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Abstract: Cytoplasmic male sterility (CMS) is widely exploited in hybrid seed production. Kenaf
is an important fiber crop with high heterosis. The molecular mechanism of kenaf CMS remains
unclear, particularly in terms of DNA methylation. Here, using the anthers of a kenaf CMS line
(P3A) and its maintainer line (P3B), comparative physiological, DNA methylation, and transcriptome
analyses were performed. The results showed that P3A had considerably lower levels of IAA, ABA,
photosynthetic products and ATP contents than P3B. DNA methylome analysis revealed 650 differen-
tially methylated genes (DMGs) with 313 up- and 337 down methylated, and transcriptome analysis
revealed 1788 differentially expressed genes (DEGs) with 558 up- and 1230 downregulated genes in
P3A compared with P3B. Moreover, 45 genes were characterized as both DEGs and DMGs, including
AUX, CYP, BGL3B, SUS6, AGL30 and MYB21. Many DEGs may be regulated by related DMGs based
on methylome and transcriptome studies. These DEGs were involved in carbon metabolism, plant
hormone signal transduction, the TCA cycle and the MAPK signaling pathway and were shown to
be important for CMS in kenaf. These results provide new insights into the epigenetic mechanism of
CMS in kenaf and other crops.

Keywords: kenaf; cytoplasmic male sterility (CMS); anther and pollen; DNA methylation; transcriptome

1. Introduction

Kenaf (Hibiscus cannabinus L.) is an annual fiber crop belonging to the Malvaceae family
with great development potential; it is widely used in the textile, papermaking, building
and feed industries. Kenaf displays fast growth, high yield and strong tolerance to abiotic
stress, such as salt and heavy metal stress. [1–3].

Plant cytoplasmic male sterility (CMS) is a maternally inherited pollen sterility trait
useful for controlled crosses that exploit heterosis. Our research group initially discov-
ered a kenaf cytoplasmic male sterility mutant (UG93A) and bred the first kenaf hybrid
cultivar (Hongyou 1) using this CMS line [4]. It is important to understand the molecular
mechanism underlying CMS to better produce novel kenaf CMS lines and utilize heterosis.
We previously carried out comparative transcriptome, proteome and posttranslational
proteome analyses in the kenaf CMS line and its maintainer line, and the results showed
that the identified differentially expressed genes, differentially accumulated proteins and
differentially modified proteins participated in various biological processes, such as car-
bohydrate and energy metabolism, gene expression and signal transduction, thus playing
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important roles in kenaf CMS [1,5–7]. These works provide a comprehensive and system-
atic basis for further understanding the molecular mechanism of CMS in kenaf. However,
more efforts are still needed to understand this complicated CMS trait in depth.

Carbohydrates provide nutrition and energy for plant growth and development,
especially pollen development. Furthermore, they also act as signals in the regulation of
pollen development and interact with phytohormones [8,9]. In recent years, an increasing
number of studies have shown that the lack of sugars and ATP may be one of the main
factors causing plant male sterility. Liu et al. reported that carbohydrate and energy
metabolism in CMS Brassica napus were significantly downregulated [10]. Oliver et al.
reported that sucrose imbalance in anthers can affect pollen development, and ABA is a
potential signal for CIPS (cold-induced pollen sterility) [11]. Zhang et al. reported that
reduced MST8 (monosaccharide transporters 8) expression in rice csa (carbon starved
anther) mutant plants resulted in a lack of sugar supply, which ultimately led to male
sterility [12]. In addition, many studies have detected lower ATP production in some CMS
flowers [13,14].

DNA methylation refers to the addition of a methyl group to a cytosine. It mainly
occurs within CpG and non-CpG cytosines in all kinds of eukaryotic cells. In plants,
DNA methylation is one of the most extensively studied epigenetic modifications [15].
It has an important function in many biological processes, including seed germination,
cellular differentiation, vernalization, plant flowering, gene expression, and plant growth
and development [16,17]. It has been reported that DNA methylation in different plants is
related to morphological development, abiotic stress response, and agronomic traits [16–18].
Several studies have reported associations between DNA methylation and CMS in plants.
In rice, the DNA methylation pattern correlates with CMS occurrence [19], and DNA
methylation may be involved in the regulation of fertility-related gene expression in the
sterile rice line PA64S [20]. DNA methylation levels in fertility-restored hybrids were higher
than those of a sterile maize line [21]. In soybean, many genes altered by DNA methylation
are involved in carbohydrate and energy metabolism, transcriptional regulation, male
gametophyte growth, and pollen and flower development, and these genes are closely
related to CMS [22,23]. In cotton, many differentially methylated genes are also involved
in carbohydrate metabolism and male gametophyte development [15]. However, there
is no information available on the relationship between DNA methylation and the CMS
mechanism in kenaf.

