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ABSTRACT
Background: Diabetic kidney disease (DKD) is a common and serious complication in patients
with diabetic mellitus (DM), the risk of cardiovascular events and all-cause mortality also
increases in DKD patients. This study aimed to detect the influencing factors of DKD in type
2DM (T2DM) patients, and construct DKD prediction models and nomogram for clinical deci-
sion-making.
Methods: A total of 14,628 patients with T2DM were included. These patients were divided into
pre-DKD and non-DKD groups, depending on the occurrence of DKD during a 3-year follow-up
from first clinic attendance. The influencing indicators of DKD were analyzed, the prediction
models were established by multivariable logistic regression, and a nomogram was drawn for
DKD risk assessment.
Results: Two prediction models for DKD were built by multivariate logistic regression analysis.
Model 1 was created based on 17 variables using the forward selection method, Model 2 was
established by 19 variables using the backward elimination method. The Somers’ D values of
both models were 0.789. Four independent predictors were selected to build the nomogram,
including age, UACR, eGFR, and neutrophil percentages. The C-index of the nomogram reached
0.864, suggesting a good predictive accuracy for DKD development.
Conclusions: Our prediction models had strong predictive powers, and our nomogram provided
visual aids to DKD risk calculation, which was simple and fast. These algorithms can provide early
DKD risk prediction, which might help to improve the medical care for early detection and inter-
vention in T2DM patients, and then consequently improve the prognosis of DM patients.
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Introduction

Diabetes mellitus (DM) is one of the fastest-growing
global health burdens in recent decades, which affected
537 million adults, and the prevalence rate was 10.5%
all over the world in 2021. While the number of DM
patients will increase to 537 million in 2030, and 643
million in 2045 [1]. Approximately 20–40% of DM
patients develop diabetic kidney disease (DKD). DKD
is a common microvascular complication, which is a
leading cause of end-stage kidney disease (ESKD),
cardiovascular events, and all-cause mortality in DM
patients [2].

The multifactorial intervention of DKD is an important
goal in the management of type 2 diabetes mellitus
(T2DM), mainly including the management of hypergly-
cemia, hypertension, hyperlipidemia, and hyperuricemia,

combined with reasonable dietary intake, weight control,
and exercise [3,4]. Pharmacological treatment of DKD is
primarily targeted toward glycemic and blood pressure
(BP) control, and adequate management of lipid and uric
acid, with the goal of reducing urinary albumin and pre-
venting microvascular complications. Of which, there are
several medications that can improve cardiac and renal
outcomes. BP lowering with angiotensin-converting
enzyme inhibitors (ACEi) and angiotensin receptor block-
ers (ARB) are proven to slow down the progression of
DKD [5,6]. Mineralocorticoid receptor antagonists (MRAs)
have efficacy in resistant hypertension, reducing albumin-
uria and DKD progression, as well as reduction of cardio-
vascular disease (CVD) and heart failure [7,8]. Novel
diabetic drugs, such as sodium-glucose cotransporter 2
inhibitor (SGLT2i) and glucagon-like peptide 1 receptor
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agonist (GLP-1RA) could improve the renal and cardiovas-
cular outcomes in T2DM patients [9,10]. However, none
of the above drugs were suitable for patients with
advanced DKD. Therefore, the early prediction of DKD is
crucial for the clinical application of these drugs, and the
delay of DKD progression.

The construction of risk prediction models might
benefit early evaluation and intervention of DKD, and
delay DKD development in T2DM patients. Existing pre-
diction models for DKD were mostly developed based
on data from Western populations [11]. Previous studies
showed that DKD incidence in the Chinese population
is higher than in Caucasians, due to genetic and envir-
onmental factors (e.g., diet and living habits) [12]. This
study aims to develop prediction models of DKD for
clinical application and improve the long-term progno-
sis of Chinese T2DM patients.

