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Abstract: In this study. a novel near-infrared fluorescent-driven contrast agent (Ag-doped
NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4) was synthesized using a coprecipitation-hydrothermal-
solvothermal-solvothermal (CHSS) method. The results shows that hexagonal NaYF4:Yb3+/Er3+ with
a diameter of 300 nm was successfully synthesized by the CHSS method. The new contrast agent was
characterized using scanning electron microscopy, fluorescence spectrometry, transmission electron
microscopy, energy-dispersive spectrometry and ultraviolet-visible light diffuse reflectance absorp-
tion spectroscopy. Even at low concentrations (0.2 M), this proposed contrast agent can be excited by
near-infrared light with a wavelength of 980 nm and emits a dazzling green light with a wavelength
of 540 nm, and the comparison of the luminescence intensity proves that doping with silver increases
the luminescence intensity of the upconverted nanomaterial by nearly 13 times based on the calcu-
lated quantum yield. TEM images show the successful preparation of silver nanoparticles with a
diameter of 30 nm, and the energy spectrum shows the successful doping of silver nanoparticles and
the successful preparation of the core-shell structure of NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4.
Furthermore, the mechanism of the increased luminous intensity has been studied using simulation
calculations. Finally, cytotoxicity tests were used to test material which was modified by 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2K), and the
biocompatibility was significantly improved, meeting the standard for biological applications.

Keywords: upconversion; near-infrared; intensity; in vivo imaging

1. Introduction

Upconverted rare-earth nanomaterials are commonly used in various fields because
of their high fluorescence intensity. Recently, their application in biomedicine has been
widely studied. Many scholars have proposed that they can be used in biological imaging
because they offer significant advantages in the fight against major diseases, such as can-
cer [1–3]. However, a common difficulty is that they have insufficient luminous intensity
and are toxic to biological cells, so it is necessary to modify their structure and modify
their surface [4]. To mitigate this problem, several imaging probes were combined into a
single multi-modality imaging system, even with some considerable restrictions such as
the need to use a sophisticated synthetic processes and the heterogeneity of the resulting
nanostructures. As a result of their enhanced optical and magnetic properties, and also
improved X-ray attenuation, lanthanide-doped upconverted nanoparticles (UCNPs) might
be perfect for building multifunctional bioprobes by doping with various rare earth ions
without modifying other functions. Many scholars have proposed doping Mo3+, Cu2+,
and other metal ions in the NaYF4:Yb3+/Er3+ unit cell to increase the luminous intensity,
but the effect is not significant [5,6]. Others have proposed doping with silver, which
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also has a significant effect, but silver has a high light-to-heat conversion efficiency, can
cause cell apoptosis without targeting, and cannot be used in biology [7,8]. Other scholars
have proposed constructing core-shell structures such as NaYF4:Yb3+/Er3+@NaGdF4:Yb3+,
NaYF4:Yb3+/Er3+@NaNdF4:Yb3+/Tm3+@NaGdF4:Yb3+ [9–11]. Alternatively, the reverse
microemulsion method can be used to construct a layer of silica or porous silica, such
as NaYF4:Yb3+/Er3+@SiO2, NaYF4:Yb3+/Er3+@NaGdF4:Yb3+@m-SiO2 [12–14]. Although
these operations can reduce the biological toxicity and meet the basic requirements for use
in biological cells or animals, there is no doubt that these changes will reduce the luminous
intensity of the upconverted luminescent materials [15–17]. If such a material is used as a
contrast agent for in vivo imaging, the image will be unclear, the tumor cannot be observed,
and further diagnosis and treatment will be difficult [18–20]. Unfortunately, when these
materials meet the biological requirements, their luminous intensity will inevitably be
reduced, so that imaging cannot be performed to obtain a clear image [21,22]. Considering
the high desire to develop UCNP nanomaterials with highly effective imaging capability
as well as high biocompatibility to prevent apoptosis or biological organ failure, UCNPs
doped with sliver nanoparticles are an ideal candidate because they are easy to fabricate,
have enhanced luminescence, and their surface is easily modified [23,24]. More notably,
following illumination, the UCNPs are harmless to normal tissues but cytotoxic to malig-
nant ones [25]. To the best of our knowledge, however, there appears to be no mention in
the literature of methods to create theranostic nanoplatforms integrating multi-modality
bioimaging with light triggered chemotherapy.

