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Abstract

Introduction: Alzheimer's disease (AD) is a progressive brain disorder

that impairs cognitive functions, behavior, and memory. Early detection is

crucial as it can slow down the progression of AD. However, early diagnosis

and monitoring of AD's advancement pose significant challenges due to the

necessity for complex cognitive assessments and medical tests.

Methods: This study introduces a data acquisition technique and a

preprocessing pipeline, combined with multivariate long short‐term memory

(M‐LSTM) and AdaBoost models. These models utilize biomarkers from

cognitive assessments and neuroimaging scans to detect the progression of AD

in patients, using The AD Prediction of Longitudinal Evolution challenge

cohort from the Alzheimer's Disease Neuroimaging Initiative database.

Results: The methodology proposed in this study significantly improved

performance metrics. The testing accuracy reached 80% with the AdaBoost

model, while the M‐LSTM model achieved an accuracy of 82%. This represents

a 20% increase in accuracy compared to a recent similar study.

Discussion: The findings indicate that the multivariate model, specifically the

M‐LSTM, is more effective in identifying the progression of AD compared to

the AdaBoost model and methodologies used in recent research.
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1 | INTRODUCTION

Alzheimer's disease (AD) is an irreversible neurological
condition that impairs patients' memory, cognition, and
behavior [1]. The complexity of analyzing AD biomarkers
and the variability of measures obtained from different
imaging modalities challenges the effective early identi-
fication and treatment of AD [2]. Given the lack of
significant advancements in developing modalities to
treat AD, previous research has looked at providing
feasible and affordable options to offer AD patients the
care and treatment they need. For instance, the studies
reported in Gavidia‐Bovadilla and colleagues [3–5] aim at
helping AD patients in their day‐to‐day activities and
offer some forms of neural training.

However, detecting how AD is gradually progressing in
a patient is crucial to implement early intervention plans [6].
Traditional time series‐based methods and machine
learning (ML) algorithms have been widely employed in
the literature to categorize and predict AD severity, such as
the works described in Gavidia‐Bovadilla and colleagues
[3, 4, 7–11]. Despite these encouraging developments,
several complex modeling issues remain unexplored [12].
Most of the literature has focused on modeling the course of
diseases rather than predicting their progression. This
entails estimating the state of disease progression at known
times based on the data available or in the event of limited
observations, concentrating primarily on identifying the
stages of its progression.

Various ML approaches have been used in the
literature to find biomarkers for AD progression and
optimize detection performance. A widely used approach
to address image classification problems is the support
vector machine (SVM). SVM was used in several studies
to predict AD progression, such as in Zhang and
colleagues [13–18]. In Zhang et al. [13], a multitask
learning approach combined with SVM was employed to
detect AD progression with 73.9% accuracy and 68.6%
sensitivity. The study reported in Cheng et al. [14]
achieved an accuracy of 79.4% and a sensitivity of 84.5%.

A linear discriminant analysis based on the cortex
thickness data was utilized, which showed 63% sensitivity
and 76% specificity [19]—the results for AD progression
detection improved by integrating multimodality data and
removing redundant AD‐related biomarkers from modal-
ities. Using a combination of cerebral spinal fluid, magnetic
resonance imaging (MRI), and cognitive performance
biomarkers, 68.5% accuracy, 53.4% sensitivity, and 77%
specificity were noted in the studies reported in Ewers et al.
[20] and Kim et al. [21]. These studies also used deep
convolutional autoencoders to examine the data analysis
process of AD progression using MRI data. While previous
studies have investigated modeling AD, the AD progression

issues using recurrent models remain unexplored. Given
that AD is a progressive and irreversible disease, it is
challenging to detect its progression over time using only the
cognitive features of a patient. However, the timely structural
changes from cognitive normal (CN) to mild cognitive
impairment (MCI) and from MCI to AD can help trace the
features affecting the progression of the disease [22].

To this end, as far as our knowledge is concerned, a
single study has worked on the detection of patients with a
progressive nature [23], which has utilized a univariate
recurrent neural network (RNN). In contrast, our study
proposes a multivariate long short‐termmemory (M‐LSTM)
for the detection of AD subjects with a progressive nature.
The study has focused on two types of experiments. The
first experiment involves patients who are in a state of
progressive disease. Detection is then carried out by
confirming their progressive and nonprogressive states. In
the second experiment, the study involved only patients
whose disease status was updated with time. It then
observes the spread of the disease over some time. The
performance of the proposed M‐LSTM model is evaluated
using The AD Prediction of Longitudinal Evolution
(TADPOLE) challenge [24]. The results show that the
proposed model outperformed the competing models
(BiPro and AdaBoost) regarding detection.