Materials and methods

Study design and population

This is a population-based, retrospective, cohort study.
All patients with T2DM were screened in the outpatient
and inpatient department, as well as the medical exam-
ination center in Xuzhou Central Hospital (Xuzhou,
China). Inclusion criteria: (1) patients with T2DM; (2)
aged 18–75years. Exclusion criteria: (1) without com-
plete data of 3-year follow-up; (3) verified diagnosis of
DKD at baseline, based on the guidelines created by
the Expert Group of the Chinese Society of Nephrology,
American Diabetes Association (ADA), and the
European Association for the Study of Diabetes (EASD)
[13,14]; (4) had persistent albuminuria, decreased renal
function, other kidney diseases, systemic diseases (e.g.,
autoimmune diseases), infection, tumors, or malnutri-
tion at first clinic attendance. The baseline date was
defined as the date of first clinic attendance. This study
followed the International Conference on Harmonized
guidelines for good clinical practice and was conducted
in accordance with the Helsinki Declaration. The agree-
ment was approved by the Ethics Committee of
Xuzhou Central Hospital (Reference NO. XZXY-LJ-
20201030-055).

Data extraction and clinical variables

The data were obtained from the electronic health
records (EHRs) in the hospital information system (HIS),
from January 2014 to July 2021. The diagnosis of DM
and/or DKD was determined by the baseline and last
follow-up evaluation, using both the International
Statistical Classification of Diseases 10th Revision (ICD-

10) and the latest Chinese DKD guideline [13]. A total of
14,628 patients with T2DM were enrolled in this study.
The data on demographic information, medical history,
physical examination, and laboratory tests were col-
lected. The urinary albumin to creatinine ratio (UACR)
was classified as follows: normoalbuminuria, UACR
<30mg/g; microalbuminuria, UACR 30–299mg/g; as
well as macroalbuminuria, UACR >300mg/g. The esti-
mated glomerular filtration rate (eGFR) was calculated
by the chronic kidney disease epidemiology collabor-
ation (CKD-EPI) equations based on serum creatinine.

Clinical outcomes

The primary endpoint was the occurrence of DKD,
which was defined as DM patients presenting one of
the following conditions [13]: ‹ microalbuminuria or
macroalbuminuria, and the repeat UACR � 30mg/g at
least 2 of 3 samples within 3 to 6months; › eGFR <

60mL/min/1.73m2 for more than 3months; fi renal
biopsy was consistent with DKD pathological changes.
The T2DM patients who developed DKD within 3 years
after the first clinic attendance were assigned to the
pre-DKD group and the remaining patients were
assigned to the non-DKD group.

Statistical analysis

Patients’ baseline demographic and clinical characteris-
tics, as well as laboratory parameters, were expressed
as proportions for dichotomous variables, mean (±SD)
or median (interquartile range) for continuous variables;
and the Shapiro-Wilk test was used to assess the normal
distribution of these variables. The t-test, chi-square
test, and Kruskal-Wallis test were performed to detect
the difference between groups, depending on the dis-
tribution status of these variables. Multivariable logistic
regression analysis was performed using the forward
selection method (Model 1) and backward elimination
method (Model 2). The area under the Receiver
Operating Characteristic (ROC) curve, which is referred
to as the C-statistic, was used to assess the discrimin-
atory ability of the models. The Akaike information cri-
terion (AIC) was used to evaluate the goodness of fit of
the models. The calibration was assessed by the calibra-
tion curves. We evaluated the relative importance of
the predictive variables using the ‘relweights’ function
in R software [15,16], then selected the top four predict-
ive variables to establish a nomogram model for DKD
risk prediction. A two-sided p-value< .05 was defined
as statistically significant. Statistical analyses were per-
formed using the SAS system (version 9.4, SAS Institute
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Inc., Cary, NC, USA) and R software (version 4.1.3,
https://www.R-project.org).

