
Wang et al. BMC Cancer          (2022) 22:420  
https://doi.org/10.1186/s12885-022-09518-z

RESEARCH

Machine learning‑based multiparametric 
MRI radiomics for predicting poor responders 
after neoadjuvant chemoradiotherapy in rectal 
Cancer patients
Jia Wang1, Jingjing Chen2, Ruizhi Zhou2, Yuanxiang Gao2 and Jie Li2* 

Abstract 

Background:  The purpose of this study was to investigate and validate multiparametric magnetic resonance imag-
ing (MRI)-based machine learning classifiers for early identification of poor responders after neoadjuvant chemoradio-
therapy (nCRT) in patients with locally advanced rectal cancer (LARC).

Methods:  Patients with LARC who underwent nCRT were included in this retrospective study (207 patients). After 
preprocessing of multiparametric MRI, radiomics features were extracted and four feature selection methods were 
used to select robust features. The selected features were used to build five machine learning classifiers, and 20 (four 
feature selection methods × five machine learning classifiers) predictive models for the screening of poor respond-
ers were constructed. The predictive models were evaluated according to the area under the curve (AUC), F1 score, 
accuracy, sensitivity, and specificity.

Results:  Eighty percent of all predictive models constructed achieved an AUC of more than 0.70. A predictive model 
using a support vector machine classifier with the minimum redundancy maximum relevance (mRMR) selection 
method followed by the least absolute shrinkage and selection operator (LASSO) selection method showed superior 
prediction performance, with an AUC of 0.923, an F1 score of 88.14%, and accuracy of 91.03%. The predictive perfor-
mance of the constructed models was not improved by ComBat compensation.

Conclusions:  In rectal cancer patients who underwent neoadjuvant chemoradiotherapy, machine learning classifiers 
with radiomics features extracted from multiparametric MRI were able to accurately discriminate poor responders 
from good responders. The techniques should provide additional information to guide patient-tailored treatment.
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Background
In recent years, preoperative neoadjuvant chemora-
diotherapy (nCRT) has gained acceptance as a standard 
therapy for patients with locally advanced rectal cancer 

(LARC) [1–3]. Preoperative nCRT is used to achieve 
tumor shrinkage, and the prognoses of patients with 
LARC have improved, in part owing to the use of nCRT 
[4, 5].

Although nCRT plays an important role in improv-
ing the prognosis for LARC, the patient responses to 
nCRT vary from a complete lack of response to patho-
logic complete response (pCR) [6, 7]. Accurate identi-
fication of the tumor response to nCRT is therefore of 
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great value for patients with LARC, allowing ineffec-
tive treatment to be avoided. The early identification 
of poor responders could provide an opportunity for 
such patients to proceed promptly to extensive surgery, 
because substantial evidence from previous studies has 
illustrated that extensive surgery is likely to reduce the 
local recurrence rate after operation and improve the 
prognosis for poor responders [8, 9]. Thus, the recent 
trend for patient-tailored surgery strategies for patients 
with LARC who have undergone nCRT has highlighted 
the need for reliable methods to accurately identify 
poor responders before surgery.

Response prediction in LARC patients who have 
undergone nCRT generally depends on surgically 
resected specimens, although this implies a substantial 
time delay. Previous articles confirmed the potential 
of medical imaging for evaluating treatment response 
before surgery, and among the available imaging 
modalities, magnetic resonance imaging (MRI) is con-
sidered to be the most promising method for assessing 
the response to nCRT in patients with LARC, owing to 
its good soft tissue resolution and the absence of ion-
izing radiation [10, 11]. Although a few imaging mark-
ers derived from preoperative MRI such as tumor 
diameter, tumor volume, and apparent diffusion coef-
ficient (ADC) values can offer additional guidance for 
the screening of poor responders after nCRT [12–18], 
these imaging markers often achieve only low accuracy 
in the prediction of poor responders. For ADC values 
in particular, the results for assessing the response to 
nCRT are inconsistent [19, 20]. Despite the diverse out-
comes of nCRT for LARC, there is still no consensus 
on which approach is the most reliable for evaluating 
tumor response after nCRT, and concerns still exist 
regarding the use of non-invasive methods to assess the 
response to nCRT earlier in the treatment regime.

