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Excessive lipid accumulation in adipose tissue is either the source of obesity or the cause and result of chronic local inflammation,
and recent studies indicate that the accumulation may induce many other specialized immunologic features with macrophages and
epidemic diseases. We analyze the effective stages of immune cells in adipose tissue, including macrophage recruitment,
macrophage polarization, and macrophage-like phenotype preadipocyte possession to find optimal sites as drug targets.
Subsequently, some main signaling pathways are summarized in this review, including the AMP-activated protein kinase
(AMPK) pathway, the JNK signaling pathway, and a novel one, the Notch signaling pathway. We illustrate all these points in
order to determine the general pathogenesis of chronic low-grade local inflammation in adipose tissue and the related signaling
pathways. In addition, signal-associated prospective compounds, such as berberine, are summarized and discussed with
potential targets in pathogenesis. This might provide some possible thoughts and novel therapies for studying chronic
inflammatory diseases, such as insulin resistance and type 2 diabetes mellitus.
1. Introduction

The World Health Organization (WHO) reported that more
than 1.4 billion adults and older individuals were overweight
in 2012. More than 200 million men and approximately 300
million women were classified as obese. Additionally, more
than 40 million children under the age of 5 were classified
as being obese in 2012. As a worldwide and dangerous epi-
demic, obesity increases the risk of some chronic diseases
and induces low-grade inflammation with many other com-
plications, such as atherosclerosis, cardiovascular problems,
insulin resistance, and type 2 diabetes mellitus [1–5]. Adi-
pose tissue also plays a crucial role in the generation of
low-grade inflammation and progression. In hypertrophic
adipose tissue, many cytokines and chemokines are impor-
tant contributors in different regulatory pathways, especially
cytokines that are activated and released by macrophages/
monocytes immune cells. In this review, we will summarize
the relevant reports and research about chronic low-grade
inflammation in adipose tissue to find prospective medicines.
The process contains the chronic local inflammation
mechanism of immune cells in adipose tissue, such as
macrophage recruitment, macrophage polarization, and
macrophage-like phenotype preadipocyte. Subsequently,
pertinent signaling pathways will be illustrated and general-
ized involving the adenosine monophosphate-activated
protein kinase (AMPK) signaling pathway and the Notch
pathway for potential medical targets.

2. Origin of Macrophages/Monocytes in Chronic
Inflammation of Local Adipose Tissue

In the foetal stage, the yolk sac and foetal liver haematopoi-
esis are the embryonic precursors for macrophages [6, 7].
Most of the tissue-resident macrophages were thought to
arise from embryonic precursors [8, 9]. However, a novel
method has helped illuminate the fact that the sole origin of
tissue-resident macrophages in the liver and pancreas might
be yolk sac macrophages. This leads to the origin of tissue-
resident macrophages being a controversial topic [7, 10]. In
the postnatal stage, blood monocytes developed from haema-
topoietic stem cells in the bone marrow are the main
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precursors of macrophages in the circulation system [11–13].
Similarly, T cells promote monocyte differentiation and mac-
rophage polarization [14]. These should be the classical
approach for macrophage production. However, currently,
researchers have found that macrophages/monocytes have
been included in the adipose tissue for regulation of chronic
local inflammation. Although the mechanism of chronic
inflammation has not been clearly elucidated, the possible
modulating methods and pathways have been reported and
discussed. The adipose tissue contains adipocytes, preadipo-
cytes, stem cells, and other stromal cells; macrophages as
immune cells and homeostatic regulators make up almost
10% of the normal adipose tissue. Macrophages from normal
adipose tissue take the function of anti-inflammation to
maintain homeostasis. In contrast, when the homeostasis is
broken up, as in obesity, the number of macrophages will
increase significantly, contributing up to 50% of the cells in
adipose tissue. These cells contain 85% of macrophages from
recruitment and infiltration as well as 15% from preadipocyte
macrophage-like phenotypes [15–17]. Any proposed medi-
cine should play a key role in modulating the large amount
of macrophages in adipose tissue for disease treatments.