Results

Cohort description

A total of 14,628 adults with T2DM were enrolled in this
study and were assigned to two groups according to
the presence of DKD during a 3-year follow-up. The
mean age was 51.32 ± 17.24 years, with 44.28% of
female patients. Compared with the patients in the
non-DKD group, the mean age was significantly higher,
and the proportion of female patients was lower in the
pre-DKD group. A total of 95 baseline variables were

analyzed and compared between the non-DKD group
and pre-DKD group, of which, the baseline variables
with significant statistical differences between these
two groups and/or with reported clinical significance by
previous studies were listed in Table 1. The levels of
white blood cell (WBC), neutrophils percentages, neu-
trophil-lymphocyte ratio (NLR), a-hydroxybutyrate
dehydrogenase (a-HBDH), alkaline phosphatase (ALP),
creatine phosphokinase (CK), globulin, high-density
lipoprotein cholesterol (HDL-C), total cholesterol (TCH),
triglyceride, APOB/APOA1 ratio, lipoprotein (a) [Lp(a)],
blood urea nitrogen (BUN), uric acid (UA), C-peptide,
HbA1c, UACR, as well as systolic blood pressure (SBP)
were significantly higher in the pre-DKD group than in
the non-DKD group, while the levels of hemoglobin,

Table 1. Baseline characteristics stratified by DKD occurrence in enrolled T2DM patients.
Variables Total Non-DKD Pre-DKD p-value Normal range

Number (%) 14628 100% 12541 85.73% 2087 14.27% N/A
Sociodemographics
Age 52 (38.64) 50 (36.61) 66 (55.76) <.0001 N/A
Female (%)a 6477 (44.28) 5606 (44.70) 871 (41.73) .0115 N/A
Smoking (%) 1716 (11.73) 1467 (11.70) 249 (11.93) .7590 N/A

Time since diagnosis of T2 DM (years) <.0001
�1 719 (4.92) 712 (5.68) 7 (0.34) N/A
>1 to 5 3076 (21.03) 2976 (23.73) 100 (4.79) N/A
>5 to 10 3743 (25.59) 3513 (28.01) 230 (11.02) N/A
>10 7090 (48.47) 5340 (42.58) 1750 (83.85) N/A

