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Abstract
DJ-1 protein has multiple specific mechanisms to protect dopaminergic neurons against neurodegeneration in Parkinson's
disease. Wild type DJ-1 can acts as oxidative stress sensor and as an antioxidant. DJ-1 exhibits the properties of molecular
chaperone, protease, glyoxalase, transcriptional regulator that protects mitochondria from oxidative stress. DJ-1 increases the
expression of two mitochondrial uncoupling proteins (UCP 4 and UCP5), that decrease mitochondrial membrane potential and
leads to the suppression of ROS production, optimizes of a number of mitochondrial functions, and is regarded as protection for
the neuronal cell survival. We discuss also the stabilizing interaction of DJ-1 with the mitochondrial Bcl-xL protein, which
regulates the activity of (Inositol trisphosphate receptor) IP3R, prevents the cytochrome c release from mitochondria and inhibits
the apoptosis activation. Upon oxidative stress DJ-1 is able to regulate various transcription factors including nuclear factor Nrf2,
PI3K/PKB, and p53 signal pathways. Stress-activated transcription factor Nrf2 regulates the pathways to protect cells against
oxidative stress and metabolic pathways initiating the NADPH and ATP production. DJ-1 induces the Nrf2 dissociation from its
inhibitor Keap1 (Kelch-like ECH-associated protein 1), promoting Nrf2 nuclear translocation and binding to antioxidant re-
sponse elements. DJ-1 is shown to be a co-activator of the transcription factor NF-kB. Under nitrosative stress, DJ-1may regulate
PI3K/PKB signaling through PTEN transnitrosylation, which leads to inhibition of phosphatase activity. DJ-1 has a complex
modulating effect on the p53 pathway: one side DJ-1 directly binds to p53 to restore its transcriptional activity and on the other
hand DJ-1 can stimulate deacylation and suppress p53 transcriptional activity. The ability of the DJ-1 to induce activation of
different transcriptional factors and change redox balance protect neurons against aggregation of α-synuclein and oligomer-
induced neurodegeneration.
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Abbreviations
α-Syn α-synuclein
ATP adenosine triphosphate
Bcl-xL B-cell lymphoma-extra large
Bcl-2 B-cell lymphoma 2
CMA chaperone-mediated autophagy
c-Rel proto-oncogene
DJ-1 (Park7) protein deglycase, which is encoded by the

PARK7 gene

Hsc70 heat-shock cognate protein of 70 kDa
Keap1 Kelch-like ECH-associated protein 1
LAMP2A lysosomal-associated membrane protein 2a
MMP mitochondrial membrane potential
NADPH nicotinamide adenine dinucleotide phosphate

reduced
Nrf2 nuclear factor (erythroid-derived 2)-like 2
NQO1 NAD(P)H quinone dehydrogenase 1
6-OHDA dopaminergic-selective neurotoxin 6-

hydroxydopamine
Parkin E3 ubiquitin ligase
PD Parkinson's disease
PINK1 PTEN-induced putative kinase 1
PI3K/PKB phosphatidylinositol 3-kinase/ Protein Kinase

B (Akt)
PTEN phosphatase and tensin homolog
ROS reactive oxygen species
SNc the substantia nigra pars compacta
SNCA gene, which encodes protein α-synuclein
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SIRT1 gene, which encodes protein NAD-dependent
deacetylase sirtuin 1

UCP mitochondrial uncoupling protein
WT wild-type

Introduction

Parkinson's disease (PD) is a neurodegenerative, multifactori-
al movement disorder (Zaltieri et al. 2015).

This is the age-dependent disease which affects 1% peo-
ple over 60 years, growing to 4% at the age of 80 years).
However, people of 18-30 years can be affected by juvenile
parkinsonism, which include symptomatic parkinsonism
due to brain damage (trauma, toxins, encephalitis, hypoxia)
and parkinsonism developing at other neurodegenerative
diseases (Huntington's chorea, dementia with Lewy bodies,
multisystem atrophy). PD is clinically characterized by un-
controllable tremor at rest, rigidity, slowness of movement
and postural impairment. In addition to violations of the
motor function, PD is accompanied by violations of the
gastrointestinal, olfactory, sleep, cognitive and other disor-
ders. These symptoms are the result of loss of function and/
or death of the majority of dopaminergic neurons of the
midbrain with subsequent disruption of dopaminergic neu-
rotransmission in the dorsal striatum where the presynaptic
endings of these neurons are located. PD is characterized by
progressive death of midbrain dopaminergic neurons of
substantia nigra pars compacta (SNc) (Barzilai and
Melamed 2003) and the presence of intracellular inclusions
called Lewy bodies consisting mainly of aggregated α-
synuclein (α-Syn) (Braak et al. 1999; Trojanowski and
Lee 1998). The sporadic form of PD is associated with
various environmental factors, including the effects of neu-
rotoxins (MPTP), pesticides and herbicides such as rote-
none and paraquat (Betarbet et al. 2000; Jenner 2003;
Przedborski et al. 2004). Hereditary forms caused by muta-
tions in several genes constitute 10-15% of all cases of PD
(Sherer et al. 2002). Currently, more than 15 genes of
Parkinsonism hereditary forms have been identified.
Mutations in the genes LRRK2 (enriched with leucine re-
peats kinase 2) and SNCA (alpha-sinuclein) are well-
known causes of autosomal dominant Parkinson's disease,
mutations in the Parkin, PINK1 and DJ-1 genes, mediate
autosomal recessive and early forms of PD (Bonifati et al.
2003a; Annesi et al. 2005).