In the present study, comparative physiological and DNA methylation combined with
transcriptome gene expression analyses in the kenaf CMS line P3A and its maintainer line
P3B were conducted. The results provide new insights into the mechanisms of kenaf CMS
from the point of view of DNA methylation-regulated gene expression.

2. Results
2.1. Hormones, Photosynthetic Products and ATP Contents

Plant hormones adjust to all aspects of plant growth and development [24,25]. Car-
bohydrates and ATP are the main energetic components and materials supplied to plant
cells; they are often correlated with genetically determined growth and even the occur-
rence of CMS [1]. Therefore, the contents of plant hormones, including indoleacetic acid
(IAA), gibberellic acid (GA), abscisic acid (ABA), photosynthetic products (including starch,
soluble sugar and sucrose) and ATP in the anthers of kenaf CMS and maintainer lines
were investigated and compared. As a result, compared with the maintainer line P3B,
the IAA and ABA contents in the CMS line P3A were significantly lower by 14.56% and
26.48%, respectively, the GA contents were significantly higher by 15.56% (Figure 1a), and
the contents of starch, soluble sugar, sucrose and ATP were significantly lower by 23.66%,
33.66%, 33.99% and 43.71%, respectively (Figure 1b,c).
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2.2. Genomic DNA Methylation Levels in Kenaf

The results of data filtering and methylation site coverage are shown in Table 1. A
total of 18.28 and 17.51 million raw reads were generated in the kenaf CMS line P3A
and maintainer line P3B, respectively. After filtering, the methyl RAD sequencing data
(enzyme reads) included 5.26 and 5.73 million reads for P3A and P3B, respectively. Finally,
4.72 and 5.25 million mapping reads were generated. All enzyme reads were submitted
to the Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/; accessed on
29 September 2019) of NCBI (accession numbers: SRR10163906, SRR10163907). A total
of 120,323 CCGG and 63,240 CCWGG DNA methylation sites were characterized in P3A,
with average methylation coverages of 3.51 and 4.05, respectively. A total of 131,529 CCGG
and 65,376 CCWGG DNA methylation sites were found in P3B, with average methylation
coverages of 4.03 and 4.17, respectively. These results show that the total DNA methylation
level of P3A was lower than that of P3B.

Table 1. Summary of sequencing quantity and methylation site coverage.

Sample Raw Reads Enzyme
Reads

Mapping
Reads

Mapping
Reads Ratio CCGG Sites CCWGG Sites

Number Depth Number Depth

P3A 18,283,466 5,264,564 4,716,458 89.59% 120,323 3.51 63,240 4.05
P3B 17,513,339 5,733,725 5,246,070 91.50% 131,529 4.03 65,376 4.17

2.3. Distribution of Methylated Sites in Different Functional Elements and Gene Regions

The methylated sites upstream (within 2 kb upstream of the gene promoter), down-
stream (within 2 kb downstream of the gene terminator), exons, 1st exons, introns, genes,
intergenic regions, splice site acceptors, splice site donors, splice site regions, 5′ terminal
untranslated regions (5′ UTRs) and 3′ terminal untranslated regions (3′ UTRs) were deter-
mined (Figure 2). The results showed that the methylation sites were mainly located in
intergenic regions, followed by downstream, upstream, intron and exon regions, but there
were fewer methylation sites in other functional elements (5′ UTR, splice site region and
3′ UTR). The distribution trends of CCGG sites were consistent with those of CCWGG sites.
On each functional element, the distribution of methylation sites in P3A was less than that
in P3B, especially in CCGG sites.