Clinical characteristics
WBC (109/L)b 6.58 (5.51, 7.9) 6.41 (5.37, 7.76) 7.08 (6.02, 8.25) <.0001 3.5–9.5
Neutrophils (%) 60.70 (54.1, 67.6) 59.40 (52.9, 66.4) 64.88 (59.47, 69.92) <.0001 40–75
Lymphocytes (109/L) 1.81 (1.45, 2.25) 1.86 (1.47, 2.32) 1.68 (1.39, 1.99) <.0001 1.1–3.2
NLR 2.11 (1.54, 3.03) 1.95 (1.46, 2.79) 2.74 (2.05, 3.77) <.0001 N/A
Hemoglobin (g/L) 134 (120, 147) 135 (122, 148) 128 (114, 142) <.0001 120–170
a-HBDH (U/L) 142 (124, 165) 138 (121, 159) 154 (137, 178) <.0001 72–182
Albumin (g/L) 42.70 (39.33, 45.6) 43.00 (39.7, 46) 41.66 (38.2, 44.15) <.0001 40–55
ALP (U/L) 86 (72, 104) 85 (70, 104) 88 (76, 105) <.0001 35–135
CK (U/L) 78 (55, 115) 76 (53, 110) 86 (62, 132) <.0001 40–200
Globulin (g/L) 26.97 (24.3, 29.6) 26.80 (24.1, 29.7) 27.30 (25.36, 29.3) <.0001 20–40
Pre-albumin (mg/L) 237 (201, 274) 239 (202, 278) 230 (197, 262) <.0001 180–350
LDL-C (mmol/L) 2.87 (2.34, 3.42) 2.87 (2.31, 3.46) 2.87 (2.47, 3.28) .8259 2.2–3.6
HDL-C (mmol/L) 1.14 (0.97, 1.35) 1.13 (0.96, 1.35) 1.16 (1.02, 1.33) .0013 0.8–1.7
TCH (mmol/L) 4.67 (3.98, 5.38) 4.65 (3.93, 5.41) 4.71 (4.16, 5.26) .0310 2.8–5.7
TG (mmol/L) 1.61 (1.16, 2.31) 1.58 (1.12, 2.32) 1.67 (1.3, 2.27) <.0001 0.45–1.75
APOA1 (g/L) 1.24 (1.09, 1.42) 1.24 (1.09, 1.42) 1.24 (1.09, 1.4) .0601 0.7–1.6
APOB (g/L) 0.90 (0.74, 1.06) 0.90 (0.73, 1.07) 0.89 (0.77, 1.03) .6259 0.6–1.14
APOB/APOA1 ratio 0.71 (0.58, 0.88) 0.71 (0.57, 0.89) 0.72 (0.6, 0.86) .0488 N/A
TCH/HDL-C ratio 4.06 (3.38, 4.81) 4.08 (3.33, 4.86) 4.01 (3.53, 4.58) .6427 N/A
Lipoprotein a (mg/L) 176 (90, 329) 162 (82, 322) 222 (129, 348) <.0001 1–300
Creatinine (umol/L) 54 (44, 67) 54 (44, 66) 54 (42, 73) .2534 41–81
eGFR (mL/min/1.73m2) 106.40 (93.54, 118.66) 106.43 (94.4, 118.14) 106.17 (88.54, 120.69) .4342 90–120
BUN (mmol/L) 5.77 (4.8, 7.11) 5.73 (4.73, 6.99) 5.97 (5.07, 7.74) <.0001 2.6–8.8
UA (umol/L) 299 (247, 359) 296 (242, 358) 307 (266, 362) <.0001 155–357
Cystatin C (mg/L) 0.84 (0.71, 1.06) 0.84 (0.71, 1.04) 0.84 (0.68, 1.2) .2852 0.5–1.5
C-peptide (ng/mL) 2.64 (1.77, 3.75) 2.62 (1.77, 3.69) 2.74 (1.76, 4.05) .0251 1.1–4.4
HbA1c (%) 7.90 (6.7, 9.7) 7.90 (6.7, 9.65) 8.09 (6.93, 9.7) <.0001 4–6
UACR (mg/g) 2.33 (1.11, 10.67) 1.76 (1, 5.65) 13.78 (4.77, 29.41) <.0001 0–30
BMI (kg/m2) 25.24 (22.57, 28.06) 25.24 (22.58, 28.05) 25.18 (22.54, 28.15) .9324 N/A
SBP (mmHg) 134 (122, 146) 133 (121, 145) 138 (125, 151) <.0001 N/A
RASI (%) 6970 (47.65) 5847 (46.62) 1123 (53.81) <.0001 N/A
Metformin (%) 8707 (59.52) 7432 (59.26) 1275 (61.09) .1146 N/A
Statins (%) 5182 (35.43) 4436 (35.37) 746 (35.75) .7414 N/A

aDiscrete values expressed as number (percentage).
bContinuous values expressed as means (SD) if normally distributed or median (interquartile range) if skewed.
N/A: not applicable; WBC: white blood cell; a-HBDH: a-hydroxybutyrate dehydrogenase; NLR: neutrophil-lymphocyte ratio; ALP: alkaline phosphatase; CK:
creatine phosphokinase; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; TCH: total cholesterol; TG: triglyceride;
APOA1: apolipoprotein A1; APOB: apolipoprotein B; eGFR: estimated glomerular filtration rate; BUN: blood urea nitrogen; UA: uric acid; UACR: urinary albu-
min to creatinine ratio; SBP: systolic blood pressure; RASI: renin-angiotensin-system inhibitor.
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albumin, and pre-albumin had opposite trends
(all p< .05).