Mutations in these genes are strongly associated with mi-
tochondrial dysfunction and oxidative stress (Bonifati et al.
2003b; Valente et al. 2004; Abramov et al. 2017). Axons of
the nigrostriatal system form one of the longest tracts in the
brain and require an additional ATP to transport the compo-
nents to the distally located synaptic terminals (Braak et al.
2004; Fu et al. 2016). A deficit of ATP and mitochondrial

Ca2+ overload can be a trigger for neurodegenerative diseases
(Abeti and Abramov 2015; Ludtmann and Abramov 2018).

DJ-1 protein plays a role of oxidative stress sensor - it
eliminates peroxide by autoxidation (Mitsumoto and
Nakagawa 2001). DJ-1 is also strongly implicated in patho-
genesis of cancer and suggested to be one of potential tumor
marker (Yu et al. 2017; Fan et al. 2016).

DJ-1 participates in a number of signaling pathways, in-
cluding control of mitochondrial quality and reaction to oxi-
dative stress. It has been shown that cells with a high level of
DJ-1 are resistant to both oxidative stress and to neurotoxins
such as 6-OHDA (6-hydroxydopamine), while lower levels of
DJ-1 make cells to be vulnerable to oxidative stress (Fig. 1)
(Taira et al. 2004; Inden et al. 2011).

Knockout of the DJ-1 gene reduced the expression of two
mitochondrial uncoupling proteins (UCP4 and UCP5 – see
Figs. 1 and 2), impaired the function of calcium-induced
uncoupling and increased the oxidation of matrix proteins in
substantia nigra pars compacta (SNc) dopaminergic neurons
(Surmeier et al. 2010). Recent studies have shown that DJ-1
protects dopaminergic neurons against oxidative damage not
only in vitro, but also in vivo (Bjorkblom et al. 2013; Choi
et al. 2014; Mullett et al. 2013; Tanti and Goswami 2014).
Oxidised DJ-1 was shown to be significantly decreased in
idiopathic PD brain, suggesting altered complex function con-
trolled by DJ-1 may also play a role in the more common
sporadic form of the disease (Piston et al. 2017).

This review summarise neuroprotective role of DJ-1
through regulation of α-Syn quality control, chaperone-
mediated autophagy, antioxidant protection of neurons, oxi-
dative phosphorylation, anti-apoptotic effect of Bcl-xL and
the regulation of signalling pathways in the context of PD.

Structure, functions and mechanism of DJ-1
action

The DJ-1 gene was first discovered as a new mitogen-
dependent oncogene involved in the Ras-dependent signal
transduction pathway (Nagakubo et al. 1997). DJ-1 is a
24 Kb gene that encodes a protein with 189 amino acid resi-
dues (Moore et al. 2006; Moore et al. 2005; Trempe and Fon
2013). It is a small ubiquitously expressed protein with a mo-
lecular mass of about 20 kDa (Bader et al. 2005). The crystal
structure of this protein was investigated by several indepen-
dent research groups (Honbou et al. 2003; Huai et al. 2003;
Tao and Tong 2003; Wilson et al. 2003). The protein exists as
a homodimer in the cytoplasm, mitochondria, and nucleus
(Zhang et al. 2005). DJ-1 is a protein sensor that reacts to
oxidative stress and protects cells from ROS (Taira et al.
2004; Inden et al. 2006). DJ-1 has been shown to function
as a dimer and contains an essential cysteine residue within
its active site that functions as an oxidative sensor. Studies
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have shown that the brains of patients with Alzheimer's dis-
ease and Parkinson's disease contain a high level of oxidized
DJ-1, which is believed to possess neuroprotective properties
(Choi et al. 2006; Bandopadhyay et al. 2004). DJ-1 has three
cysteine residues in its amino acid sequence at residues 46, 53
and 106 in humans and rats. It was shown that the cysteine
residue C106 in DJ-1 is the most sensitive site to oxidation by
hydrogen peroxide (H2O2) (Kinumi et al. 2004). Of the three
cysteine residues, the oxidative status of the amino acid cys-
teine residue C106 determines the active level of the DJ-1
protein. Cys-106 of DJ-1 is sequentially oxidized from the
reduced form (-SH) to sulfenated form (-SOH), sulfinated
form (-SO2H), and sulfonic form (-SO3H). The degree of ox-
idation at the C106 residue determines DJ-1 activity (Choi
et al. 2014; Ito et al. 2006; Wilson 2011). Thus, active form
of DJ-1 is with sulfinated C106, sulfonic form of C106 in DJ-
1 is inactivating this peptide. Inactive SO3H form of DJ-1
found in patients with sporadic PD suggesting that DJ-1 can
be involved not only familial but also in sporadic PD (Ariga
et al. 2013). In addition to performing the sensory function
of oxidative stress, DJ-1 neutralizes reactive oxygen spe-
cies (ROS) (Taira et al. 2004; Cookson 2003), is a molecu-
lar chaperone (Meulener et al. 2005; Shendelman et al.
2004), protease (Chen et al. 2010), glyoxalase (Lee et al.
2003), the transcriptional regulator, the RNA-binding pro-
tein, the mitochondrial function regulator and the autopha-
gy regulator (Trempe and Fon 2013; Ariga et al. 2013;
Richarme and Dairou 2017). DJ-1 shown to be a redox

sensitive adapter protein for high molecular weight com-
plexes involved in regulation of catecholamine homeosta-
sis, specifically noradrenaline and dopamine (Fig. 1)
(Piston et al. 2017).