The distribution of methylation sites 2 kb upstream and downstream of the transcrip-
tion start site (TSS), 2 kb upstream and downstream of the transcription termination site
(TTS) and in gene-coding regions was analyzed. The results (Figure 3 and Table S1) showed
that the distribution of methylation sites in the gene-coding region was significantly higher
than that in the upstream and downstream 2 kb regions of the TSS and TTS, and the methy-
lation level of P3A in the gene-coding region was lower than that of P3B. These results
imply that the gene-coding region of kenaf had a higher DNA methylation level, and the

https://www.ncbi.nlm.nih.gov/sra/
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DNA methylation level in the male sterile line P3A was lower than that in its maintainer
line P3B, which may be one of the reasons for CMS.
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transcription termination site (TTS) region, respectively. Note: (a,b,e,f), the transverse axis represents
the location of the methylation region at the TSS (or TTS) of genes, where a negative value indicates
the number of bases upstream and a positive value indicates the number of bases downstream.
(c,d), the transverse axis represents the degree of methylation, expressed as 0–1.

2.4. Differentially Methylated Sites (DMSs) and Differentially Methylated Genes (DMGs) between
P3A and P3B

According to the sequencing depth information of the methylation sites, the methyla-
tion levels of each gene were calculated, and the differentially methylated genes (DMGs)
of the CMS line P3A and maintainer line P3B were compared. Using IsoSeq full-length
cDNA sequences, a total of 2806 unique methylated sites were identified as differentially
methylated sites (DMSs), collectively containing 1792 CCGG sites and 1014 CCWGG sites.
These 2806 unique methylated sites corresponded to 650 DMGs, including 521 DMGs
with CCGG sites and 129 DMGs with CCWGG sites. Among those CCGG sites in DMGs,
274 and 247 were identified as up- and downregulated, respectively; for the CCWGG sites
in DMGs, 39 and 90 were characterized as up- and downregulated, respectively (P3A vs.
P3B, p < 0.05, log2FC > 1, Table 2 and Table S2).

Table 2. The number of DMSs and DMGs.

Diff_Type
DMS Number DMG Number

CCGG Site CCWGG Site CCGG Site CCWGG Site

Diff 1792 1014 521 129
Up 786 446 274 39

Down 1006 568 247 90

2.5. GO and KEGG Enrichment Analysis of DMGs

GO enrichment analysis showed that 79 DMGs were highly enriched in 68 GO terms.
The total enriched GO terms are shown in Table S3, and the top ten GO terms in each
category are shown in Figure 4. In the biological process category, DMGs were mostly
enriched in regulation of transcription, auxin-activated signaling pathway, methylation,
negative regulation of flower development and ethylene-activated signaling pathway. In
the cellular component category, integral component of membrane, cytoplasm, endoplasmic
reticulum, and mitochondrion were highly enriched. In the molecular function category,
DMGs were highly enriched in ATP binding, DNA binding and peroxidase activity.
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Figure 4. GO enrichment analysis of differentially methylated genes (DMGs).

KEGG pathway enrichment analysis showed 41 highly enriched DMGs that were
distributed among 56 metabolic pathways (Table S3). The top 20 enriched pathways
are shown in Figure 5. DMGs were involved in pathways such as starch and sucrose
metabolism, plant hormone signal transduction, carbon metabolism, protein processing
in endoplasmic reticulum, photosynthesis, glycolysis/gluconeogenesis, RNA polymerase,
galactose metabolism, inositol phosphate metabolism, AMPK-signaling pathway and
fructose and mannose metabolism, which play vital roles in the regulation of plant growth
and development. Combined with the results of previous physiological indicators, this
study showed that DNA methylation, especially DMGs, was involved in the regulation of
carbon metabolism and plant hormone signal transduction.
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2.6. Differentially Expressed Gene (DEG) Analysis

After filtering the low-quality raw reads, transcriptome sequencing produced
42.30 and 37.37 million paired-end clean reads with Q30 values of 96.25% and 96.36% from
P3A and P3B, respectively. The complete clean reads for these libraries in this study were
deposited in the Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra/;
accessed on 30 August 2019) of NCBI with the accession numbers SRR10039125 and
SRR10039126. These reads were aligned to the kenaf reference genome, and the align-
ment rates of P3A and P3B were 86.94% and 91.92%, respectively.