Predictive models for DKD development

Multivariate logistic regression analysis was performed
on the independent variables, then the variables were
selected to build two risk prediction models for DKD
(Table 2). Model 1 was created based on 17 variables
using the forward selection method, the area under the
receiver operating characteristic (ROC) curve (AUC) of
model 1 was 0.8943, and the optimal cutoff value of
the ROC curve was 0.26, with a specificity and sensitiv-
ity of 0.764 and 0.852, respectively (Figure 1(A)). In the
forward selection model, the hazard ratio (HR) of age,
WBC, neutrophils, a-HBDH, albumin, CK, globulin, pre-
albumin, TCH, eGFR, BUN, UA, C-peptide, UACR, SBP, as
well as RASI usage exceeded 1.0 with statistical signifi-
cance, which suggested the DKD risk could be high in
the T2DM patients with high levels of these
above variables.

Model 2 was established by 19 variables using the
backward elimination method, the AUC of model 2 was
0.8946, and its optimal cutoff value was 0.22, with a
specificity and sensitivity of 0.797 and 0.818 (Figure
1(B)). Similarly, in this backward elimination model, the
hazard ratio (HR) of age, WBC, neutrophils, a-HBDH,
albumin, globulin, pre-albumin, TCH, APOB/APOA1
ratio, eGFR, BUN, UA, C-peptide, UACR, SBP, as well as
RASI usage exceeded 1.0 with statistical significance,
indicated that the DKD risk could positive correlated

with these variables. Moreover, the value of Somers’ D
arranges from �1 to 1, the Somers’ D values of both
models was 0.789 in this study. The larger values of
AUC and Somers’ D indicated the stronger predictive
power of the model.

In order to verify Model 1 and Model 2 in Table 2,
we randomly selected one-third of the enrolled patients
(N¼ 4876) in the dataset as the internal validation
group, and its descriptive statistics were shown in
Supplemental Table S1. A collinearity analysis was per-
formed to verify the linear correlations between the
independent variables (Supplemental Table S2), of
which, the variance inflation factor (VIF) is a key index
for the severity of complex (multiple) collinearities in
multiple linear regression models, the closer the VIF
value is to 1, the lighter the multi-collinearity, and the
heavier vice versa. Usually, 10 is used as the judgment
boundary. When VIF <10, there is no multi-collinearity;
when 10�VIF � 100, there is a strong multi-collinear-
ity; and when VIF � 100, there is a severe multi-collin-
earity. Supplemental Table S2 showed that the VIF
values of the variables in Model 1 were between 1 and
2, and the VIF values of the variables in Model 2 were
less than 10, indicating that there was no multi-collin-
earity in our multivariate logistic regression models. The
C-statistic, generalized R-squared, and AIC criteria
(Supplemental Table S3), as well as the calibration
curves (Supplemental Figure S1), were performed to
evaluate these two models. Moreover, we also validated
the reliability of these two models in subgroups of

Table 2. Prediction models for DKD by the forward selection method (Model 1) and the backward elimination method (Model 2).
Model 1 Model 2