The remainder of this paper is structured as follows.
Section 2 briefly describes the related studies on predictive
modeling. Section 3 presents the details of the proposed
methodology. Sections 4 and 5 report the experiments
that compare the proposed model's performance with
other published approaches. Lastly, Section 6 presents the
conclusions of this study.

2 | BACKGROUND

RNNs have been widely used in the literature to identify
patterns in time series data [25]. Recent studies have
shown the success of RNNs in disease detection and
prediction. Examples include using gated recurrent units
(GRUs) as a diagnostic tool [26]. Moreover, GRU was
also used to predict the medication needed for patients'
subsequent visits in the early onset of cardiac failure [27].
LSTM models are also used to predict multiple condi-
tions' onset [28]. In addition, LSTM is used for the
diagnostic classification of patients in the pediatric
intensive care unit (PICU) [29]. The relevant studies
have applied different RNN models for medical detection
by using longitudinal data on a patient over time.

Research into the detection of AD progression can be
classified into three subareas: AD progression categorization
[30], AD progression modeling [31, 32], and AD progression
estimation [33]. In the categorization framework, studies
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strive to determine the patient's status regarding non‐
conversion or conversion over time. Those with progressive
MCI are distinguished from patients with stable MCI by
learning deep nonlinear representations of the neuro-
imaging data as the output of a convolutional neural
network [34]. In terms of the modeling, a study used a
many‐to‐one extended RNN architecture to facilitate the
temporal shift to mimic AD progression in patients on
successive visits [35]. The method covered a variety of visit
periods of AD subjects. In addition, the Bayesian progres-
sion score model is suggested to predict the biomarker
trends from normal to MCI and AD [31]. In the context
of estimation, a study presented a multisource multitask
learner to estimate cognitive scores, such as mini‐mental
state examination (MMSE) and AD assessment scale‐
cognitive subscale [2]. These scores may be used to measure
the degree and progression of cognitive impairment caused
by AD. With the help of recurrent components, valid
observations, and static relations considered, the temporal
relation for imputation for AD [36].

Contrary to a standard bidirectional RNN, the timing of
the inputs to the salient layers is reversed in a forward‐and‐
backward direction. These imputed values were dynami-
cally updated during training until they were optimal
(dynamic relation). The study used an RNN for missing
value imputation in time series data and then fed the
imputed values to an LSTM cell to forecast both the
diagnosis of AD and MRI biomarkers [37]. The model
inspects the temporal and multivariate relations of mea-
surements (dynamic relations) for missing value imputation
(and is called LSTM‐I in our comparisons below). Another
study proposed a minimal RNN called MinRNN to predict
patients' clinical diagnoses, cognition, and ventricular
volume [38]. Their model has fewer parameters than other
RNN models, such as the LSTM, and therefore is less prone
to overfitting [38]. A study modified the LSTM cell by using
a progressive module to compute the progression score of
each biomarker between the given time point and the
baseline through a negative exponential function [39].

By the analysis of recent research, this research
proposed a data requisition followed by preprocessing
pipeline and M‐LSTM model. The main contributions of
this study can be summarized as follows:

(a) The proposal of an end‐to‐end approach uses missing
value restoration, data filtration, and normalization
to model AD disease progression in a patient.

(b) A novel M‐LSTM is utilized with the proposed
preprocessing. The model detects the patients in a
progressive disease state and classifies whether their
AD is in a progression or nonprogression state. In
addition, the progression of the disease was examined
only in patients whose disease state was updated.

(c) The performance of the model was evaluated using
a public data set. The proposed model was also
generalized by testing it using cross‐validation. The
model encompassed several new methods to analyze
the disease progression, utilizing cognitive and
neuroimaging data. Compared to the state‐of‐the‐
art literature [23], our proposed method has almost
20% better classification accuracy.