Deficiency of DJ-1

DJ-1 is a multifunctional protein and mutations in its gene are
associated with a number of diseases such as neurodegenera-
tive diseases, stroke, type II diabetes and cancer (Choi et al.
2006; Ariga et al. 2013; Kahle et al. 2009; Aleyasin et al.
2007; Inberg and Linial 2010; Cao et al. 2015; Jain et al.
2012). The homozygous deletion or point mutation in the
human DJ-1 gene that lead to the replacement of the proline
amino acid residue by leucine (L166P) causes an autosomal
recessive early form of PD (Bonifati et al. 2003b). The crystal
structures of wild DJ-1 and mutated L166P proteins demon-
strate that the L166P mutation prevents normal folding of the
C-terminal region. Such a change in the structure leads to a
disruption in transport properties and the ability to form
dimers. In contrast to DJ-1 which forms soluble dimers,
the mutant L166P exists in cells as a monomer (Moore
et al. 2003; Anderson and Daggett 2008), and loses its
physiological functions and acquires proapoptotic proper-
ties (Ren et al. 2012). The PD-associated loss of DJ-1 func-
tion is related to reduce lysosomal activity and mitochon-
drial damage (Krebiehl et al. 2010). DJ-1 activity is
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Fig. 1 Diversity of the effects of DJ-1 in cell. 1. DJ-1 is able to upregulate
dopamine synthesis via direct activation of tyrosine hydroxylase (TH)
and 4-dihydroxy-L-phenylalanine decarboxylase (DDC). 2. In the nucle-
us DJ-1 acts as a transcriptional coactivator of NF-kB and subsequent
transcription of the gene encoding UCP4. UCP-induced mild uncoupling
can reduce the ROS production. 3. DJ-1 prevents potentially toxic a-syn
aggregation via activation of a-syn degradation by the chaperone-

mediated authophagy (CMA). 4. DJ-1 stimulates endogenous antioxidant
system by the activation of Nrf2. 5. DJ-1 upregulates and stabilizes Bcl-
xL in mitochondria preventing apoptotis. 6. DJ-1 positively regulates p53
through Topors-mediated sumoylation. Overexpression of DJ-1 decreases
the expression of Bax and inhibits apoptosis. DJ-1 also inhibits PTEN to
activate PI3K/PKB (Akt) pathway
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abrogated by the Park7 (L166P) mutation, associated with
primary parkinsonism (Shendelman et al. 2004).

DJ-1 in α-Synuclein aggregation and quality
control

Misfolding and oligomerisation of α-Synuclein (α-Syn) in-
volved in both hereditary and sporadic forms of Parkinson's
disease (Abramov et al. 2017). Autosomal familial dominant
forms of PD is induced bymutations (A53T, A30P and E46K)
(Polymeropoulos et al. 1997; Kruger et al. 1998; Zarranz et al.
2004), or multiplication (duplications, triplications or overex-
pression) (Chartier-Harlin et al. 2004) in the SNCA gene,
probability of sporadic PD also may be increased by polymor-
phisms at the SNCA locus (Simon-Sanchez et al. 2009).
Removal of misfolded protein plays a critical role in the ag-
gregation of α-Syn and the pathogenesis of PD. Previously it
was shown that DJ-1 indirectly (without co-localizations) in-
hibits aggregation of α-synuclein. It was suggested that DJ-1

is activated in an oxidative cytoplasmic environment and acts
as a redox-sensitive molecular chaperone (Shendelman et al.
2004). DJ-1 can inhibit starting point of aggregation of α-
synuclein (monomers) but not oligomerization of fibril forma-
tion (Martinat et al. 2004). Later it was found that oxidation of
Cys106 to the sulfinic acid had minimal effect on the structur-
al properties of DJ-1, whereas the SO2H form of C106 was
very effective in preventing the fibrillation of α-Syn. Further
oxidation of DJ-1 led to the loss of some secondary structure,
and of the ability to inhibit alpha-synuclein fibrillation. The
authors concluded that this can be a mechanism of action of
DJ-1 as an oxidative-stress-induced chaperone to prevent α-
Syn fibrillation (Zhou et al. 2006). More recent, it was found
that DJ-1 interacts directly with α-Syn monomers and oligo-
mers not only in vitro systems but also in living cells and
mutations in DJ-1 (Park7) gene associated with PD limit this
interaction. Moreover, excessive expression of DJ-1 reduced
dimerization of α-Syn (Zondler et al. 2014). It was confirmed
that suppression of DJ-1 (knockout)increased level of aggre-
gated α-synuclein in cellular (SH-SY5Y) and animal models
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Fig. 2 ROS activated DJ-1 is able to interact with complex I and maintain
its activity. In addition, DJ-1 suppresses ROS overproduction, triggering
expression of the gene encoding UCP. This process is mediated by acti-
vation of IκB kinase followed by activation of the transcription factor NF-
κB and expression of genes encoding UCP4, UCP5 and Bcl-xL. UCP
causes a mild uncoupling of oxidative phosphorylation, suppressing the
production of ROS and thereby regulating the level of ROS on the