2.1. Macrophage Recruitment and Infiltration. Under diet-
induced obesity conditions, the activation of macrophages
results in chronic low-grade inflammation in local adipose
tissue. This could be induced by macrophage recruitment.
Lumeng et al. [18] reported numerous F4/80+ CD16/32+

CD11c+ macrophages accumulating in visceral adipose tis-
sue. Another important difference is the higher expression
of proinflammatory factors such as tumour necrosis factor
alpha (TNF-α), interleukin-1β (IL-1β), and inducible nitric
oxide synthase (iNOS). The exact mechanism remains a topic
of study. It is already understood that the activated mono-
cytes appear to accumulate in local tissue that is stimulated
via cytokines such as MCP-1 secreted by macrophages. The
recruitment and infiltration of monocytes/macrophages
might be associated with adipocyte hypertrophy, local
hypoxia, and the interaction between adipocytes and macro-
phages [19]. Moreover, MCP-1 is a type of inflammation-
related genetic code cytokines that plays a critical role in
the pathways of macrophage recruitment and the regulation
of insulin sensitivity. Previous studies of obese processes
illustrated that increased adipocyte volume could induce
angiogenesis and increase adipose tissue consumption.
When the rate of increased adipocyte volume is not equal
to the rate of vascular proliferation, lipids excessively accu-
mulate in adipocytes. Subsequently, anoxia tissue leads to a
volume increase in adipocytes as well as cell apoptosis. Then,
excessive amounts of saturated fatty acid and accumulated
cytokines are released [20]. In detail, the regulating pathways
might be highly associated with the proteins peroxisome
proliferator-activated receptor γ (PPARγ), nuclear factor-
κB (NF-κB), and MCP-1.

2.2. Macrophage Polarization. The macrophages in chronic
inflammation could also come from macrophage polariza-
tion. This could be regulated by many factors. Based on the
phenotype and a variety of secreted cytokines, there are two
types of macrophages, classically activated M1 and alterna-
tively activated M2. It is important to note that M1 has the
function of proinflammation by secreting cytokines such as
TNF-α, IL-1β, iNOS, and MCP-1 [21]. M2 takes on the func-
tion of anti-inflammation and tissue regeneration. With the
help of IL-4, Arg-1, IL-10, and TGF-β, macrophages might
be induced to polarize M2 and secrete cytokines such as
TGF-β, VEGF, and EGF or additional Arg-1 and IL-10. In
the final stage of inflammation, M2 enhances tissue repair
and fibrosis [22, 23]. Additionally, two crucial nuclear fac-
tors, PPARγ and NF-κB, are also the key targets in the mod-
ulation of macrophage polarization. Furthermore, PPARγ
has been proven to be the important factor of M2 generation.
It activates M2 polarization with the function of anti-
inflammation. If PPARγ has not been activated, the alterna-
tively activated pathway will be blocked [24, 25]. Meanwhile,
PPARγ blocked the proinflammatory pathway of NF-κB and
inhibited the expression of relative factors such as TNF-α
[26]. Therefore, macrophage polarization is one of the
important processes in chronic inflammation. Moreover, in
a diet-induced obese mouse model, macrophage polarization
can be regulated for influencing obesity-induced adipose tis-
sue inflammation or insulin resistance. This might occur in
interferon tau therapy, in chronic Trypanosoma cruzi infec-
tion, or with miR-130b assistance. This procession is also
correlated with PPARγ [27–29]. Therefore, in local adipose
tissue, macrophage polarization plays an important role in
local chronic inflammation and insulin resistance.

2.3. Macrophage-Like Phenotype Preadipocytes.Macrophage-
like phenotype preadipocytes are thought to originate from
undifferentiated white adipocytes. The lineage tracing of adi-
pose progenitors are generalized first. Adipocytes contain
white adipocytes, brown adipocytes, and beige adipocytes
that resemble white adipocytes but have the same function
of classical brown adipocytes [30]. All of them originate from
mesenchymal precursor cells. The majority of white adipo-
cytes derive from Myf5− precursors and some white adipo-
cyte precursors originate from the Myf5+ lineage. Mature
white adipocytes derive from white adipocyte precursors or
named preadipocytes in adulthood [31–34].

Based on previous studies, a question has developed
about the relationship between adipocytes and macrophages.
First, the major mediators of inflammation, for example, ILs
and TNF-α, have been found to be secreted from adipocytes
and macrophages. Additionally, leptin takes part in not only
proinflammation but also in energy metabolism, in particu-
lar, through T lymphocyte proliferation and macrophage
activity [35]. In the recent years, the new definition of cell
reprogramming has become an increasingly popular concept
in advanced fields. Except for macrophage recruitment and
polarization, other immune cells for local inflammation of
adipose tissue may come from macrophage-like phenotype
preadipocytes; we are working to identify these macrophage-
like type preadipocytes and explore their functions. This kind
of possible reprogramming means not only stem cell prolifer-
ation and differentiation but also genetic expression repro-
gramming that is induced by stimuli and changes in cell
phenotype or function under certain conditions [36]. Adipose
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tissue is the potential area to generate cell reprogramming. For
preadipocytes, they could be differentiated from adipose stem
cells. Under chronic inflammation conditions, preadipocytes
result in local inflammation caused by cytokines and might
appear as macrophage phenotypes. The preadipocytes are
stopped from differentiating into adipocytes [37]. Moreover,
some findings confirm that there is an essential nuclear factor,
PPARγ, that mediates the process of preadipocytes differenti-
ating into adipocytes.