3 | METHODS

This study examined the detection of AD progression
using AdaBoost, an ensemble ML model, and M‐LSTM, a
deep recurrent network. Two experiments are performed
on the TADPOLE challenge data set [24] cohort from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) data-
base, which contains ADNI‐1, ADNI‐2, and ADNI‐GO. The
first experiment involved patients with AD progression and
detected their progressive or nonprogressive states with the
help of AdaBoost. In the second experiment, the study
considered only the patients whose disease status was
updated with time and observed the disease's progression
over time. The data set is prepared and preprocessed,
followed by progressive nature detection using M‐LSTM.
Finally, the performance of the proposed methodology is
evaluated on the data set, and the results are compared with
the state‐of‐the‐art literature.

3.1 | Materials and settings

This study used a data set called the TADPOLE challenge,
which includes information from 13,915 visits made by
2155 patients. Of these patients, 409 had just one visit, while
the remaining 1746 had multiple visits, totaling 13,506 visits
with an average of 7.74 per patient. We observed 535
patients whose disease progressed over time, that is, from
CN to MCI or from MCI to AD. These 535 patients were
labeled as having progressive disease, and together, they
made 5254 visits, averaging 9.8 visits per patient. For the
remaining 1211 patients, their disease state stayed the same
as it was during their first visit, and they were classified as
nonprogressive, meaning their disease did not get worse.
Only 142 patients had consulted a doctor in a year.

In comparison, 1069 subjects with a nonprogressive
nature have seen a consultant physician in 1 year. In more
than 2 years, 894 patients with a nonprogressive nature
have seen a consultant. The number of patients with a
nonprogressive nature who have visited a specialist doctor
in over 3 years is 554. Patients' visits are summarized in
Table 1. Given that AD takes about 3 years to develop, a
research study has considered nonprogressive patients
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who have seen a consultant for over 3 years [35]. A patient
is deemed nonprogressive if their disease status has not
changed during the 3 years of the study. Table 2 shows
some comprehensive statistics about the patients with and
without AD. TADPOLE data has been preprocessed and
sorted based on the patients' visits. The TADPOLE data set
contains vital information such as a patient's initial status,
the number of visits per month, the updated status after
each visit, and all the cognitive and neuroimaging
indicators. Unfortunately, the labels for some visits are
missing.

Additionally, some patients' visits had no record,
such as no cognitive scores or neuroimaging information
were recorded. Discarding the missing data is one of
the techniques used to address the problem of missing
records. Moving average filling is an alternative tech-
nique used to address this problem. This is where
missing data is filled from previously labeled data. The
moving average filling method has been used in this
research to address the missing data problem.

3.2 | Data preprocessing for
Experiment 1

The TADPOLE data set contains missing information,
necessitating a series of preprocessing steps. Initially,
a data filtration process was employed to eliminate
less informative entries. Subsequently, a missing data
handling technique was applied to impute values for
the absent labels, ensuring a comprehensive data set.
Lastly, data normalization procedures were executed to
standardize the information, facilitating consistent and
comparable features across the data set.

3.2.1 | Filtration

Some neuroimaging or cognitive features had several
missing values. Therefore, features with more than 50%
missing values were removed from the first experiment.
Additionally, the records collected from some patients

did not provide conclusive neuroimaging or cognitive
traits. Hence, visits without a record were removed from
the data to prevent the model from overfitting.

3.2.2 | Handle missing data

After filtering, the remaining data were filled using a
moving average approach of the previously accessed data.
When the MMSE of a patient x from a visit n was noted
as missing, the missing data were filled in using




 ψ
MMSE =

MMSE if available
Fill

. (1)

TABLE 1 Number of patients and visits in TADPOLE.

Patient group
Number of
patients

Number
of visits

Average visits
per patient

Disease
progression

Progressive 535 5254 9.8 Yes

Nonprogressive 1211 8252 6.8 No

One visit 409 409 1 N/A

Total 2155 13,915 6.5 N/A

Abbreviation: TADPOLE, The Alzheimer's Disease Prediction of Longitudinal Evolution; N/A, not applicable.

TABLE 2 Statistics of progressive and nonprogressive AD
patients.