Therefore, this paper proposes a new upconverted nanomaterial structure that not only
has extremely low cytotoxicity and good luminescence intensity, but also good targeting that
can accurately label tumor cells and can be used for in vivo imaging, and obtain clear tumor
images instead of requiring expensive CT, MRI, and other medical equipment. This study
proposes the use of a coprecipitation-hydrothermal-solvothermal-solvothermal (CHSS)
method to synthesize the core-shell structure of Ag- NaYF4:Yb3+/Er3+@NaYF4:Nd3+@NaGdF4.
Theis shell structure is different from structures presented by other scholars mentioned
above, and it will not sacrifice the luminous intensity to improve its biocompatibility.
Scheme 1 shows the entire CHSS method process.
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2. Experimental
2.1. Materials

Y2O3 (99.99%), Nd2O3 (99.99%), Gd2O3 (99.99%), Yb2O3 (99.99%), Er2O3 (99.99%),
nitric acid (68%), sodium fluoride (99.99%), citric acid (99.99%), chloroform (99.5%), cy-
clohexane (99.5%), oleic acid (≥95%), octadecylamine (≥95%), silver nitrate (99.99%),
ethylene diamine tetraacetic acid (EDTA, ≥99%), sodium hydroxide (≥98%), 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2K)
and poly(vinylpolypyrrolidone) (PVP, average molecular weight of 1,000,000–1,500,000)
were purchased from Aladdin (Shanghai, China). Cell counting kit 8 (CCK-8), phosphate-
buffered saline (PBS, pH = 6.8), trypsin-EDTA (80%), and fetal calf serum (10%) were
purchased from BOVOGEN (Shanghai, China). All the chemicals were used as received
without further purification.

2.2. Synthesis of Sliver Nanoparticles

Sixty mL of 0.05 mol/L of citric acid solution was added dropwise to 3 mL of
0.02 mol/L of AgNO3 to obtain a mixture. After 5 min of continuous stirring, the solution
was transferred to a 100 mL reactor and placed in an oven for the reaction to complete at
120 ◦C for 6 h. The reaction mixture was then cooled to room temperature, washed, and
centrifuged to obtain solid Ag nanoparticles, added to 10 mL of deionized water and PVP,
and then placed in a test tube to prepare the sol for use.

2.3. Synthesis of Ag-NaYF4:Yb3+/Er3+

RE2O3 (RE = Y, Yb, Er) was heated in excess nitric acid to achieve complete dis-
solution and then transferred to a vacuum system for evaporation to obtain a solid
RE(NO3)3, which was then dissolved in deionized water and recrystallized twice. A
certain amount of solid RE(NO3)3 was dissolved in deionized water, and EDTA (molar ratio
of EDTA: RE(NO3)3 = 1:1) was added and stirred at 600 rpm for 1 h, the mixture was then
weighed and mixed in sodium fluoride in deionized water by ultrasound, and then the
solution was added and stirred at 600 rpm for 1 h. Finally, the pH value was adjusted to 5.5
with NaOH and add 10 mL of silver dispersion, and then place it in a hydrothermal kettle
to react at 190 ◦C for 24 h. The reaction products were cooled, centrifuged, and washed
twice with ethanol/deionized water (1:1 v/v), and dried in vacuum at 80 ◦C for 3 h. The
resultant powder is dispersed in cyclohexane for later use.

2.4. Synthesis of Ag- NaYF4:Yb3+/Er3+@ NaYF4:Nd3+

First, 0.5 mmol Ln (NO)3 (Ln = Y, Nd) was dissolved in 1 mL of water, 2 mmol sodium
fluoride was dissolved in 4 mL water, and 1.2 g sodium hydroxide was weighed into a
50 mL single-mouth flask, and 4 mL water was added to dissolve it completely. Nine
mL of anhydrous ethanol and 20 mL oleic acid were added, stirring for approximately
10 min, then Ln (NO)3 aqueous solution and sodium fluoride aqueous solution were added
one by one, stirred for approximately 1 h, and the same amount of ethanol was added to
precipitate the product, which was centrifuged for 10 min at 10000 rpm, then washed once
with ethanol and cyclohexane. The final product was dispersed in 2 mL of cyclohexane.