principle of negative feedback. Bcl-xL is able to control mitochondrial
and reticular Ca2+ transport through the activation of IP3R and VDAC –
the components of the MAM complex. The main role of Bcl-xL is to
suppress the apoptosis. Mutations in the gene encoding DJ-1 lead to
disruption of these functions. So replacing the C106A blocks the activa-
tion of DJ-1 by reactive oxygen species, and the L166Pmutation provides
the nuclear localization of DJ-1
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of PD, opposite - over-expression of DJ-1 in vitro effectively
decreased α-Syn levels (Xu et al. 2017). The important neu-
ronal physiological role of α-Syn and the central role in the
pathogenesis of PD suggest a high level of correctness be-
tween the processes of synthesis and degradation of this pro-
tein. In the processes of degradation of pathogenic α-Syn
prone to aggregation, a critical role is assigned to the lysosom-
al system (Fig. 1) (Moors et al. 2016). On the mechanisms of
cytoplasmic substrates delivery to the lysosome, the
autophagy-lysosome pathway can be divided into
macroautophagy, microautophagy and chaperone-mediated
autophagy (Cuervo and Wong 2014).

DJ-1 regulate chaperone-mediated
autophagy

Soluble wild-type α-synuclein is mainly degraded by
chaperone-mediated autophagy (CMA), and impairment of
CMA is closely related to the pathogenesis of PD (Xu et al.
2017; Vogiatzi et al. 2008). Under normal conditions, CMA
occurs constitutively at low levels. In conditions of oxidative
stress and presence of α-Syn aggregates the affinity between
Hsc70 and α-synuclein fibrils is 5-fold tighter compared with
soluble α-Syn (Pemberton et al. 2011).

It was shown that oxidized DJ-1 with the SO2H form of
C106 was the active form for realization of chaperone activity
(Zhou et al. 2006). Wild-type α -Syn is a substrate of CMA
and CMA dysfunction may contribute an increase in patho-
logical α -synuclein aggregates (Vogiatzi et al. 2008; Cuervo
et al. 2004). Chaperone protein HSPA8 directly binds CMA
substrate proteins and targets them to the lysosomes for
LAMP2A-mediated degradation (Majeski and Dice 2004).
CMA is a highly specific process in which cytosolic protein
substrates with the KFERQ-targeting motif are recognized by
Hsc70 (heat-shock cognate protein of 70 kDa) of chaperone-
complex (Kaushik and Cuervo 2009; Velseboer et al. 2011).
Substrate can be translocated to lysosomes by the lysosomal-
associated membrane protein 2a (LAMP2A) receptor (Dice
2007; Yang et al. 2009) and then quickly degraded by the
proteases (Fig. 1) (Bejarano and Cuervo 2010). Over-
expression of LAMP2A in human SH-SY5Y cells or rat pri-
mary cortical neurons in vitro and nigral dopaminergic neu-
rons in vivo decreased α-Syn accumulation and protected
against α-Syn-induced dopaminergic degeneration (Xilouri
et al. 2013). DJ-1 deficiency accelerated the degradation of
LAMP2A in lysosomes, leading to the aggregation of a-syn.
Lower levels of the CMA markers LAMP2A and the chaper-
one Hsc70 was observed in various regions of postmortem
brain specimens from PD patients in SNc compared to con-
trols (Alvarez-Erviti et al. 2010; Murphy et al. 2015). More
recent studies confirm that DJ-1 deficiency accelerated the
degradation of LAMP2A in lysosomes, leading to the

aggregation of α-Syn (Xu et al. 2017). Thus DJ-1 could in-
hibitα -synuclein accumulation and aggregation by regulating
CMA.