Features
Progressive
patients

Nonprogressive
patients

Total 535 554

Gender

Male 315 307

Female 220 247

Marital status

Married 424 396

Never married 13 20

Widowed/divorced 98 132

Race

Asian 8 10

Black 17 21

White 505 517

Ethnicity

Hispanic 14 15

Not Hispanic 518 536

Age average 76.06 70.64

Abbreviation: AD, Alzheimer's disease.
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If the MMSE score had already been recorded, it was
not required to fill in the data. However, when MMSE
was not available, it was replaced by the mean of the
score from all other visits using

∂ψ
n

=
1

,
x i

n

i

=1

(2)

where ∂ shows the available MMSE score of the previous
visits, and n shows the total number of visits made by
patient x .

3.2.3 | Data normalization

After preparing the data, the data were normalized
using

z
x μ

σ
=

−
, (3)

where x is the original feature value, μ is the mean, and
σ is the standard deviation calculated as

 μ
N

x σ
N

x μ=
1

, =
1

( − ) .
i

x

i

i

N

i

=1 =1

2 (4)

3.2.4 | Model training for Experiment 1

In the first experiment, an ensembled ML classifier,
AdaBoost, was trained on the preprocessed data. To
improve the classifier accuracy, AdaBoost combines
other classifiers. The cleaned, filtered, and preprocessed
data were split into 80:20, and fivefold cross‐validation
was performed during the model training and testing.

3.3 | Methodology for Experiment 2

In Experiment 2, this study included all the cognitive and
neuroimaging features in a time‐series pattern to study
patients' AD progression. There were subjects in the data
set that had single or double visits. Therefore, subjects
with more than 3 years of consecutive visits were
considered, while the remaining patients were removed.
Given that every ML or DL model requires a fixed input
length, the total number of visits of all the selected
patients was equalized using

V W= (label + label ),
i

n

i iμ iσ

( =1)
(5)

where

W =
label

Total
,i
i

labeli is the current label, andV ϵWholenumbers since the
number of visits should belong to the set of whole numbers.
Patients with more than V visits are dropped from the
processing data. Those patients whose number of visits
was less than V are equalized with the help of the simple
moving average (SMA) defined as follows:


k

p

k
p p p p

p p p

k
p p p

p

k

p

k

k
p p

SMA =
1

SMA =
1
( + + +…+

+ + − ),

SMA =
1
( + +…+ )

− + ,

SMA = SMA +
1
( − ).

k

i n k

n

i

k, n k n k n k n

n n k n k

k n k n k n

n k n

k k n n k

,next

= − +2

+1

,

next − +2 − +3 − +4

+1 − +1 − +1

,next − +1 − +2

− +1 +1

,next ,current +1 − +1

(6)

According to Equation (6), the moving average filter
can be formulated quickly on real‐time data using a
circular or first in, first out (FIFO) buffer with three
arithmetic operations. First, the sampling window is
equal to the size of the data set at the first filling of the
FIFO or circular buffer. Thus k= n, and the average
calculation is done as a cumulative moving average. An
M‐LSTM is trained on the cleaned data set after data
preprocessing. The LSTM structure is provided in the
following section.

3.3.1 | M‐LSTM

The M‐LSTM is a well‐known DNN model. The
fundamental architecture of the M‐LSTM, an RNN [27],
is shown in Figure 1. A single time‐series data set can be
classified, and sorted, and detection can be made using
the M‐LSTM. The ability of M‐LSTM to estimate time‐
series data has also been explored and utilized previ-
ously, such as in Schafer and Graham [25]. The output
value was first calculated in the M‐LSTM structure to
calculate the predictive time‐series data. Then the input
value from the current time was used as input to the
forget gate. The processing results from the forget gate
were then calculated using

f σ W h x b= ( [ , ] + ),t t tf −1 f (7)
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where Wf represents the weights of the forget gate,
bf shows the bias value applied to the forget gate, xt is
the input value for the current time, and ht−1 shows the
previous processing time output value. The ft follows the
range (0, 1). Additionally, the output value and state of
the candidate cell at the input gate are determined after
computation. Both the input value extracted from the
most recent time and the output value taken from the
last time are fed to the input gate, refer to

C W h x b̃ = tanh( [ , ] + ),t t tC −1 C (8)

whereWC is the weight of the gate input candidate, and
bC is the bias value of the gate input candidate. The next
stage in the M‐LSTM model is the process of adjusting
the cell values or the model parameters shown as