Octadecene (10 mL) and oleic acid (6 mL) were added to a 100 mL three-mouth flask,
then 2 mL of NaREF4 (RE = Y, Yb, Er) dispersion in cyclohexane was added, stirred for
30 min, then 10 mL octadecene, 6 mL oleic acid, and 2 mL of cyclohexane dispersion
containing 0.5 mmol NaLnF4 (Ln = Y, Nd) nanoparticle precursor was added, under the
protection of nitrogen, stirred at 70 ◦C for 30 min to remove cyclohexane in the system, while
heating at 10 ◦C/min to 280 ◦C during the heating process. A condenser was added when
the temperature reached 200 ◦C, and the reaction mixture was cooled to room temperature
after 1 h. Centrifugation was performed at 10,000 rpm for 5 min to collect the precipitate,
which was then washed with ethanol and finally dispersed in cyclohexane.
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2.5. Synthesis of Ag- NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4

First, 0.5 mmol Gd (NO)3 was dissolved in 1 mL of water, 2 mmol sodium fluoride
was dissolved in 4 mL water, and 1.2 g sodium hydroxide was weighed into a 50 mL
single mouth flask, and dissolved completely in 4 mL water. Nine mL of anhydrous
ethanol and 20 mL oleic acid were added, stirred for approximately 10 min, then Ln (NO)3
aqueous solution and sodium fluoride aqueous solution were added one by one, stirred
for approximately 1 h, then the same amount of ethanol was added to precipitate the
product, which was centrifuged for 10 min at 10,000 rpm, then wash once with ethanol and
cyclohexane. The final product was dispersed in 2 mL cyclohexane.

After adding 10 mL octadecene and 6 mL oleic acid to a 100 mL three-mouth flask,
then 2 mL NaREF4 (RE = Y, Yb, Er) @NaLnF4 (Ln = Y, Nd) solution in cyclohexane was
added, stirring for 30 min, then 10 mL octadecene, 6 mL oleic acid, and 2 mL of 0.5 mmol
cyclohexane solution of NaGdF4 nanoparticle precursor was added, under the protection
of nitrogen, stirred at 70 ◦C for 30 min to remove cyclohexane in the system, while heating
at 10 ◦C/min to 280 ◦C, during the heating process. A condenser was added when the
temperature reached 200 ◦C, and the reaction mixture was cooled to room temperature
after 1 h. Centrifugation was performed at 10,000 rpm for 5 min to collect the precipitate,
which was washed again with ethanol, and finally dispersed in cyclohexane.

2.6. DSPE-PEG2K modified Ag- NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4

First, 6 mL of NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4 rare-earth nanocrystals
(0.4 mmol) dispersed in chloroform were mixed with 20 mL of DSPE-PEG2K (100 mg)
chloroform solution in 5 mL open glass bottles. After heating at 75 ◦C for 5 min to remove
the chloroform, 24-mL of water was added to complete the ultrasonic dispersion, stirring
at 75 ◦C for 10 min, cooling to room temperature, centrifuging at 18,000 rpm for 8 min to
collect the precipitate, and adding 1 mL of normal saline to disperse it. Large particles were
removed by centrifugation at 5000 rpm for 5 min and then dried by a blast of nitrogen at
75 ◦C.

2.7. Characterization

Transmission electron microscopy (TEM) measurements were performed on a 2011
microscope (JEOL, Beijing, China) operating at 200 kV. All samples were first dispersed in
ethanol and then collected using a Cu grid covered with a carbon film for measurement. To
determine the elemental composition of the samples, energy-dispersive X-ray spectroscopy
(EDS) of the samples was performed on a JEOL 2010 EDS instrument using high-resolution
transmission electron microscopy (HRTEM) measurements. Inductively coupled plasma-
atomic emission spectrometry (ICPAES) was performed using a 7300DV apparatus (Perkin
Elmer, Shanghai, China). Scanning electron microscopy (SEM) images were obtained using
an XL30 electron microscope (Philips, Eindhoven, Netherlands) operating at 20 kV. Before
this characterization, a Au film was sprayed on the sample. The upconversion luminescence
spectrum was obtained using a spectrum analyzer (ANDO AQ6317, Yokohama, Japan).
The sample was placed in a 1.0-cm path length support, which was excited using a 980-nm
CW semiconductor diode laser (Pmax 800 mW, 1000 mA). The upconversion luminescence
spectrum was obtained by the spectrophotometer using a multimode fiber having a core
diameter of 0.6 mm. The distance between the top of the fiber and sample is ~2 mm.