The role of DJ-1 in neuronal antioxidant
defense

Neurons are postmitotic cells and they characterized by high
oxygen consumption, lipid content and metabolic activity that
makes them more sensitive to oxidative damage compared to
other cells (Gandhi and Abramov 2012; Angelova and
Abramov 2016). Oxidative stress has been shown to play
important roles in the pathogenesis of PD (Chien et al.
2013). DJ-1 plays a significant role in antioxidant protection
of neurons against oxidative stress, acts as a sensor of oxida-
tive stress, by interaction with other enzymes of the antioxi-
dant system and by elevating of expression of the correspond-
ing antioxidant defense genes (Taira et al. 2004; Inden et al.
2006; Wilson 2011; Ariga et al. 2013; Kahle et al. 2009; Liu
et al. 2008; Bonifati 2012). The antioxidant defense enzyme
network consists from superoxide dismutase, glutathione per-
oxidase, catalase and paraoxonase (Gandhi and Abramov
2012; Parsanejad et al. 2014). DJ-1 over-expression promotes
an increase in the glutathione level that protects neurons from
the oxidative stress caused by H2O2 and 6-OHDA (Zhou and
Freed 2005). Furthermore, cells with a high level of DJ-1 are
resistant to oxidative stress and neurotoxins, such as 6-
OHDA, while lower levels of DJ-1 make cells vulnerable to
oxidative stress (Taira et al. 2004; Inden et al. 2011; Gunjima
et al. 2014). Under condition of oxidative stress, a conserved
cysteine residue in DJ-1 (Cys106) is oxidized and this oxida-
tive modification is enabling DJ-1 to act as scavenges ROS
and as a sensor of cellular redox homeostasis. DJ-1 is mainly
localized in the cytoplasm, but under oxidative stress it can be
translocated to the mitochondria and nucleus (Irrcher et al.
2010; Kim et al. 2012) for 3 and 12 hours, respectively, acting
as a cytoprotector (Fig. 2) (Junn et al. 2009; Blackinton et al.
2009). Mild oxidation of Cys106 to the sulfin form (SO2H) is
necessary for mitochondrial localization and protection of
cells against oxidative stress (Blackinton et al. 2009) and for
inhibition of α-Syn fibrils formation (Fig. 2) (Zhou et al.
2006). DJ-1 translocated into the nucleus act as a transcrip-
tional coactivator of NF-kB transcription factors because it
does not have a separate DNA-binding site (Kim et al. 2012;
Yamaguchi et al. 2012).

Interaction of DJ-1 and mitochondria

Mitochondrial dysfunction plays a central role in the mecha-
nism of neurodegeneration in PD. Mitochondria considered
being one of the main ROS producers within the cell. ROS
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overproduction induces rapid relocation of DJ-1 to mitochon-
dria, suggesting that mitochondria could be a site for DJ-1’s
neuroprotective activity (Junn et al. 2009; Canet-Aviles et al.
2004). Using the electron microscopy, DJ-1 protein was iden-
tified both in the mitochondrial matrix and in the intermem-
brane space (Zhang et al. 2005). It was shown that DJ-1 is co-
localized with the subunit of NDUFA4 mitochondrial com-
plex I even in the absence of stress. Binding of DJ-1 to the
subunits of complex I was enhanced by oxidative stress
(Hayashi et al. 2009). Knockout of the DJ-1 gene in human
dopaminergic neurons led to depolarization of mitochondria,
their fragmentation and accumulation of autophagy markers
around the mitochondria. Apparently, these effects are due to
endogenous oxidative stress, since antioxidants have abrogat-
ed them. DJ-1 suppresses mitochondrial fragmentation caused
by the mitochondrial toxin rotenone in the same way as
PINK1 (Thomas et al. 2011). Death of the dopaminergic neu-
rons in the SNc characterizes PD and it is the main cause of
motor impairment (Fahn 2003). The axons of the nigrostriatal
system form one of the longest tracts in the brain and, possibly
require an additional ATP to transport the components to the
distally located synaptic terminals (Braak et al. 2004; Fu et al.
2016). It was shown that a higher basal rate of mitochondrial
oxidative phosphorylation and an elevated level of basal ROS
production characterized nigral dopaminergic neurons com-
pared to dopaminergic neurons of the VTA (ventral tegmental
area) (Pacelli et al. 2015). Rhythmic pacemaker activity of the
SNc dopaminergic neurons was suggested to be one of the
reasons for high energy demand and vulnerability of these
cells. SNc dopaminergic neurons are autonomous pace-
makers, generating action potentials at a relatively slow rate
(2-10 Hz) in the absence of synaptic input (Grace and Bunney
1983a; Grace and Bunney 1983b; Chan et al. 2007; Guzman
et al. 2009; Surmeier et al. 2017). The rhythmic pacemaker
activity is due to the properties of the pore-forming subunit of
Cav1.3 of the L-type Ca2+-channels that regulate the basal
level of dopamine in the striatum (Guzman et al. 2009;
Kang et al. 2012; Surmeier and Schumacker 2013).
Cytosolic Ca2+ oscillations in dopaminergic neurons of SNc
initiate Ca2+-entry into mitochondria and stimulate ATP pro-
duction (Surmeier and Schumacker 2013; Denton 2009;
Aumann et al. 2011). Activation of mitochondrial respiration
in the absence of high ATP demand leads to mitochondrial
hyperpolarization and increased production of ROS (Pacelli
et al. 2015; Guzman et al. 2010).