 C f C i C= + ̃ ,t t t t t−1 (9)

where Ct follows the range (0, 1). At processing time t ,
the output value ht−1 and the input value xt become the
input for the output gate, and the output from the gate
output is calculated using

O σ W h x b= ( [ , ] + ),t t to −1 o (10)

where Ot follows the range (0, 1),Wo is the weight of the
gate output, and bo is the bias value of the gate output.
Finally, the final output value of the M‐LSTM is
generated by the output gate and is the result of the
calculation using

h O C= tanh( ),t t t (11)

tanh is a hyperbolic tangent function is an activation
function that can be tailored to the needs and character-
istics of the problem to be resolved. M‐LSTM has been
used in this work as it can process recorded data in a
specific time sequence. Additionally, M‐LSTM has been
commonly used in the literature for analyzing and
modeling time‐series data [26, 27].

3.3.2 | Data processing for Experiment 2

Experiment 2 studies the patients who have visited
the consultants for over 3 years. The total number of
these patients is 1030, who have made 10545 visits to the
specialists. On average, each of the 476 patients with a
progressive nature has made 10.56 visits to the consul-
tants. The number of patients with a nonprogressive
nature was 554, who consulted 5519 times, averaging
9.96 visits per patient. The numbers of patients with
more than 3 years of visits are given in Table 3. After
applying the SMA, the total number of visits increased
from 10,545 to 14,420. The data preprocessing follows the
settings described in Experiment 1.

The data set is preprocessed for Experiment 2 with
filtration, missing data handling, and normalization like
the processes conducted in Experiment 1. Then, the data
set was fed to the M‐LSTM model using the process
detailed in Section 3.3.1. Finally, the M‐LSTM model is
trained as a classification problem on the preprocessed
data set. The model architecture used in this study is
given in Table 4.

FIGURE 1 A multivariate long short‐term memory internal
structure.

TABLE 3 Statistics for Experiment 2.

Processing Type (nature) Patient Visits Average
Standard
deviation

Before data preparation Total 1030 10,545 10.23 3.67

Progressive 476 5026 10.56 3.98

Nonprogressive 554 5519 9.96 3.36

After data preparation Total 1030 14,420 10.23 3.67

Progressive 476 6664 14 –

Nonprogressive 554 7756 14 –

Note: – represents not taking standard deviation.
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4 | RESULTS

4.1 | Experiment 1

After five‐cross validation, the AdaBoost model reported an
average accuracy, precision, recall, and F1 score of 77.52%,
75.21%, 81.48%, and 78.22%, respectively. After tuning
the model's parameters, the accuracy improved to ∼80%.
Previously, the best accuracy to classify AD as progressive
or nonprogressive was 58.47% [23]. The achieved accuracy
with AdaBoost with effective preprocessing has improved
by 21.34% compared to the literature, reaching 80%.
Figure 2 demonstrates the model's performance in Experi-
ment 1 regarding accuracy, precision, recall, and F1 score.
AdaBoost models have performed well and better after
fine‐tuning.

To demonstrate the effectiveness of the proposed
model with the baseline work presented in Ho
et al. [23], Table 5 provides the accuracy, precision,
and recall of both models for AD progression and
nonprogression classification, respectively. There is a
significant increase in the observed accuracy with
AdaBoost. The accuracy and precision of 58.47% and
59.25%, respectively, are increased with the BiPro [23]
to 77.52% and 75.21% with AdaBoost. A significant
increase in accuracy of 21.34% and precision of 20.57%
is achieved with our proposed methodology. The
confusion matrix for AD progression and nonprogres-
sion is illustrated in Figure 3.

The first‐row cell in the first column represents true
positives. It indicates that 91 positive instances have been
classified correctly. Similarly, the first‐row cell in the
second column indicates a false positive, meaning
21 negative values were confused with positive labels.
The value of the second‐row cell in the first column
represents a false negative, meaning that 23 of the
positive labels were identified as negative. Finally,
the values of the second‐row cell of the second column

show true positives, which means that 83 of the positive
samples were correctly classified.

4.2 | Experiment 2

The M‐LSTM model for detecting AD progression state is
trained and tested on the data set with a split ratio of
80:20, that is, 80% data for training and 20% for testing.
Initially, the model achieved an accuracy of ∼80%.
However, after fine‐tuning the parameters and hyper-
parameters of the M‐LSTM model, the model accuracy
increased to ∼82%. The training and validation accuracy
of the proposed model is plotted in Figure 4.