A total of 1788 genes were differentially expressed in P3A, including 558 (31.21%) up-
and 1230 (68.79%) downregulated genes (Table S4). This result indicates that most of the
DEGs showed a decreasing expression tendency in the CMS line P3A compared with the
maintainer line P3B.

https://www.ncbi.nlm.nih.gov/sra/
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2.7. GO and KEGG Enrichment Analysis of DEGs

The results showed that 1233 DEGs were enriched in 820 GO terms, and each term in-
cluded two or more DEGs. The GO terms carbohydrate metabolic process, auxin-activated
signaling pathway, pollen tube growth, pollen germination, cytoplasm, chloroplast, integral
component of membrane, ATP binding, DNA-binding transcription factor activity and
glucan endo-1,3-beta-D-glucosidase activity were highly enriched (Figure 6 and Table S5),
and these GO terms were closely related to anther and pollen development [5–7].
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The results of the KEGG pathway enrichment analysis showed that 405 DEGs were
enriched in 149 KEGG metabolic pathways. KEGG metabolic pathways such as starch
and sucrose metabolism, carbon metabolism, plant hormone signal transduction, gly-
colysis/gluconeogenesis, biosynthesis of amino acids, carbon fixation in photosynthetic
organisms, galactose metabolism and MAPK signaling pathway were highly enriched
(Figure 7 and Table S5). Most DEGs were downregulated, especially in carbon metabolism
and plant hormone signal transduction. These results indicated that many DEGs disturbed
plant hormone signal transduction and carbon metabolism and decreased the synthesis of
IAA, ABA, carbohydrate and ATP in the male sterile line P3A. This decreased synthesis
cannot meet the needs of pollen development and may be one of the main reasons for CMS.
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2.8. Integrated Analysis of DMGs and DEGs

A total of 45 genes were characterized as both DEGs and DMGs. To analyze the
relationship between DNA methylation and gene expression levels, a four-quadrant graph
was drawn to show DNA methylation and gene expression levels (Figure 8, Table S6). Out
of those 45 genes, 8, 13, 10 and 14 genes were located in the first, second, third, and fourth
quadrants, respectively. The DNA methylation of genes located in the first and third quad-
rants may positively regulate gene expression, while that of genes located in the second
and fourth quadrants may negatively regulate gene expression. The genes encoding chal-
cone synthase (CHS2), proline dehydrogenase (proDH), bHLH 39, alpha-crystallin domain-
containing protein (alpha22.3) and RNA polymerase beta subunit (rpoB), located in the first
quadrant, were both upregulated as DMGs and DEGs. In the second quadrant, the genes
encoding RNA-binding protein 38 (RBP38), beta-amyrin synthase (β-amyrin), cytochrome
P450 (CYP), terpene synthase (TPS9), serine/threonine-protein phosphatase (PP 7), WAT1-
related protein (WAT1), KN motif and ankyrin repeat domain-containing protein (Kank3)
were downregulated as DMGs but upregulated as DEGs. The genes encoding acid beta-
fructofuranosidase-like (βF), beta-glucosidase (BGL3B), fasciclin-like protein (FLA12), fatty
acid amide hydrolase (FAAH), alpha-amylase 2 (mal2), LIM domain-containing protein
WLIM2b (WLIM2b) and organic cation/carnitine transporter 4 (OCTN4), located in the third
quadrant, were both downregulated as DMGs and DEGs. In the fourth quadrant, the genes
encoding LRR receptor-like serine/threonine-protein kinase (LRR-RLK), histone-lysine N-
methyltransferase (HKMT), protein WEAK CHLOROPLAST MOVEMENT UNDER BLUE
LIGHT 1 (WCMUBL1) (WEB1), and xylan alpha-glucuronosyltransferase (xagt4) were up-
regulated as DMGs but downregulated as DEGs. Most of these genes were reported to be
involved in plant growth and development. Several genes with uncharacterized functions
were found to be both DMGs and DEGs. This suggests that DNA methylation regulates
gene expression in different patterns. However, we cannot completely attribute differential
expression to DNA methylation, as there are other factors that may also regulate expression.
Further study is needed to explore the relevance of these DMGs and DEGs.
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2.9. qRT–PCR Verification

To confirm the reliability of transcriptome sequencing data and reveal the correlation
between DNA methylation and gene expression, we randomly tested 27 key genes involved
in various biological processes, such as DNA methylation, hormone signaling, transcription
factors, flower development, the TCA cycle and energy metabolism. The expression
patterns of these genes were highly consistent with the results of transcriptome sequencing.
At the same time, the results showed that DNA methylation regulates gene expression in
different manners (Table 3).

Table 3. qRT–PCR validation of the RNA-seq data.