3. Related Signaling Pathways

In addition to immune cells studies in chronic local inflam-
mation mechanism, several related signaling pathways have
been found and explored. These pathways include the aden-
osine monophosphate-activated protein kinase (AMPK) sig-
naling pathway, the C-Jun N-terminal kinase (JNK) signaling
pathway, the Notch signaling pathway, the PI3K/Akt signal-
ing pathway, and the JAK/STAT signaling pathway, which
have been studied in the last few decades. The first three sig-
naling pathways will be generalized below; they are linked
with the chronic low-grade inflammation mechanism. In
addition, the key signals might become the targets of pro-
spective drugs in further studies.

3.1. Adenosine Monophosphate-Activated Protein Kinase
(AMPK) Signaling Pathway. AMPK is a critical regulator in
energy metabolism at the molecular level, in particular in glu-
cose metabolism [38–40]. AMPK in the hypothalamus is a
common regulator of weight gain. As a stress sensor, AMPK
can be activated by a cluster of factors such as oxidative, met-
abolic, and physical stresses [39, 41, 42]. According to the
heterotrimeric complex with one catalytic α subunit and
two regulatory units β and γ, AMPK contains two isoforms
of α (α1 and α2) and β (β1 and β2) with three γ subunits
(γ1, γ2, and γ3). The distinctive structure of AMPK isoforms
is expressed differently in mammalian tissues [43]. Further-
more, AMPK is a key modulator in type 2 diabetes that is
related to insulin sensitivity. This may also be mainly associ-
ated with obesity-induced inflammation and insulin sensitiv-
ity. Additionally, in adipocytes, the accumulation of lipids,
together with the ectopic storage of fat in the pancreas, mus-
cles, and other internal organs, may stimulate immune
system defense and could provoke proinflammatory cytokine
secretion and macrophages/monocytes recruitment, espe-
cially in adipose tissue [43–45]. With the help of several
pharmacological activators or adipokines, AMPK inhibited
the inflammatory reaction. For instance, the inflammatory
response induced by lipopolysaccharide (LPS) was inhibited
by activating AMPK with 5-aminoimidazole-4-carboxamide
riboside (AICAR), a classical activator of AMPK [43, 46].
Another example for consideration is the findings of Stein-
berg et al. [47] who demonstrated that tumour necrosis
factor-α (TNF-α) might suppress AMPK activity by aggra-
vating the expression of protein phosphatase 2C, an inhibitor
of the AMPK signaling pathway.

In the AMPK signaling pathway, AMPK inhibited NF-κB
p65 phosphorylation, suppressed gene expression of
proinflammatory adipocytokines, and upregulated PPARγ
expression [48]. Specifically, AMPK indirectly inhibited
NF-κB signaling through some downstream mediators, such
as silent information regulator 1 (SIRT1) and peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α)
[43]. In the AMPK-SIRT1-NF-κB signaling pathway, there
is a feedback loop during the energy deficiency. SIRT1 deace-
tylase was activated by AMPK via increasing cellular NAD+

levels. In contrast, AMPK was activated by LKB1 activity that
is stimulated by SIRT1 [49, 50]. Additionally, the acetylation
of NF-κB p65 improved its transactivation capacity. Con-
versely, SIRT1 interacted with p65 and finally deacetylated
the p65 protein at lysine 310. Thus, AMPK inhibited NF-
κB signaling via SIRT1-induced deacetylation [43, 51]. Simi-
larly, fatty acids are involved in the AMPK-PGC-1α/NF-κB
signaling pathway, inducing the association of PGC-1α factor
with NF-κB p50 in hepatocytes. Moreover, PGC-1α and p50
might bind to the IL-10 promoter and lead to the expression
of IL-10 cytokine [52], because NF-κB is a key mediator in
fat-induced inflammation. Both of these indirect regulations
in adipocytes by AMPK demonstrated that the AMPK signal-
ing pathways could be crucial mediation pathways in adipose
tissue chronic inflammation (Figure 1).