2.8. First-Principles Calculations

First-principles calculations were performed using spin-polarized density functional
theory (DFT) with generalized gradient approximation of Perdew-Burke-Ernzerhof imple-
mented in the Vienna Ab-Initio Simulation Package. The valence electronic states were
expanded using plane waves with the core-valence interaction represented by the projector
augmented plane wave method and a cutoff of 500 eV. For the optimization of the equilib-
rium geometries of NaYF4 and RE-doped NaYF4 compounds, Brillouin zone integration
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was sampled with 3 × 3 × 5 k-grid mesh. The structures were completely relaxed until the
maximum force on each atom becomes less than 0.02 eV/Å.

2.9. CCK-8 Assay for Cytotoxicity

The culture medium in the flask was sucked out, washed with PBS, and then 0.25%
of trypsin was added to digest cells after culturing HeLa cells in the logarithmic growth
phase. After the removal of trypsin, the DMEM medium containing 10% fetal bovine serum
was added to blow the cells, which were then transferred to the sampling tank and blown
well. Subsequently, 100 µL cells were injected into a 96-well plate (1 × 104 cells/well) and
incubated for 24 h in a constant temperature incubator at 37 ◦C (5% CO2). The cells were
incubated for 6 h in an incubator at 37 ◦C with 5% CO2 in accordance with concentrations
of 200, 300, 400, 500, and 600 µg/mL. The culture medium was blotted out, PBS was rinsed
twice, the culture medium was replaced in the 96-well plates with 100 µL of fresh DMEM
containing 10% fetal bovine serum, and then 10 µL of CCK-8 solution was added to each
well. The absorbance of each well at 450 nm was measured using a microplate reader after
2 h of culturing in the incubator.

2.10. In Vivo Imaging

A mouse tumor model was constructed by subcutaneous injection of HeLa cells through
the thigh. After 14 days of culture, we intratumorally injected Ag- NaYF4:Yb3+/Er3+@
NaYF4:Nd3+@NaGdF4-DSPE-PEG2K into the tumor site and imaged them by a modified
in vivo Maestro whole-body imaging system (Berthold Technologies NightOWLIILB983,
Bad Wildbad, Germany). A strong in vivo signal began to arise from the location where
Ag- NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4-DSPE-PEG2K was injected, but no autofluo-
rescence was detected elsewhere.

3. Results and Discussion

The TEM images of Ag nanoparticles (Figure 1) prepared using the hydrothermal
method show that they are spherical and have an average diameter of ~30 nm. The UV-
visible absorption spectra of Ag nanoparticles (Figure 2) obtained using a UV absorption
spectrophotometer shows that the absorption peak of Ag nanoparticles is located at 430 nm,
which is consistent with the results reported in the literature.

SEM shows the normal hexagonal crystal of NaYF4:Yb3+/Er3+ (Figure 3a) has de-
fects on both ends and sides, whereas the hexagonal crystal of Ag-NaYF4:Yb3+/Er3+

(Figure 3b) doped with silver is smooth. The reason for this change is that the doping
of silver nanoparticles changes the structure of NaYF4:Yb3+/Er3+, some silver atoms are
protonated to replace part of Er3+, and the remaining silver atoms are distributed in-
side the NaYF4:Yb3+/Er3+ unit cell. An interstitial solid solution is formed, causing the
NaYF4:Yb3+/Er3+ inner space to be reduced and squeezed to the outside and contracted
by surface force to fill the defects on the surface and both ends. This smooth crystal
structure increases luminous intensity. This view was confirmed by comparing their lu-
minous intensities. Note that NaYF4:Yb3+/Er3+ and Ag-NaYF4:Yb3+/Er3+ were prepared
into 0.2 M solutions and their luminescence intensity (Figure 4) at 980 nm wavelength
was tested, respectively. The results showed that the luminescence intensity increased
by nearly 6.5 times after doping with sliver. The quantum yield before and after doping
with silver nanoparticles was tested (Figure 5), and the results showed that the doping of
silver nanoparticles improved the quantum yield nearly 13-fold. This phenomenon can be
explained by first-principles calculations.
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The effect mechanism of silver nanoparticle doping on the luminescence of NaYF4:Yb3+/Er3+

is as follows: In the luminescent system, the photoelectron transitions of 1I6 → 3H6,
1I6 → 3F4 and 1D2 → 3H6 generate luminescence at ~292 nm, ~345 nm and ~362 nm,
respectively. UV emission; photoelectron transitions of 1D2 → 3F4 and 1G4 → 3H6 result in
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blue emission at ~450 nm and ~475 nm. In the non-silver-doped NaYF4:Yb3+/Er3+ light-
emitting system, the Yb3+ ions first undergo 2F5/2 → 2F7/2 (Yb3+) photon transition under
the excitation of 980 nm near-infrared laser, and then the photoelectrons reach the excited
state of Er3+ energy level through 3–5 photon process. The re-transition of photogenerated
electrons from the excited state to the ground state will generate up-conversion emission
light in 5 bands, and the corresponding energy theory is as follows:

(1) Three-photon process

The electron of Er3+ accepts the energy of the first photoelectron pumping transition
and then transitions (3H6 → 3H5), and rapidly relaxes to the 3F4 energy level (3H5 → 3F4)
without radiation, and continues to accept the second photoelectron transition Energy,
excited to 3F2 energy level, no radiation relaxation to 3H4 energy level (3F4 → 3H4), accept
the third photoelectron transition energy, excited to 1G4 energy level, 3H4 → 1G4 (Er3+),
fall back to ground state 3H6, emission 476 nm light.

(2) Four-photon process

The photoelectron at the 1G4 level accepts the 4th photoelectron pump transition
energy, which is excited from the 1G4 level to the 1D2 level (3H4 → 1D2). If it falls back
from 1D2 to the 3F4 energy level, it emits light at 450 nm; if it falls back from 1D2 to the
ground state 3H6, it emits light at 345 nm, and the spectrum shows that the emission light
at this wavelength is the strongest.

(3) Five-photon process

The photoelectron of the 1D2 energy level accepts the fifth photoelectron pumping tran-
sition energy and is excited from the 1D2 energy level to the 3P2 energy level (1D2 → 3P2),
and then relaxes to the 1I6 energy level (3P2 → 1I6) without radiation, and then the excited
state of Er3+ The electron transitions to the ground state (1I6 → 3H6) and emits light at
292 nm.

DFT calculations were performed to better understand the electronic properties and
chemical origins of sliver nanoparticles enhancement. We chose Ag-NaYF4 to investigate
the effect of sliver nanoparticles on the Er luminescence center of materials because of the
difficulty of convergence in the multi-rare earth-doping systems. As shown in Figure 6, the
calculated total density of states (DOS) shows a significant bandgap in pure NaYF4. The
bandgap is 6.78 eV in size, which corresponds to the experimental values. The bandgap
narrows and more hybridized electronic states occur near the Fermi level in Ag-NaYF4
when sliver nanoparticles are doped in Er-NaYF4, (Figure 6). The hybridized electronic
states near the Fermi level are shown to be contributed by the 4f orbital of Er’s 4d orbital
of Ag and the 2p orbital of F. The enhancement of the total DOS near the Fermi level in
Ag-NaYF4 may make the system easier to absorb the photons and enhance luminescence.

Although this luminescence intensity is sufficient for near-infrared imaging of organ-
isms, it does not solve the problem of biotoxicity (Figure 7). We chose NaYF4:Nd3+@NaGdF4
to coat Ag-NaYF4:Yb3+/Er3+ because one can perform surface modifications better. Surpris-
ingly, we found that the NaYF4:Nd3+@NaGdF4 structure also had a fluorescence effect and
showed more excellent luminescence intensity after it was coated with Ag-NaYF4:Yb3+/Er3+

(Figure 8). This removes the constraint that the luminescent material covered by the shell
will reduce the luminous intensity. Under normal conditions, the shell material tends
to block the near-infrared penetration, which decreases the luminous intensity, and the
increase in the luminous intensity observed here is because the shell material is excited to
release photons to compensate for the reduced luminous intensity. The modified rare-earth
nanomaterials were dispersed in normal saline to prepare different concentrations, after
which HeLa cells were cultured for 4 h and their activity was tested (Figure 7). It has
been suggested that when the concentration is less than 400 ug/mL, the cell survival rate
is higher than 89%. Especially at a concentration of 200 ug/mL, the cell survival rate
was more than 99%. Combined with Figure 8, the luminescence intensity of rare earth,
200 µg/mL concentration of rare-earth nanomaterials not only have sufficient safety but
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also have a high luminous intensity. When the concentration of rare-earth ions is as high as
500 µg/mL or even 600 µg/mL, the cell survival rate is still higher than 80%. However,
no matter how low the concentration of this material is without being modified by DSPE-
PEG2K, there is always high cytotoxicity. If such material is used for animal experiments,
it will cause serious damage to other animal tissues, so the surface must be modified.
Furthermore, if Ag-NaYF4:Yb3+/Er3+ is directly modified with DSPE-PEG2K, it still does
not play a very good role, indicating that DSPE-PEG2K cannot well modify the surface
of Ag-NaYF4:Yb3+/Er3+, which also indicates the need for preparing core-shell structure
Ag-NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4.
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Figure 8. Luminescent intensity of Ag-NaYF4:Yb3+/Er3+, NaYF4:Nd3+@NaGdF4 and Ag-
NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4.