Gene Name Functional Annotation
Fold Change (P3A vs. P3B)

Methylation Transcriptome qRT–PCR

atp8 Phospholipid-transporting atpase 8 2.18 0.49 0.47
COX2 Cytochrome c oxidase subunit II 2.19 4.53 6.39
DDM1 ATP-dependent DNA helicase DDM1 0 0.49 0.86
DME Transcriptional activator DEMETER 2.16 0.48 0.6
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Table 3. Cont.

Gene Name Functional Annotation
Fold Change (P3A vs. P3B)

Methylation Transcriptome qRT–PCR

DRM1 DNA(cytosine-5)-methyltransferase DRM1 2.04 0.47 0.35
DRM2 DNA(cytosine-5)-methyltransferase DRM2 0.72 0.47 0.72
FAAH Fatty acid amide hydrolase 2.81 0.09 0.12
FRU Acid beta-fructofuranosidase 5.59 0.19 0.14

GA2ox6 Gibberellin 2-oxidase 0.03 104.5 100
GLU Beta-glucosidase bogh3b-like 3.34 0.18 0.12

IAA32 Auxin-responsive protein IAA32 4.49 3.32 1.52
ILR1 IAA-amino acid hydrolase ILR1 0.67 0.1 0.48
LIM2 LIM domain-containing protein WLIM2b 5.88 0.04 0.03
LSD Lysine-specific demethylase 2.02 0.49 0.33

MADS2 MADS-box transcription factor 2 6.38 0.45 0.49
MADS23 MADS-box transcription factor 23 0.63 0.45 0.25

AGL29 MADS-box gene, AGL29 0.81 0.37 0.2
AGL30 MADS-box gene, AGL30 0.84 0.19 0.13
AGL61 MADS-box gene, AGL61 0.79 0/15.6 0.03
AGL62 MADS-box gene, AGL62 6.78 0.42 0.17

AGL104 MADS-box gene, AGL104 0.54 0.29 0.27
MET1 DNA methylation 1 1.46 0.5 0.58

MYB21 Myb21 0/2.1 14.08 2.81
MYB26 Myb26 0/1 0.5 0.47

PHY Phytochrome B 0.58 0.46 0.33
PK Pyruvate kinase, cytosolic isozyme 1.53 0.12 0.16

ROS1 ROS1, Repressor of silencing 1 1.34 0.46 0.3

Note: 0/2.1 means that the DNA methylation of P3A and P3B was 0 and 2.1, respectively.

3. Discussion

DNA methylation can cause changes in chromatin structure, DNA conformation and
the interaction between DNA and protein, thus regulating gene expression [26]. However,
the molecular mechanisms by which DNA methylation controls the expression of gene
networks involved in pollen development and CMS occurrence in kenaf remain largely
unclear. In the present study, the contents of IAA, ABA, starch, soluble sugar, sucrose and
ATP were significantly decreased in CMS line P3A compared with its maintainer line P3B
(Figure 1a–c); 650 DMGs (Table S2) and 1788 DEGs (Table S4) were identified, and among
them, 45 genes (Table S6) were characterized both as DEGs and DMGs. According to our
integrated DNA methylome and transcriptome analysis, many DEGs and DMGs could be
used for the detection of CMS occurrence and pollen developmental processes.

3.1. DMGs and DEGs Related to Carbohydrate Metabolism Processes and the TCA Cycle

Carbohydrates or sugars are essential to fundamental plant growth processes [8].
Starch and sucrose are the main products of photosynthesis in higher plants. Starch is a
key substance in plant metabolism, and even small disturbances in starch turnover may
affect metabolism and growth [27]. Sucrose is an important factor in fruit quality and cell
metabolism and participates in gene expression regulation [28]. Starch synthase and sucrose
synthase play important roles in regulating starch and sucrose, respectively, and sucrose
synthase also participates in the regulation of starch synthesis. The TCA cycle is the main
source of energy for life activities; it produces more ATP than other respiratory pathways,
and it is also the hub of material metabolism in plants. Studies have shown that the
demand for ATP during pollen development is significantly increased, and insufficient ATP
supply may be one of the main reasons for pollen abortion [1]. In the present study, many
DMGs and DEGs were related to carbohydrate metabolic processes and TCA pathways
(Tables S3 and S5), including malate dehydrogenase (MDH), starch synthase (SS), sucrose
synthase (SUS), glucose-6-phosphate (G6P), citrate synthase (CS), pyruvate kinase (PYK),
and UDP-glucose 6-dehydrogenase (UGDH). As an example, the methylation level of
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sucrose synthase SUS6 in P3A was 8.86 times higher than that in P3B, and its expression
level was only 6.8% of that of P3B. It is speculated that increased DNA methylation of
this gene results in a downregulation in the CMS line. As a result, the contents of starch,
soluble sugar, sucrose and ATP in anthers in P3A were significantly lower than those in
P3B (Figure 1b,c). This implies that DEGs and DMGs related to carbohydrate metabolic
processes and the TCA cycle can play a role in kenaf CMS.