DJ-1 increases the transcriptional activity
of UCP4 and mild uncoupling interacting
with NF-κB and stabilizes Bcl-xL

The ability of mitochondria to produce ROS (reactive oxygen
species) in the electron transport chain (TCA) cycle and some

other enzymes has a functional implication in cell signaling. In
low level, ROS perform signaling functions as secondary in-
termediaries in redox-sensitive signaling pathways (Petry
et al. 2010). Mitochondria produced low level of ROS even
in resting conditions as an electron leakage in electron trans-
port chain. However, production of ROS in mitochondria may
be dramatically increased in case of inhibition of mitochon-
drial complexes which induce a reverse flux of electrons, or
increase the electron leakage in case of mitochondrial hyper-
polarization. Increased production of ROS induces oxidative
damage of the DNA, especially mtDNA, proteins, lipids,
causing oxidative stress. It is become widely accepted that
oxidative stress and mitochondrial dysfunction contribute to
the loss of dopaminergic neurons, age-related pathology and
neurodegenerative disorders (Angelova and Abramov 2016;
Surmeier et al. 2017; Balaban et al. 2005; Schapira and Jenner
2011; Zhu and Chu 2010). The rate of ROS formation in
mitochondria can be decrease by using low doses of
protonophores that partially reduce mitochondrial membrane
potential and induces process termed Bmild uncoupling^
(Adam-Vizi and Chinopoulos 2006; Starkov 2008). There is
a family protein on the inner mitochondrial membrane called
the uncoupling proteins (UCPs), act to promote this proton
leakage for thermoregulation and to prevent excessive ROS
production. One of the isoforms UCPs - UCP4 is predomi-
nantly expressed in brain tissue, mostly in all brain regions
including SNc and striatum (Ramsden et al. 2012). NF-κB
regulates The transcriptional activity of UCP4 in both ways
– it can be increased by agonist NF-kB or decreased by inhib-
itors of NF-kB (Ho et al. 2010). One of the important proper-
ties of NF-kB is its ability to protect the cell from apoptosis
(Hoffmann and Baltimore 2006).

UCP4 knockdown decreased cellular antioxidative ca-
pacity and depolarized mitochondrial membrane under
normal culture conditions (Ho et al. 2012a). In this way
UCP4 expression is significantly regulated through the
activation of NF-κB signaling by the NF-κB-response
element binding site within the promoter region of
UCP4 (Ho et al. 2012b; Xu et al. 2018). DJ-1 can in-
crease expression of UCP4 via NF-κB pathway because
DJ-1 enhances NF-κB nuclear translocation and cell sur-
vival (Xu et al. 2018). Knocking out DJ-1 downregulated
UCP4 and UCP5 expression and increased oxidation of
matrix proteins specifically in SNc dopaminergic neurons
(Ho et al. 2012a).

Intracellular ROS are a key factor that can regulate the
phosphorylation of nuclear factor IκB-α and activate NF-κB
(Kretz-Remy et al. 1996; Schreck et al. 1991; Schreck and
Baeuerle 1991; Asghar et al. 2006; Fardoun et al. 2007). c-
Rel subunit was involved in regulating UCP4 gene expression
via the NF-κB response element in the UCP4 gene promoter.
c-Rel over-expression induced NF-κB activi ty .
Overexpression of c-Rel increased UCP4 promoter activity
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and protein expression. Hydrogen peroxide increased NF-κB
binding to the UCP4 promoter.

DJ-1 is present mostly in the cytoplasm and to a
lesser extent in mitochondria and nucleus of dopaminer-
gic neurons. It was shown that DJ-1 is translocated to
the mitochondria and nucleus in response to oxidative
stress (Junn et al. 2009; Canet-Aviles et al. 2004) in-
creasing the interaction between DJ-1 and Bcl-xL (Ren
et al. 2011). Anti-apoptotic Bcl-xL encoded by the
BCL2-like 1 gene, is a transmembrane molecule in the
mitochondria. It is a member of the Bcl-2 family of
proteins, and acts as an anti-apoptotic protein by
preventing the release of mitochondrial cytochrome c
(Adams and Cory 1998), which leads to caspase activa-
tion. Bcl-xL forms heterodimers with pro-apoptotic Bcl-
2 family proteins to inhibit apoptosis (Petros et al.
2000). As a mitochondrial anti-apoptotic protein Bcl-
xL prevents oligomerization of pro-apoptotic Bax
(Bcl2-Associated X protein) and Bak (Bcl-2 homolo-
gous antagonist/killer) (Cheng et al. 1996; Sattler et al.
1997; Kharbanda et al. 1997).

Previous studies have demonstrated that Bcl-xL binds
to all three IP3R isoforms to increase their sensitivity to
stimulation (Li et al. 2007). Bcl-xL has been shown to
regulate mitochondrial fusion, fission, and biomass
(Berman et al. 2009). Interruption of the processes of
mitochondrial fission and fusion is associated with the
suppression of energy and can lead to the activation of
ce l l dea th mechan isms (Gel le r ich e t a l . 2009;
Mandemakers et al. 2007; Seppet et al. 2004).