HR

95% CI

p HR

95% CI

pLower Upper Lower Upper

Age 1.113 1.103 1.123 <.0001 1.113 1.103 1.123 <.0001
WBC (109/L) 1.066 1.011 1.125 .0178 1.068 1.012 1.127 .017
Neutrophils (%) 1.044 1.031 1.057 <.0001 1.042 1.03 1.055 <.0001
Hemologbin (g/L) 0.99 0.984 0.996 .0007 0.99 0.984 0.996 .0018
a-HBDH (U/L) 1.003 1.001 1.004 .0061 1.003 1.001 1.005 .0023
Albumin (g/L) 1.039 1.01 1.069 .0085 1.036 1.006 1.066 .0183
CK (U/L) 1.001 1 1.001 .0479
Globulin (g/L) 1.037 1.013 1.061 .0026 1.038 1.014 1.063 .0019
Pre-albumin (mg/L) 1.003 1 1.005 .0157 1.003 1.001 1.005 .0031
APOB (g/L) 0.278 0.101 0.768 .0135
TCH (mmol/L) 1.11 1.023 1.205 .0119 1.36 1.153 1.605 .0003
APOB/APOA1 ratio 3.142 1.161 8.503 .0242
TCH/HDL-C ratio 0.822 0.704 0.961 .0136
eGFR (mL/min/1.73m2) 1.065 1.059 1.072 <.0001 1.066 1.059 1.072 <.0001
BUN (mmol/L) 1.137 1.086 1.189 <.0001 1.136 1.086 1.189 <.0001
UA (umol/L) 1.003 1.002 1.005 <.0001 1.004 1.002 1.005 <.0001
C-peptide (ng/mL) 1.115 1.059 1.174 <.0001 1.12 1.063 1.179 <.0001
UACR (mg/g) 1.046 1.04 1.053 <.0001 1.046 1.04 1.053 <.0001
SBP (mmHg) 1.012 1.007 1.017 <.0001 1.012 1.007 1.017 <.0001
RASI (%) 1.405 1.169 1.688 .0003 1.39 1.156 1.671 .0005

WBC: white blood cell; a-HBDH: a-hydroxybutyrate dehydrogenase; CK: creatine phosphokinase; APOB: apolipoprotein B; TCH: total cholesterol; HDL-C:
high-density lipoprotein cholesterol; APOA1: apolipoprotein A1; eGFR: estimated glomerular filtration rate; BUN: blood urea nitrogen; UA: uric acid; UACR:
urinary albumin to creatinine ratio; SBP: systolic blood pressure; RASI: renin-angiotensin-system inhibitor.
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enrolled patients with different age (age <60 and age
�60 years old), gender (male and female), and medica-
tions (metformin and statins), the details were listed in
Supplemental Table S4–Table S15. All the above assess-
ments demonstrated that these two models had good
reliability and calibration ability.

The nomogram prediction model for DKD

The relative importance of predictor variables was calcu-
lated and sequenced using ‘relweights’ function in R

language, the top four independent predictors were
selected to build a nomogram, including age, UACR,
eGFR, and neutrophils percentages (Figure 2). The C-
index of this nomogram was 0.864, suggesting a good
predictive accuracy for DKD development. Based on the
sum of the assigned points for each selected predictor
in the nomogram, the larger value of total points indi-
cated a higher risk of DKD in T2DM patients. For
example, a T2DM patient is 60 years old (score ¼ 6.25),
with normal UACR (20mg/g) (score ¼ 2.4), normal eGFR
(120mL/min/1.73m2) (score ¼ 4.75), and higher

Figure 1. Receiver operating characteristic (ROC) curve for DKD predictive models based on multivariate logistic regression ana-
lysis. (A) ROC curve for model 1 showed that its AUC for predicting DKD was 0.8943. Its optimal cutoff value was 0.26, with a
specificity and sensitivity of 0.764 and 0.852, respectively. (B) ROC curve for model 2 showed that its AUC for predicting DKD was
0.8946. Its optimal cutoff value was 0.22, with a specificity and sensitivity of 0.797 and 0.818, respectively.

Figure 2. Nomograms to predict the 3-year risk of diabetic kidney disease (DKD) in Chinese patients with type 2 diabetes
(T2DM). Note: The renal nomogram was developed in the cohort, with variables, age, UACR, eGFR, and neutrophils percentages.
Steps to estimate the DKD risk: first, obtain the point for each variable by drawing a vertical line from the value to the scoring
ruler; second, summate points for all variables to calculate a total point; finally, evaluate the risk of DKD onset by drawing a ver-
tical line from the total points to the predicted risk ruler. Abbreviations: UACR, urinary albumin to creatinine ratio; eGFR, esti-
mated glomerular filtration rate.
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neutrophils percentages (70%) (score ¼ 3.3) would have
a total of 16.7 points (6.25þ 2.4þ 4.75þ 3.3¼ 16.7),
which indicated that the probability of DKD onset was
about 70% in the next three years.