3.2. DMGs and DEGs Related to Plant Hormone Signal Transduction

Plant hormones play an important role in regulating the growth and development
of plants. Gibberellin can induce flowering in plants [29]. Auxin not only promotes
cell division and plant growth but also regulates nutrient transport and distribution and
promotes female flower differentiation and plant flowering [24]. Interruption in auxin
biosynthesis, transport or signaling can lead to flowering defects [25]. In the present study,
the IAA content in the CMS line P3A was significantly lower than that in the maintainer
line P3B; however, the GA content was significantly higher in the CMS line (Figure 1a). It
is speculated that the significant changes in IAA and GA contents were closely related to
the occurrence of CMS in kenaf. Many DMGs and DEGs, including auxin transporter-like
protein (LAX), auxin-induced proteins (AUX), indole-3-acetic acid-amido synthetase (GH)
and SAUR-like auxin-responsive protein family members (SAUR), were found. Therefore,
it could be speculated that the change in the methylation level influences the content of
phytohormones and pollen abortion in the CMS line.

3.3. DMGs and DEGs Related to Cytoskeletal Organization

The cytoskeleton is mainly composed of microtubules, microfilaments and interme-
diate filaments, which maintain the morphology and internal structure of the cytoplasm
and promote the communication of material and information. A weakened cytoskeleton in
microsporocytes has been reported to cause male sterility in many species of plants [30–32].
In wheat, pollen abortion is related to actin content [33]. Actin depolymerizing factor
(ADF) plays an important role in gametophyte formation, pollen tube elongation, and plant
growth and development. Mutations in ADFs from different species have been associated
with lethality, arrest in cell proliferation, pollen germination and pollen tube growth [34,35].
Yan et al. reported that the actin gene was mainly expressed in pollen, and its expression
level in male sterile plants was much lower than that in its maintainer line. Moreover, they
further obtained male sterile wheat and tomato plants by antisense expression of the actin
gene [33]. The present study demonstrated that 18 DEGs were enriched in the regulation of
the actin cytoskeleton, and the genes encoding actin, actin-depolymerizing factor (ADF) and
actin-related protein 2/3 complex subunit 5A-like (ARPC5A) were strongly downregulated
in the CMS line. Thus, we speculated that the downregulation of the expression of these
genes may cause cytoskeletal organization impairment in pollen, eventually leading to
CMS in kenaf.

3.4. DMGs and DEGs Related to Transcription Factors (TFs)

Transcription factors are closely related to plant development and responses to the
environment [36]. During the development of male gametes in Arabidopsis thaliana, more
than 600 transcription factors interact with each other to form a dynamic regulatory net-
work [37]. In the present study, many TFs were identified as DMGs or DEGs in the CMS
line. Some of these TFs may play crucial roles in the normal development of gametes and
floral organs in kenaf.

Among transcription factors, the MYB family is one of the largest TF families in plants.
These TFs are widely involved in the regulation of plant development and metabolism
and play an important regulatory role in anther and pollen development. Studies have
shown that AtMYB21 and AtMYB24 regulate the development of stamens through inter-
actions with jasmonate (JA) [38,39]. In a previous study, pollen and anther development
of Arabidopsis AtMYB21 and AtMYB24 mutants was defective, eventually leading to male



Int. J. Mol. Sci. 2022, 23, 6864 13 of 18

sterility [40]. AtMYB26 regulates anther dehiscence by affecting secondary thickening of
the endothecium; for this reason, the anthers of the AtMYB24 mutant could not dehisce
and release pollen, thus resulting in sterility [41]. In this study, the expression level of
MYB21 in the kenaf CMS line P3A was increased by 14 times, while the expression level of
MYB26 was only half that of the maintainer line P3B. It is speculated that these significant
changes in gene expression levels play a role in the occurrence of kenaf CMS. MADS-box
genes play key roles in regulating the development of floral organ differentiation. A subset
of pollen-specific MIKC-type MADS-box proteins (AGL30, AGL65, AGL66, AGL94, and
AGL104) are expressed preferentially during pollen maturation [42]. Double and triple
mutants of the AGL65, AGL66 and AGL104 genes showed decreased pollen activity and
inhibited pollen tube germination [43]. In the present study, 31 MADS-box genes were
differentially expressed, and 10 of them were differentially methylated, including AGL30,
AGL66 and AGL104. Therefore, it could be speculated that MADS-box genes may also play
crucial roles in the normal development of pollen in kenaf.