3.2. C-Jun N-Terminal Kinase (JNK) Signaling Pathway. The
JNK signaling pathway belongs to the superfamily of
mitogen-activated protein kinases (MAPKs) and is a major
modulator of cell proliferation, differentiation and apoptosis
[53–55]. There are three different isoforms, JNK1, JNK2, and
JNK3, in the JNKs family; however, only the Jnk1 and Jnk2
genes can be expressed ubiquitously in all tissues [56, 57].
RelatedJNKproteinsareexpressedubiquitouslyinmosttissues
[55]. Among these tissues, JNK inmacrophages plays a signifi-
cant role in the establishment of fat-induced insulin resistance
and chronic inflammation, as well as macrophages accumula-
tion andproinflammatorymacrophage polarization [18, 58].

Furthermore, in the JNK signaling pathway, JNK1/2 was
one of the indirect mediators for the process in which TNF-α
decreasedPPARγ and glucose transporter isoform4 (GLUT4)
expressions in adipocytes [59]. Namely, TNF-α maintained
prolonged activation of JNK1/2 via TNF-α receptor 1
(TNFR1) and phosphorylates JNK downstream transcription
factor c-Jun that restrained Map4k4 mRNA expression. In
addition, Map4k4 expression aggravated the inhibition of
PPARγ, while TNF-α activated NF-κB by phosphorylation of
JNK1/2 and p38 [59]. These two modulators are associated
with adipose tissue inflammation and insulin resistance.
Therefore, the JNK pathway could also be a useful signaling
pathway in the treatment of obesity-induced syndromes and
diseases (Figure 1).

3.3. Notch Signaling Pathway. The Notch signaling pathway
could maintain tissue renewal by promoting or inhibiting cell
proliferation, cell differentiation, and cell death [60]. The
Notch family has four transmembrane Notch receptors
expressed in mammals that may combine with the Notch sig-
nal and regulate distinct downstream factors [55]. Some
experiments have shown that pharmacological suppression
of Notch signaling in obese mice augmented Ucp1 expres-
sion, reduced blood glucose, and ameliorated obesity [61].
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Figure 1: The AMPK and JNK signaling pathways are shown above. Besides the circulatory regulation of AMPK-SIRT1-LKB1, AMPK
indirectly regulates NF-κB p65 by SIRT1. Additionally, AMPK might induce the association of PGC-1α. The interaction of NF-κB and
IκB might result in nuclear accumulation and activation of NF-κB, leading to IL-10, IL-1β, and IL-6 transcriptions and expressions.
Likewise, TNF-α inhibits AMPK via upregulation of protein phosphatase 2C (PP2C). In the JNK signaling pathway, the main pathway is
that TNF-α activates Map4k4 by combining with TNFR1 to inhibit PPARγ. Nevertheless, TNF-α activates NF-κB by phosphorylation of
JNK1/2. PPARγ might block the interaction of NF-κB and IκB.
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In addition to the function of glucose reduction and obe-
sity alleviation, the Notch signal modulated macrophage
polarization. The activation of A disinterring and metallo-
proteinase (ADAM) domain-type proteinase and γ-secretase
complex were induced by the combination of the Notch
receptor with the ligand, DII4 [62]. The Notch intracellular
domain (NICD) translocated into the nucleus and bound
with the sequence-specific DNA-binding factor RBP-J [55].
These regulations may lead to M1-like polarization. Addi-
tionally, the synthesis of interferon regulatory factor 8
(IRF8), a transcription factor, might be promoted by RBP-J
via selectively augmenting IRAK2-Mnk1-eif4E axis signaling
of TLR4 [62]. TLR4 can both upregulate NF-κB and activate
RBP-J. Conversely, SOCS3 plays a crucial role in inhibition of
M1-like polarization in the downstream regulation pathway
[55, 63]. The Notch signaling pathway has recently been a
focus of research. Thus, the main topic might be whether
the Notch could be the mediator and potential treatment
strategy in macrophage recruitment or other immune cell
interactions in adipose tissue inflammation (Figure 2).
4. Prospective Compounds for Local Adipose
Tissue Chronic Inflammation and Obesity-
Induced Insulin Resistance

Based on the above signaling pathways, prospective
compounds have been studied for ameliorating local adipose
tissue chronic inflammation with obesity-induced insulin
resistance, also known as metaflammation [64]. Bitter melon
has been found to ameliorate insulin resistance partly by
modulating the inflammatory status. Specifically, it might
block NF-κB by degradation of IκBα and suppress phosphor-
ylation of JNK/p38 MAPKs, which were observed not only in
epididymal fats but also in the liver and muscle [65, 66]. For
JNK or MAPK signals, benzenediamine derivative FC98 also
reduced insulin resistance against metaflammation based on
a model of diet-induced obese C57BL/6J mice with the effect
of JNK and p38 [67]. Another potential flavonol, (-)-epicate-
chin, prevented TNF-α-triggered activation of inflammation
and insulin resistance via suppressing JNK or ERK phos-
phorylation [68].