To complete this study, TEM and EDS were used to prove the structure (Figure 9).
The surface of Ag-NaYF4:Yb3+/Er3+ is covered with a thin layer of NaYF4:Nd3+, and the
surface of NaYF4: Nd3+ is covered by a thin layer of NaGdF4. DSPE-PEG2K can easily
modify its appearance.
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Figure 9. (a) TEM of Ag-NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4, (b) the high-resolution TEM
(HRTEM) image of the surface of Ag-NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4, (c–h) EDS for (a).

All the characterization of Ag-NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4-DSPE-PEG2K
is over, the following is the effect of applying the material to UCL imaging. UCL imaging
(Figure 10) yields clear cells makers at an excitation wavelength of 980 nm. The figure
shows that after 5 min of incubation, there is light source signal on the cells, and after
2 h even 6 h, the light source signal still exists, indicating that the sample that was easily
absorbed by the HeLa cells and can last for a long time. A 200 µg/mL concentration of Ag-
NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4-DSPE-PEG2K was injected intratumorally into
mice. In vivo imaging (Figure 11) yields clear tumor makers at an excitation wavelength of
980 nm. The figure shows that after 180 min of incubation, there is no other light source
signal besides the tumor, indicating that the sample that was injected into the body has
no outflow. It also shows that the sample prepared by the CHSS method can be used for
tumor imaging.

In addition to the imaging function, Ag-NaYF4:Yb3+/Er3+ has a certain photothermal
conversion efficiency, and its temperature rise curve (Figure 12) meets the requirements of
photothermal treatment. Ag-NaYF4:Yb3+/Er3+ with 180 µg/mL are heated to 57 ◦C and im-
mediately cooled once the irradiation is stopped. It is commonly known that near-infrared
light irradiation at 980 nm wavelength, NaYF4:Yb3+/Er3+ can only generate green visible
light without producing heat. However, after doping with silver nanoparticles, it can not
only emit brighter visible light as emitting before doping the silver nanoparticles, but also
emit heat. The reasons for this phenomenon are as follows: Simultaneously, silver nanopar-
ticles enhance the luminescence intensity of NaYF4:Yb3+/Er3+ under the near-infrared
light with the wavelength of 980 nm, so that NaYF4:Yb3+/Er3+ emit stronger light energy
with the wavelength of 540 nm. This light energy further excites the silver nanoparticles,
resulting in the heat emission of NaYF4:Yb3+/Er3+ doped with silver nanoparticles [23]. In
the future, Ag-NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4-DSPE-PEG2K may be used as a
reagent for photothermal treatment of cancer.
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PEG2K with different concentrations irradiated by 980 nm near-infrared light.

4. Conclusions

Ag-NaYF4:Yb3+/Er3+@ NaYF4:Nd3+@NaGdF4-DSPE-PEG2K was successfully syn-
thesized by the CHSS method. Doping with nanosilver improves the luminous inten-
sity of NaYF4:Yb3+/Er3+, which shows increased luminous intensity by nearly 6.5 times.
NaYF4:Nd3+@NaGdF4, which has an autofluorescence effect and is easy to modify, is used
as the shell material. When the material concentration is below 600 µg/mL, the cell viability
is greater than 90%, and when the concentration is 200 µg/mL for in vivo imaging, the
cell viability is greater than 98%, which greatly exceeds the national standard require-
ment of higher than 87% cell viability, so the overall luminous intensity of the core-shell
structure of rare-earth nanomaterials is perfect, and it has high biocompatibility and can
be used as an excellent biomedical material in organisms. Second, because of its X-ray
attenuation properties and magnetic properties, it can be used in CT and MRI scanning,
which combined with fluorescence imaging, will be able to resolve in future multi-mode
imaging systems, providing complete and clear images for the diagnosis and treatment of
complex cancers such as blood metastasis. Finally, the extremely high luminous intensity
of this material is mainly due to the presence of silver nanoparticles, which have good
photothermal conversion efficiency which could be used in a photothermal therapy (PTT)
combination. In future research, once the targeting problem is resolved, this material could
be used to peform the simultaneous diagnosis and treatment of cancer.
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