In addition to MADS boxes and MYBs, other TFs belonging to the WRKY, bHLH and
NAC families were also characterized as DMGs or DEGs in the present study. All of the
above-described DMGs and DEGs may play a role in flower development and fertility
in kenaf.

3.5. DMGs and DEGs Involved in MAPK and Calcium-Dependent Signalling Pathway

Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases
that respond to various growth factors in cells and are involved in plant stress resistance,
hormone signal transduction, cell cycle regulation and gamete development [44]. Calcium-
dependent protein kinases (CDPKs) are the most important calcium-sensing proteins and
play a key role in plant calcium signal transduction. As CDPKs are involved early in
calcium signal transduction, they can regulate a large number of processes [45]. In this
study, 17 transcripts involved in the MAPK signaling pathway and 45 transcripts involved
in the calcium-dependent signaling pathway were found to be downregulated in the CMS
line P3A, and three transcripts involved in the calcium-dependent signaling pathway were
also identified as DMGs. For example, RAS-related proteins are mainly involved in the
activation of MAPK signaling [46]. Phospholipase C is an important regulatory enzyme in
calcium-dependent signaling pathways and participates in ABA signal transmission [47].
Moreover, there have been many reports on the regulation of pollen development by
phospholipase C [48,49].

4. Materials and Methods
4.1. Plant Materials

The kenaf cytoplasmic male sterile (CMS) line P3A and maintainer line P3B were used
in this study. Both P3A and P3B were grown in an experimental field under field conditions
and normal management. The anthers from both lines were collected at the dual-core
period (pollen abortion stage of the CMS line). Anthers from three different plants of each
line were harvested, pooled, quickly frozen in liquid nitrogen and stored at −80 ◦C for
further analysis.

4.2. Determination of Physiological Indexes

The contents of indoleacetic acid (IAA), gibberellic acid (GA) and abscisic acid (ABA)
in anthers were determined by using a double-antibody sandwich ELISA kit with three
biological repetitions (Jiangsu Jingmei Biotechnology Co., Ltd., Taixing, China; IAA: JM-
01121P1, GA: JM-110047P1, ABA: FK2876; and BCA kit for protein quantification, article
number JM-100009A). The contents of total soluble sugar, starch, sucrose and ATP in anthers
were measured separately by using a determination kit with three biological repetitions
(Shanghai Solarbio Bioscience & Technology Co., Ltd., Shanghai, China; article numbers:
BC0030, BC0070, BC2460 and BC0300, respectively).
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4.3. MethylRAD Library Construction, Sequencing, and Data Analysis

The anther DNA of the CMS line P3A and maintainer line P3B was extracted by a
plant genomic DNA kit (Cat No. Dp35-03, TIANGEN, Beijing, China), and the quality
and concentration of DNA were determined by 1.0% agarose gel electrophoresis and a
NanoDrop2000 spectrophotometer. A MethylRAD-seq sequencing library was constructed
using the method described by Wang et al. [24]. Briefly, the endonuclease FspEI (NEB,
Ipswich, MA, USA), which recognizes CmC sites (C5 methylation and C5 hydroxymethyla-
tion), was selected for genomic DNA digestion. The digested DNA was then connected
with two adaptors with cohesive ends by T4 DNA ligase (NEB, USA). FspEI was cut at the
12th and 16th recognition sites of the 3’ end and viscous end, so the joint was a 4 bp NNNN.
The fragments with adaptors were enriched by PCR amplification with specific primers
(first-round amplification, primers were designed according to the adapter sequence). The
products were subjected to 8.0% polyacrylamide gel electrophoresis, and fragments of
approximately 100 bp in length were recovered and purified. The purified fragments were
subjected to the second round of PCR amplification (primers were designed according to
the adapter and sequencing connector). After 1.0% agarose gel electrophoresis, the target
bands (30 bp) were recovered and purified, and MethylRAD sequencing was performed
using the Illumina HiSeq XTM Ten platform. MethylRAD sequencing and analysis were
conducted by OE Biotech Co., Ltd. (Shanghai, China).