Under oxidative stress, Bcl-xL is degraded by the
ubiquitin-proteasome system (UPS). The interaction of
Bcl-xL with DJ-1 stabilizes protein level by inhibiting
the ubiquitination-dependent degradation of Bcl-xL. The
loss of DJ-1 leads to the mitochondrial depolarization,
fragmentation and accumulation of markers of autopha-
gy around mitochondria in human dopaminergic cells
(Thomas et al. 2011). In recent studies using NMR
spectroscopy was shown that the oxidized but not re-
duced form of DJ-1 binds to a hydrophobic groove
consisting of the domains BH1-BH3 in Bcl-xL. Based
on the improved structural model of the complex, the
authors concluded that the interaction of the C-terminal
α-helical region of DJ-1 with Bcl-xL is similar to inter-
action of pro-apoptotic domains of BH3 with Bcl-xL
(Lee et al. 2018). It should be noted that Bcl-xL inter-
acts with F1F0 ATP synthase and optimizes the function
by enhancing mitochondrial ATP production and de-
creasing proton leakage across the mitochondrial inner
membrane (Alavian et al. 2011; Chen et al. 2011).
Thus, one of the important protective roles of DJ-1 in
oxidative stress is mediated by the stabilization of Bcl-
xL in mitochondria (Lee et al. 2018).

DJ-1 and the regulation of signaling pathways

DJ-1 has been suggested to orchestrate different cellular path-
ways involved in response to oxidative stress. DJ-1 expression
is upregulated under oxidative stress conditions and protein
translocate into the nucleus upon exposure to stress, suggest-
ing a key role in gene transcription (Kim et al. 2012). It should
be noted that DJ-1 does not exhibit DNA-binding domain
suggesting that it acts as a co-activator of transcription
(Yamaguchi et al. 2012). DJ-1 regulates gene expression and
mitochondrial integrity, induces survival pathways and pro-
tein refolding (Raninga et al. 2017). Upon oxidative stress,
DJ-1 has been shown to regulate various transcription factors
including nuclear factor Nrf2, p53 and PI3K/PKB signaling
cascade that transmit downstream signals to respond to oxida-
tive stress (Shinbo et al. 2005; Clements et al. 2006).

p53 pathway and DJ-1

p53 protein is a transcription factor which can induce tran-
scription of several genes encoding proteins involved in a
wide spectrum of biochemical processes including DNA re-
pair, cell-cycle regulation, and programmed cell death.
Activation of p53 is induced by a number of stress signals,
including DNA damage, oxidative stress and activated onco-
genes (Horn and Vousden 2007; el-Deiry et al. 1992; Funk
et al. 1992; Beckerman and Prives 2010). Activity of p53 is
also provided by a number of modifications that affect the
localization of p53: phosphorylation, acetylation,
ubiquitination, methylation and sumoylation (Gu and Zhu
2012). DJ-1 can do both - regulates and to be regulated by
p53 (Giaime et al. 2010; Duplan et al. 2013).

Association between DJ-1 and p53 is dependent on redox
state of DJ-1’s C106 residue (Kato et al. 2013). Oxidative
status of a cysteine residue at position 106 (C106) is crucial
for determination of the activation level of DJ-1.

SUMOylation (SUMO - small ubiquitin-like modifier pro-
teins) of proteins outside the nucleus plays direct roles in
controlling synaptic transmission, neuronal excitability, and
adaptive responses to cell stress (Henley et al. 2018). It was
shown that DJ-1 positively regulates p53 through Topors-
mediated sumoylation (Shinbo et al. 2005). Topors (a ring
finger protein binding to both topoisomerase I and p53) was
originally identified as cellular binding partner of DNA topo-
isomerase I and of p53 with function similar to ubiquitin E3
ligase for p53 (Rajendra et al. 2004). DJ-1 directly binds to
p53 that inhibit sumoylation of p53 through interaction of DJ-
1 with Topors. DJ-1 protein affects the tumor suppressor p53
Bax-caspase pathway, which triggers apoptosis. It induces cell
survival in a redox-dependent manner by decreasing the apo-
ptosis regulator Bax (BCL2-Associated X protein) expression
(Fan et al. 2008). DJ-1 protects neurons against caspase
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activation and cell death via expression/ suppression of Bax
(Bretaud et al. 2007).

α-synuclein was also identified as a new transcriptional
target of p53. Duplan E, et al showed that p53 interacts phys-
ically with α-synuclein promoter. Deletion of p53 responsive
element from α-Syn promoter abrogates p53-mediated α-Syn
regulation (Duplan et al. 2016).

It was shown that DJ-1 stimulates deacetylase activity
of SIRT1, which deacetylate p53, suppresses its transcrip-
tional activity and prevents apoptosis. In addition, it was
shown that the activity of SIRT1 was reduced in the cells
with DJ-1 knockout, and the activity level was restored as
a result of repeated addit ion of wild-type DJ-1
(Takahashi-Niki et al. 2016).

DJ-1 inhibits PTEN to activate PI3K/PKB (Akt)
pathway

The PI3K/PKB signaling cascade plays critical role in regu-
lating diverse cellular functions including metabolism,
growth, proliferation, survival, protein synthesis that lead to
protection in number of neurodegenerative disorders. Under
nitrosative stress, DJ-1 regulate PI3K/PKB signaling by
transnitrosylation. NO nitrosylates PTEN and inhibits its
phosphatase activity (Numajiri et al. 2011). Later
transnitrosylated PTEN (SNO-PTEN) was detected in human
brains with sporadic PD. DJ-1 could also be S-nitrosylated by
endogenous NO generated from neuronal nitric oxide syn-
thase 1 (nNOS) (Choi et al. 2014). It was shown that PTEN
and DJ-1 form a complex in cells and under mild nitrosative
stress, inhibition of PTEN activity in this case is produced via
providing NO group through SNO-DJ-1, with subsequent
transnitrosylation to form SNO-PTEN (Choi et al. 2014).