TABLE 4 M‐LSTM model architecture.

Layer type Output shape Parameters

M‐LSTM (None, 256) 278,528

Fully connected (None, 128) 32,896

Dropout (None, 128) 0

Fully connected (None, 2) 258

Total parameters: 311,682

Trainable parameters: 311,682

Nontrainable parameters: 0

Abbreviation: M‐LSTM, multivariate long short‐term memory. 70
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FIGURE 2 Performance measures of Experiment 1 using
AdaBoost.

TABLE 5 Performance analysis with baseline [23].

Model Accuracy (%) Precision (%) Recall (%)

BiPro [23] 58.47 59.25 57.78

AdaBoost 77.52 75.21 81.48

Fine Tuned
AdaBoost

79.81 79.82 81.25

FIGURE 3 Confusion matrix for Experiment 1. Prog,
progression.
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The M‐LSTM model in this study reported an average
accuracy, precision, recall, and F1 score of 80.02%,
78.25%, 82.21%, and 80.18%, respectively. After tuning
the model's parameters, the accuracy improved to ∼82%.
Previously in Experiment 1, the best accuracy to classify
the AD as progressive or nonprogressive was 79.81% with
AdaBoost and 58.47% with BiPro [23]. However, the
achieved accuracy with M‐LSTM and excellent prepro-
cessing was improved to ∼82%. M‐LSTM improved
accuracy by 23.53% over BiPro and 2.18% with AdaBoost,
respectively. In addition, the precision and recall with
M‐LSTM increased from 78.25% and 82.21% with
AdaBoost to 85.5% and 82.66%, respectively. Figure 5
shows the performance of the M‐LSTM model for AD
progression in Experiment 2 using accuracy, precision,
recall, and F1 score, respectively.

The confusion matrix for AD progression and non-
progression is illustrated in Figure 6. According to the
matrix computed, 112 of the positive values were classified
correctly. Similarly, the value of the first‐row cell and the
second column indicates a false positive which means that
19 negative values are confused with positive labels.
Likewise, the number of false negatives is 28, meaning the
positive labels are identified as negative. Finally, a total of
99 positive samples are correctly classified.

To demonstrate the effectiveness of the M‐LSTM
model over AdaBoost, Table 6 summarizes the
accuracy, precision, recall, and F1 score. Better AD
progression detection is achieved with M‐LSTM
compared to AdaBoost with efficient data engineer-
ing. Figure 7 demonstrates the achieved performance
with both experiments and the baseline to predict AD
progression. There is a 2.18% accuracy improvement
with M‐LSTM, the best classification accuracy for AD
progression. The precision and F1 scores of 78.25%
and 80.53% with the AdaBoost classifier have
increased to 85.5% and 82.66%, achieving 7.25% and
2.13% gains, respectively.

5 | DISCUSSION

This study aimed to develop and evaluate two different
models, that is, AdaBoost and M‐LSTM, for classifying the
nature of AD subjects as progressive or nonprogressive.
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FIGURE 4 Training and validation accuracy curves of
multivariate long short‐term memory.
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FIGURE 5 Performance measures of Experiment 2 using
multivariate long short‐term memory (M‐LSTM).

FIGURE 6 Confusion matrix for Experiment 2. Prog, progression.

TABLE 6 Performance analysis with AdaBoost.

Model Experiment Accuracy Precision Recall F1 score (%)

M‐LSTM 2 81.78 85.50 80.00 82.66

AdaBoost 1 79.81 79.82 81.25 80.53

Abbreviation: M‐LSTM, multivariate long short‐term memory.
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In this study, we conducted two experiments to evaluate
the performance of the selected models to classify patients
with AD progression. The results of both experiments
demonstrate significant improvements in accuracy, preci-
sion, recall, and F1 score compared to previous literature
and baseline models.