Discussion

The onset of T2DM is usually insidious, its incidence of
DKD is associated with various clinical factors and gen-
etic factors [2]. Currently, clinical DKD screening is
mainly based on urinary albumin and serum creatinine.
When DM patients develop increased urinary albumin,
with UACR � 30mg/g, and/or urinary albumin excre-
tion rate (UAER) �30mg/24h, and/or lower eGFR
<60mL/min/1.73m2, and without the absence of signs
of other renal diseases, the diagnosis of DKD could be
confirmed [13]. However, a substantial proportion of
DM patients have renal function loss without protein-
uria, known as non-proteinuric DKD. The prevalence of
non-proteinuric DKD is about 20% among T1DM
patients, and 40% among T2DM patients [17]. The
serum levels of creatinine only begin to rise after the
injured glomeruli exceed 50% of the total glomeruli.
Thus, urinary albumin and elevated serum creatinine
should be the final results of kidney injury in DM
patients, and both only be considered late indicators of
DKD screening [18]. Diabetic retinopathy (DR) is an
important basis for DKD diagnosis, however, the DR
process is not entirely consistent with DKD, and the
predictive value of DR on subsequent DKD risk was rela-
tively low in DM patients [19]. Although renal biopsy is
the ‘gold standard’ to diagnose DKD, renal biopsy is an
invasive procedure and is classically indicated when a
nondiabetic cause of CKD is suspected in DM patients.
Currently, the clinical diagnosis of DKD is still based on
clinical and laboratory evaluations [13,20]. Therefore,
there is an urgent need for early detection of DKD that
would help to improve the diagnosis, treatment, and
prevention of DKD.

The major clinical factors for DKD progression are
glycemic control and hypertension, among which, the
abnormal vasoactive hormone-related pathways could
cause systemic vasoconstriction, renal fibrosis, and
inflammation, then promote DKD progression, for
instance. the aldosterone, endothelin, and renin-angio-
tensin-aldosterone system (RAAS) [21]. Uric acid-medi-
ated endothelial dysfunction and RAAS activation,
induced vascular smooth muscle proliferation and
inflammatory response and thus promoted microangi-
opathy and DKD development [22]. Long-term expos-
ure to relatively high levels of serum uric acid (SUA),
even within the normal range, was an independent

predictor of DKD [23]. Moreover, high albuminuria, low
serum albumin, and dyslipidemia were associated with
renal dysfunction in T2DM patients [24,25].

Except for the above conventional variables for DKD
progression, previous studies demonstrated that sys-
temic inflammatory status was an important predictor
of DKD onset in DM patients, including inflammatory
factors, leukocytes, and neutrophils. Among them, the
neutrophil-lymphocyte ratio was a reliable index for
systemic inflammation, that was associated with the
inflammatory conditions caused by metabolic syn-
drome and insulin resistance [26]. EPO deficiency and
the impairment of the hypoxia-inducible transcription
factor-1a (HIF-1a) pathway could be the main cause of
anemia in DM patients, and the anemia exacerbated
the microvascular complications, such as the occur-
rence and development of renal involvement in DM
patients [27]. The elevated serum level of alkaline phos-
phatase (ALP) was independently associated with poor
renal outcomes in T2DM patients [28]. The elevated
serum level of Lp(a) was associated with renal impair-
ment in T2DM patients independent of albuminuria
and insulin resistance [29]. Excessive C-peptide may
promote renal function loss and the incidence of
DKD [30].

This study conducted a retrospective analysis of
T2DM patients based on their diagnosis and clinical
data from the hospital information system (HIS), to
detect and select major indexes for DKD prediction
models during T2DM follow-up. The trends of most var-
iables in our non-DKD and pre-DKD groups in Table 1
were consistent with previous reports. In addition, our
results also showed that the baseline serum levels of
a-hydroxybutyrate dehydrogenase (a-HBDH), creatine
phosphokinase (CK), and globulin were significantly dif-
ferent between non-DKD and pre-DKD groups, how-
ever, no previous literature had reported that these
three laboratory indicators were associated with DKD
progression.