The sequencing data were filtered to remove sequences containing adaptors, N-bases
and low-quality sequences, as well as sequences without restriction sites, and finally, high-
quality sequencing data containing methylation sites (MethylRAD label) were obtained.
The sequences containing FspEI recognition sites (CmCGG and CmCWGG) were subse-
quently aligned against the reference genome of kenaf using Bowtie 2 (version 2.3.4.1) with
default parameters. Bedtools (V2.25.0) was used to calculate the distribution of methylation
sites in different gene elements of each sample. RPM (reads per million) values were used
to quantify the methylation levels of each methylated site, and the methylation degree of
genes was calculated as the sum of sequencing depths of all methylation sites in a gene.
Differential p-values (p < 0.05) and fold changes (Log2FC > 1) of each site (gene) between
groups were analyzed by the R package DESeq [50], and GO and KEGG annotation was
performed for differentially methylated genes.

4.4. cDNA Library Preparation, Sequencing and Data Analysis

Total RNA was extracted from anthers of P3A and P3B by a mirVana Rotal RNA Isola-
tion Kit (Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA). Total RNA quality
and purity were determined by a NanoDrop ND-1000 spectrophotometer (NanoDrop), and
RNA integrity was detected by an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). The libraries were constructed using the TruSeq Stranded mRNA LT
Sample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instruc-
tions. Sequencing was performed by the HiSeq XTM Ten platform by OE Biotech Co., Ltd.
(Shanghai, China). Clean reads were obtained by filtering the raw reads for adaptor, poly-N
and low-quality sequences. Clean reads were compared to the kenaf reference genome
using HISAT2 software [51]. Gene expression was calculated by the FPKM (fragments per
kb per million reads) method using Cufflinks software [52,53]. The R language package
Deseq2 was used to screen differentially expressed genes (DEGs). The screening criteria
were a p-value < 0.05 and |log2FoldChange| ≥ 1. To investigate the biological functions
of DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
annotations were analyzed by Blast2GO and KOBAS2.0, respectively [54,55].

4.5. qRT–PCR Analysis

Total RNA of the kenaf CMS line P3A and its maintainer line P3B was reverse tran-
scribed into cDNA using a reverse transcription kit (Vazyme Biotech Co., Ltd., Nanjing,
China). qRT–PCR was performed using ChamQ Universal SYBR qPCR Master Mix (Vazyme
Biotech Co., Ltd., China) on a Bio-Rad CFX96 (Bio-Rad Laboratories). The reaction mix was
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10 µL qPCR mix, 4 µM forward primers and reverse primers, 10 ng cDNA template and
20 µL ddH2O. The reaction procedure was as follows: 95 ◦C for 30 s, followed by 40 cycles
at 95 ◦C for 10 s and 60 ◦C for 30 s. Histone 3 (H3) was used as an endogenous reference
gene [56], and the relative expression of genes was calculated by the 2−∆∆CT method. The
primer sequences for qRT–PCR are shown in Table S7.

4.6. Statistical Analysis

Excel 2016 and SPSS 22 were used for physiological data processing and statistical
analysis; Excel 2013 and GraphPad Prism 7 were used for chart drawing. All data were
analyzed by one-way ANOVA (ANOVA, SPSS 23.0), with p < 0.05 indicating significant
differences. The results are expressed as the mean ± SD.

5. Conclusions

Comprehensive analysis of DMGs and DMGs based on GO and KEGG pathway
analyses concluded that CMS in P3A might be caused by altered DNA methylation and
disturbed gene expression. The DEGs and DMGs involved in the carbohydrate metabolic
process and TCA cycle, plant hormone signal transduction, cytoskeleton organization,
transcription factors and the MAPK and calcium-dependent signaling pathway may play
profound roles in kenaf CMS (Figure 9). The results provide new thoughts and insights
into the epigenetic mechanism of kenaf CMS and pollen development, as well as a basis
for understanding this complicated mechanism in other species. Based on the results of
this study, we will further explore the functions of both DEGs and DMGs that are closely
related to the occurrence of CMS, such as AUX, SUS6, AGL30, MYB21 and RAS-related
proteins, and the role of DNA methylation in their gene expression.
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