DJ-1 stabilizes Nrf2 that prevent binding
to Keap1

Nrf2 is an environmental and stress-activated transcription
factor which upregulates the expression and activity enzymes
involved in defense toxic and oxidative stress and increase
energy production in form of NADPH, NADH in the meta-
bolic pathways (Holmstrom et al. 2013; Esteras et al. 2016).
DJ-1 may be involved in control Nrf2 activity though inhibi-
tory protein Keap1 under oxidative stress.

One of the major and most intensive ROS producer in the
cell, enzyme NADPH oxidase, which originally identified in
phagocytes, recently shown to be expressed in most of the
tissues including brain cells (Droge 2002; Bedard and
Krause 2007). Two isoforms NADPH oxidase NOX2 and
NOX4 expressed in neurons and glia (including microglia
and astrocytes) (Bedard and Krause 2007; Park et al. 2008;

Dohi et al. 2010; Abramov and Duchen 2005). Activation or
inhibition of Nrf2 (by Keap1 or Nrf2 deficiency) lead to op-
posite effect for NOX2 and NOX4, mRNA expression of
NOX2 rose in inhibited Nrf2 while NOX4 in (Kovac et al.
2015; Dinkova-Kostova et al. 2015). There are increasing
number of reports suggesting involvement of Nrf2 in normal
ageing and neurodegenerative diseases. Pharmacological acti-
vation of Nrf2 and some substrates (nicotinamide)shown to be
protective against neuronal damage (Ghosh et al. 2014).
Besides effect of Nrf2 activity on expression and activity of
NADPH oxidase, both activation and inhibition of Nrf2 lead
to increased mitochondrial ROS production (Kovac et al.
2015). DJ-1 activates Nrf2 by dissociation with Keap1, pro-
moting Nrf2 binds with and activates specific antioxidant and
detoxifying gene expression (Fig. 1). Nrf2 is shown to be
responsible for transcription of the antioxidant proteins:
gluthatione S-transferases (GSTs), NAD(P)H: quinone oxido-
reductase 1, thioredoxin, thioredoxin reductase (Motohashi
and Yamamoto 2004; Kensler et al. 2007; Im et al. 2012;
Gorrini et al. 2013). In the production thioredoxin1 DJ-1 act
through Nrf2–antioxidant responsive element (ARE) pathway
rather than through Nrf2 and Keap1 interaction. Active resi-
dues of DJ-1 involved in increase of thioredoxin1 expression
were identified by absence of this activity in mutations in
M26I and L166P and a missense mutant at C106S (Im et al.
2012; Im et al. 2010).

Evidence of the effect of DJ-1 on the stability and transcrip-
tional function of Nrf2 was obtained using both as cell lines as
animals. It was found that DJ-1 stabilizes Nrf2, preventing its
ubiquitination, preventing binding to Keap1 and facilitating
the translocation of Nrf2 into the nucleus (Clements et al.
2006; Gan et al. 2010). In the absence of DJ-1, Nrf2 is unsta-
ble and the activity of antioxidant enzymes is lower due to
inhibition of the Nrf2 pathway (Taira et al. 2004; van Horssen
et al. 2010; Lee et al. 2012). ROS production is dramatically
increased in brain tissue from Nrf2-KD mice and the Keap1-
Nrf2 pathway plays a key role in redox homeostasis within the
cell (Kovac et al. 2015). DJ-1 is involved in the Nrf2-
dependent oxidative stress response that leads to the upregu-
lation of both the 20S proteasome and its regulator, NQO1
(NAD(P)H quinone dehydrogenase 1) (Moscovitz et al.
2015). The authors demonstrated that DJ-1 physically binds
the 20S proteasome and inhibits its activity, rescuing partially
unfolded proteins from degradation. DJ-1 is involved in the
upregulation of Nrf2, the 20S proteasome regulator NQO1,
the 20S proteasome and sustains the balance between the need
to rapidly eliminate oxidatively damaged proteins and main-
tain the abundance of native, intrinsically unstructured pro-
teins, which coordinate regulatory and signalling events
(Moscovitz et al. 2015).

In the conclusion DJ-1 has multiple specific mechanisms
for protecting dopamine neurons from cell death in
Parkinson's disease. DJ-1 plays the role of oxidative stress
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sensor and antioxidant. DJ-1 exhibits the properties of molec-
ular chaperone, protease, glyoxalase, transcriptional regulator
and protects mitochondria from oxidative stress. DJ-1 effects
the α-synuclein aggregation. DJ-1 increases the expression of
mitochondrial uncoupling proteins which leads to the suppres-
sion of ROS production. Stabilizing interaction of DJ-1 with
the mitochondrial Bcl-xL prevents the cytochrome c release
from mitochondria and inhibits the apoptosis activation. DJ-1
regulates Nrf2, NFkB, PI3K/PKB, and p53 signal pathways to
protect against oxidative stress and metabolic pathways initi-
ating the NADPH and ATP production.
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