More prospective compounds might also interact with
proteins in the AMPK signaling pathway. It has been
reported that brown alga Ecklonia cava polyphenol extract
or quercetin with antioxidative or anti-inflammatory activi-
ties modulated AMPK and SIRT1 by reducing adipose tissue
mass and lipid accumulation or attenuating macrophage
recruitment in epididymis adipose tissue [69, 70]. In detail,
quercetin as flavonol-attenuated adipogenesis in 3T3-L1 cells
activated the expression of AMPK or decreased the levels of
phosphorylated ERK and JNK and inhibited PPARγ and
enhancer-binding protein α (C/EBPα) in mRNA and protein
expressions [71, 72]. It was studied in primary bone marrow-
derived macrophages or macrophage cell lines (human U937
monocytes, murine J774 macrophages) and human
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adipocytes to prove that quercetin possessed the functions of
anti-inflammation in local adipose tissue. Quercetin
decreased the secretion of TNF-α, IL-6, and IL-1β and
increased IL-10 production. Additionally, it inhibited NO
production and iNOS expression by blocking NF-κB, the
transcription factor of iNOS [73–75]. Therefore, this evi-
dence explains anti-inflammatory activity of flavonoid quer-
cetin. Similarly, berberine, the extract of rhizoma coptidis,
has been studied for several years regarding the activation
of AMPK with metabolic effects. It has been used and studied
for its properties of reducing body weight, plasma triglycer-
ides, and some inflammatory cytokines or chemokines [76,
77]. As a derivative of berberine, nandinine has also been
reported to have an activation effect in AMPK and blocking
IκB-β activation for attenuating insulin resistance in adipo-
cytes [78]. Additionally, berberine strongly suppressed
MCP-1 production in macrophages and affected the level of
leptin and the expression of PPARγ with downregulation of
TNF-α, IL-6, and so forth [79, 80]. The alkaloid berberine,
as a traditional Chinese medicine, could regulate AMPK
directly and suppress adipokine and inflammatory cytokine
production by affecting protein expression in the inflamma-
tion pathway, which might be a prospective drug for
ameliorating obesity-associated chronic inflammation and
improving insulin sensitivity. Both the structural analysis
and the pharmacological mechanism should be studied fur-
ther. However, all the regulating approaches above might
provide some thoughts and targets for drug development
about adipose tissue-specialized immunologic features or
relevant diseases.
5. Conclusion

Generally, as the number of obese people increases, a variety
of obesity-related diseases and low-grade chronic inflamma-
tion cause injury in people’s lives and health to different
extents. These relative complications might obviously influ-
ence the health and quality of daily life. For obesity-induced
inflammation, the possibility of macrophage accumulation
has been concluded to have three aspects: macrophage
recruitment or infiltration, macrophage polarization, and
macrophage-like phenotype preadipocytes. All these aspects
shed light on the functional plasticity of macrophages and
provide potential therapies to regulate of obesity-induced
chronic inflammation. Moreover, AMPK, JNK, and Notch
signaling should be the critical pathways for regulating mac-
rophage and adipose tissue local inflammation. These path-
ways are associated with PPARγ or NF-κB to some extent.
Therefore, the aim of the research on the obesity-induced
local chronic inflammation mechanism might be focused
on the mediators PPARγ or NF-κB, potentially the key points
for regulating inflammation. The relationships between
PPARγ and NF-κB or among PPARγ, NF-κB, and other rel-
evant pathways should also be discussed. It could be another
interesting debate whether there is a factor or molecule that
could inhibit or activate these mediators and classical signal-
ing pathways to become biomarkers in the treatment of local
chronic inflammation, insulin resistance, and type 2 diabetes.
Because berberine could modulate AMPK for improving
insulin sensitivity, how berberine regulates AMPK and
downstream proteins for anti-inflammation in local adipose
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tissue should be elucidated in detail. Similarly, adipose tissue
as an immune organ might explain the pathogenesis of local
insulin resistance and systemic insulin resistance induced by
obesity in a local inflammatory method or low-grade inflam-
mation. These discoveries could provide novel therapies or
detection strategies for obesity-related inflammation and
complications.
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