In Experiment 1, the AdaBoost model achieved an
average accuracy of 77.52%, precision of 75.21%, recall of
81.48%, and F1 score of 78.22% after five cross‐validations.
After fine‐tuning the model's parameters, the accuracy
improved to approximately 80%. This improvement is
substantial compared to the best accuracy reported in the
literature, which was 58.47% [23]. The achieved accuracy
with AdaBoost, coupled with effective preprocessing,
represents a remarkable 21.34% improvement over the
previous best result, reaching 80%. The performance of the
AdaBoost model is further visualized in Figure 2,
illustrating its accuracy, precision, recall, and F1 score.

In Experiment 2, the M‐LSTM model was trained and
tested on the data set. The initial average performance
measures achieved by the M‐LSTM model were accuracy of
80.02%, precision of 78.25%, recall of 82.21%, and F1 score of
80.18%. After parameter tuning, the accuracy further
improved to approximately 82%. Compared to Experiment
1, where the best accuracy was achieved with AdaBoost
(79.81%) and the baseline BiPro model (58.47%) [23], the M‐
LSTM model demonstrated superior performance with an
accuracy of approximately 82%. This improvement in
accuracy corresponds to a 23.53% gain over the BiPro model
and a 2.18% gain over the AdaBoost model. Additionally, the
precision and recall of the M‐LSTM model increased from
78.25% and 82.21% with AdaBoost to 85.5% and 82.66%,
respectively. The performance of the M‐LSTMmodel for AD
progression is visualized in Figure 5, showcasing accuracy,
precision, recall, and F1 score.

Our findings indicate that the M‐LSTM model outper-
forms AdaBoost in detecting AD progression. The superiority
can be attributed to the M‐LSTM's ability to effectively
process time series data, capturing temporal dependencies
crucial in understanding disease progression dynamics.
Unlike AdaBoost, which may struggle with the sequential
nature of cognitive and neuroimaging indicators, M‐LSTM's
memory gates enable a more nuanced analysis. The broader
implications of these findings in clinical settings are
significant. Improved accuracy in classifying AD progression,
as demonstrated by M‐LSTM, holds promise for enhancing
early diagnosis and treatment planning. The ability to
capture temporal nuances in patient data opens avenues
for more personalized and timely interventions, ultimately
improving patient outcomes.

Overall, the results obtained from both experiments
highlight the effectiveness of the proposed models,
AdaBoost and M‐LSTM, in accurately classifying AD
progression. The improvements achieved in accuracy,
precision, recall, and F1 score compared to the literature
and baseline models demonstrate the potential of these
models for clinical applications. These findings have
important implications for the early diagnosis and treat-
ment of AD, as accurate classification of disease progression
can aid in implementing appropriate interventions.

6 | CONCLUSIONS

AD is an irreversible neurological condition that impairs
memory, cognition, and behavior. Therefore, early detection
is crucial to halt its progression. Timely identification of
structural changes from CN to MCI and MCI to AD can aid
in detecting progression factors to halt AD progression.
Various ML and deep learning models are used for the
detection process. This study performed two experiments,
that is, one using an ensemble MLmodel, AdaBoost, and the
other using the deep learning model, M‐LSTM. First, an
efficient preprocessing pipeline for the TADPOLE data set is
introduced before digging into the detection part of the
progression state. AdaBoost is applied to the prepared data
set and results in the detection of subjects involved in AD
progression. Different performance measures show better
results than a recent state‐of‐the‐art method, BiPro. Further-
more, the second experiment observed the disease's
spreading over time using M‐LSTM, detected the subject's
progressive nature regarding AD, and outperformed the
AdaBoost.

AdaBoost is an ensemble ML model that trains the
classifier iteratively on the prepared samples, which results
in better performance than other classical ML methods.
Similarly, M‐LSTM is a powerful DL model that uses
memory gates to process time series data. However, training
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the M‐LSTM for a classification problem is more challenging
and time‐consuming than training AdaBoost. But the results
achieved on the prepared data set from M‐LSTM are more
convincing than AdaBoost and a recent literature method.
This research has preprocessed an already existing data set,
which is collected for stages detection rather than the
detection of AD progressive nature. Furthermore, the
preprocessing data pipeline used in this research can be
further enhanced by applying custom preprocessing steps
rather than standard steps.

Deep learning models are powerful but require
excessive computational power and time to process time
series data. Most of the datasets have limited information
and are unlabeled. Preprocessing the data set and
labeling could be useful to avoid the model's overfitting
and underfitting problems because the more data
available, the better the detection of the AD progression
state will be.
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