium (BD Difco,
USA) and collected by spinning for 5 min at 6,000 xg
prior to resuspension in sterile PBS (pH 7.2) at 6 x 10
CFU-mL™ .

Bacterial challenge and sampling

Prior to challenge test, healthy rainbow trout were kept
under laboratory conditions in flow-through tanks at
approximately 14 °C with continuous aeration and fed
twice a day at 1.2 % of body weight with commercial fish
feed. A subset of experimental fish was microscopically
and bacteriologically examined to verify freedom of Y.
ruckeri infection. Tricaine methanesulfonate (MS222)
was used to anesthetize fish prior to the challenge or tis-
sue sample collection. For the challenge test, the experi-
mental fish were kept in two tanks with 6 fish in each
tank under the same conditions for fish acclimation.
Experimental infection was induced by intraperitoneally
(i.p.) injecting fish with 100 puL of BH1206 bacteria at
6 x 10° CFU per gram of fish body weight. An equivalent
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volume of PBS was injected into uninfected control fish.
At 24 h post-infection, three fish per group were
sacrificed by an overdose of anesthetic, and spleens were
collected, washed to remove blood and fat, snap-frozen
with liquid nitrogen, finally stored in liquid nitrogen
tank. To confirm the presence of Y. ruckeri in experimen-
tal fish, the kidney was sampled to perform bacteriological
examination.

RNA isolation

Splenic RNA was isolated using Trizol (Invitrogen, USA),
after which RNA integrity and purity were evaluated via
1% agarose gel electrophoresis and using an Agilent 2100
Bioanalyzer (Agilent Technologies, CA, USA), while a
Qubit RNA Assay Kit and a Qubit 2.0 Fluorometer (Life
Technologies, CA, USA) were utilized to measure RNA
concentration. After RNA preparation, all downstream
library preparation and sequencing were performed by
Biomarker technologies CO., LTD (Beijing, China).

Library construction and sequencing

A total of 3 pg RNA per spleen sample was utilized for
library construction using a NEBNext Ultra RNA Library
Prep kit for Illumina (NEB, USA), with samples being
affixed with appropriate barcodes. Following DNase I
treatment, the remaining mRNA was purified and
sheared into 200-250 bp fragments as discussed previ-
ously [38]. Library quality was assessed with an Agilent
Bioanalyzer 2100 instrument, and a cBot Cluster Gener-
ation System with TruSeq PE Cluster Kit v4-cBot-HS
(lumina) was used to cluster barcoded samples. An
[lumina Hiseq 2500 platform was then used for the
paired-end sequencing of these prepared library samples.

Data processing

Raw data were initially cleaned by removing reads that
contained adapter sequences, poly-N sequences, and low-
quality reads with the FastQC program (http://www.
bioinforatics.babraham.ac.uk/projects/fastqc/), after which
clean data Q30, GC-content, and sequence duplication

Table 5 gRT-PCR Primers Lists
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levels were calculated. The Trinity software [39] was then
used to assemble reads into EST clusters, followed by de
novo assembly and alignment to the rainbow trout refer-
ence genome (http://www.genoscope.cns.fr/trout/data/)
with TopHat (v.2.0.5). Functional annotation was per-
formed by comparing unigenes to the following databases:
Nr (NCBI non-redundant protein sequences); Nt (NCBI
non-redundant nucleotide sequences);Pfam (Protein
family); KOG/COG (Clusters of Orthologous Groups of
proteins) [40]; Swiss-Prot (A manually annotated and
reviewed protein sequence database); KO (KEGG Ortho-
log database) [41]; GO (Gene Ontology) [42].

DEGs identification

The RSEM software was used to assess unigene expres-
sion based upon reads per kilobase of exon per million
mapped reads (RPKM) [43]. The DESeq R package
(1.10.1) was used to identify DEGs between infected and
non-infected fish using a negative binomial distribution-
based model, with P values being adjusted as indicated
by the Benjamini and Hochberg approach to reduce the
false discovery rate. DEGs were considered as those
genes with an adjusted P-value <0.05, and were repre-
sented with volcano and MA plots. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
was used for functional enrichment analysis of DEGs,
with pathways that had a Q-value <0.05 after correcting
for multiple testing being considered significantly
enriched [44-46]. Furthermore, the immune-related
DEGs were selected by mapping the ‘5.1 Immune sys-
tem’ in KEGG maps (https://www.genome.jp/kegg/
pathway.html).

Validation of immune-related DEGs by qRT-PCR

To confirm the results of RNA-sequencing, eight im-
mune-related DEGs (IL-1B, IL-8 TNF, NODI, CARDSY,
TLR8a2, CCRY, and HSP90) were randomly selected for
qRT-PCR-based validation using the same RNA samples
prepared for RNA-seq using primers designed with the
Premier primer 5 software (Table 5). EF-Ia was used as a

Gene_ID Gene name Forward primer sequence (5-3') Reverse primer sequence (5'-3')
Gene10807 IL-18 CAACTAAGATGGCCGCAAA TCGGTACATACTCTAAACCTC
Gene24642 IL-8 ATTTATAAGCTTGATAGGCTG GTTGTATATAAGAAACCGACT
Gene25550 TNF CAGGAGCATCACTACCTTC TTACTAGAACTTTCTGCGGAT
Gene2178 NOD1 ATACAACTGCTACCCCGACCA AGGCACATTCACCAGGTCCA
Gene14361 HSP90 GATCCTTCACCGTCAAAGTCG TCACTTCCTTGTCACGCTCC
Gene45413 CCR9 ATCTTGAATTTAAGCGCCTGT ACATCATCCTCACCAACCGTA
Gene19781 CARD9 TGACAACACTGACACGGAT ATGCACATGAAGAGATACAAGC
newGene59965 TLR8a2 CTCTGCCATTTTGATTGGGA CCCCTAAGAAATCCACGAGA
Housekeeping gene EF-Ta GATCCAGAAGGAGGTCACCA TTACGTTCGACCTTCCATCC
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normalization control for these analyses. SYBR Green dye
(Takara, China) and an ABI PRISM 7500 Fast Real-time
PCR instrument were used for qRT-PCR based on pro-
vided protocols. All reactions were conducted in triplicate
with the following thermocycler settings: 60 s at 95°C; 40
cycles of 15 s at 95°C, 45 s at 60°C. Melt curve analyses
were conducted to confirm the specificity of amplification
products. Relative gene expression was assessed via the
27" approach [47].
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