To establish the prediction models for DKD, a total
of 20 variables were selected from Table 1, based on
multivariate logistic regression analysis. Two models
were built using the forward selection method and
backward elimination method, respectively. Most of
these indicators were the routine clinical indexes for
the evaluation of proteinuria and renal function and
participated in the diagnosis and staging of DKD. While
the models also identified several new indicators,
including a-HBDH, CK, and globulin, further investiga-
tions are needed to reveal their potential mechanisms
in the development of DKD. Under the combination of
these traditional and novel indicators, both models had
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strong predictive powers to improve the performance
of 3-year DKD risk prediction, with high values of AUC,
specificity, and sensitivity, as well as Somers’ D.

A nomogram consists of score lines for the indicators
and risks to predict an intended clinical outcome. Most
prediction models pursue the accuracy of the predictive
values, while the nomogram has visual advantages, and
facilitates fast calculating the risk of a certain clinical
outcome according to the points of the predictor varia-
bles in clinical practice [31]. Therefore, in terms of DKD
prediction, the nomogram is more intuitive, rapid, and
simple. In this study, we obtained four variables for the
nomogram of DKD risk prediction. These four variables
were age, UACR, eGFR, and neutrophils percentages, all
variables were easy to achieve from routine clinical
data in medical institutions at all levels, from commu-
nity health centers to large general hospitals.
Furthermore, the high C-index of our nomogram indi-
cated that this model could be accurately and widely
applied in a large number of clinical samples.

In China, with the prevalence of DM increasing, DKD
prevalence has risen rapidly and becomes one of the
leading causes of ESKD. Our previous studies showed
that ESKD patients accounted for less than 0.15% of the
total population, while consuming more than 2–4% of
government health expenses, with poor quality of life
and high mortality [32,33]. The sustained increasing
prevalence and medical costs of ESKD will bring heavy
economic burdens to the Chinese government. Wu
et al. conducted a decision-analytic model to project
the lifetime cost-effectiveness of different strategies for
DKD prevention in newly diagnosed T2DM patients.
Compared with the control strategy (‘do nothing’ strat-
egy), the screening strategy (screening for microalbumi-
nuria followed by RAS inhibitors) was a cost-saving
option with better clinical outcomes [34]. Therefore, a
compulsory early forecast and detection of DKD should
be initiated, with the promise of avoiding or delaying
the progression of DKD in DM patients. The results of
this study might benefit DKD early screening, thereby
guiding clinical intervention, delaying DKD progression,
reducing related medical expenses, and improving the
quality of life and outcomes in DM patients.

This study has limitations. First, it was a retrospective
study based on a clinical dataset from a single medical
institution, and therefore, could not guarantee the
same performance in all clinical studies. Secondly, this
study conducted the diagnoses of DM and DKD based
on the ICD-10 criteria and the 2021 clinical guidelines
for Chinese DKD, and then completed the classifications
of ‘non-DKD’ and ‘pre-DKD’ subgroups. Although the
ICD-10 criteria had been confirmed to be reliable in

diagnosis and classification for DM patients [27], there
were still biases induced by grouping errors or underre-
porting. Moreover, further studies are still needed to
evaluate and validate the application of our prediction
models in DKD risk assessment in clinical practice.

In summary, we constructed prediction models and
nomogram for DKD and evaluated their performance in
T2DM patients. Our models based on multivariate logis-
tic regression analysis had strong predictive powers,
and our nomogram provided visual aids to DKD risk cal-
culation, which was simple and fast. Our results could
provide risk assessment tools for DKD development in
T2DM patients, guide early clinical intervention, and ful-
fill the needs of patient self-assessment in clin-
ical practice.
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