Recently, the development of radiomics has shown 
great potential for evaluating therapeutic effects [21]. By 
converting medical images into a large number of quanti-
tative features, radiomics can reflect pathophysiology and 
even tumor heterogeneity [22]. The analysis of radiomics 
features may provide extra information for tumor clas-
sification, as well as for predicting the response to treat-
ment. The potential of radiomics measures as biomarkers 
has been investigated in rectal carcinoma and a variety 
of other cancers, including breast cancer [23], cerebral 
glioma [24], and prostate cancer [25]. Previous research 
reported that machine learning classifiers using MRI-
based radiomics can predict the tumor response to nCRT 
in patients with LARC [26–29]. However, these previous 
studies only focused on the prediction of pathological 
complete response (pCR), and they might have inherent 
limitations in reflecting the impact of nCRT. As a new 

approach, the full value of radiomics for the prediction of 
poor responders needs further investigation.

The aim of this study was therefore to investigate and 
validate preoperative MRI-based machine learning clas-
sifiers for the early identification of poor responders after 
nCRT in patients with LARC.

Materials and methods
Patients
Our institutional review board approved this retrospec-
tive study and the requirement for written informed 
consent from patients was waived. Rectal MR images 
of patients with LARC who received nCRT followed by 
surgery in our institution between March 2012 and May 
2020 were retrospectively analyzed. The inclusion and 
exclusion criteria and the patient recruitment process are 
shown in Fig.  1. Patients imaged before Dec 2017 were 
allocated to a training dataset (n = 129), whereas those 
imaged after this date were allocated to a validation data-
set (n = 78). Figure 2 illustrates the workflow for the radi-
omics analysis.

Pathological assessments of tumor regression
Histopathologic analysis of the surgically resected speci-
men is considered the gold standard for determining the 
response to nCRT. Two pathologists who were blinded 
to the MRI and clinical data evaluated the histopatho-
logic reports, which included the tumor response grad-
ing (TRG) according to that proposed by Mandard et al. 
[30]. The criteria for the TRG are shown in Supplemen-
tary Table S1. We classified patients with TRG 1–2 into 
a good response group, and those with TRG 3–5 into a 
poor response group.

MRI acquisition
All patients underwent a magnetic resonance exami-
nation on a Signa 3.0-T or Signa HDX 3.0-T MRI scan-
ner (GE Medical Systems, Milwaukee, WI, USA). 
T2-weighted imaging (T2WI), diffusion-weighted imag-
ing (DWI), and contrast-enhanced T1-weighted imaging 
(CE-T1WI) were acquired. The MR protocol is outlined 
in Table  1. Gadolinium contrast (Magnevist; Schering 
Diagnostics AG, Berlin, Germany) was intravenously 
administered at a rate of 2.5 ml/s during the contrast-
enhanced MRI scan.

Segmentation of tumor imaging and Radiomic feature 
extraction
First, the N4BiasFieldCorrection algorithm in SimpleITK 
(Version: 2.0.2, Home-page: http://​simpl​eitk.​org/) run-
ning in python (Version: 3.7.6) was applied to all of the 
MR imaging to achieve gray level normalization. Then, an 
open-source software package (3D-Slicer, version 3.4.2, 

http://simpleitk.org/
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https://​www.​slice r.​org/) was used for the imaging seg-
mentation, preprocessing, and feature extraction. Vol-
umes of interest (VOIs) were delineated on each slice of 
the T2WI, DWI, and CE-T1WI. To enhance the differenti-
ation of radiomics features, image preprocessing methods, 

including resampling to a voxel size of 1 × 1 × 1 mm and 
Gaussian filtering with sigma set at values of 0.5, 1.0, and 
1.5, were applied. The binwidth parameter in 3D-Slicer 
was set at 25. Finally, radiomics features were extracted 
from the preoperative imaging data using 3D-Slicer. The 

Fig. 1  Flow chart of the patient recruitment process

Fig. 2  Workflow for the radiomics analysis

https://www.slice
http://r.org
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radiomics features extracted are listed in Supplementary 
Table S2.

Intra‑observer and inter‑observer agreement
To assess intra- and inter-observer agreement, 62 sam-
ples were randomly chosen from the enrolled patients. 
Radiologist 1, with 11 years of professional experience, 
performed VOI delineations twice within 1 week for 
assessment of intra-observer reproducibility. Radiolo-
gist 2, with 8 years of professional experience, indepen-
dently performed VOI delineations once for evaluation 
of inter-observer reproducibility. First, the Dice coef-
ficient was used to evaluate overlap between the VOIs. 
The SimpleITK routine running in python was used to 
calculate the Dice coefficient. Second, all radiomics fea-
tures extracted from the VOI segmentations performed 
by the two radiologists were assessed for intra-observer 
and inter-observer agreement using the intraclass cor-
relation coefficient (ICC). Radiomics features with intra- 
and inter-observer ICCs ≥0.75 were accepted as having 
good reproducibility in a previous article [31]; therefore, 
radiomics features with ICCs ≥0.75 were considered to 
be robust features.

The ComBat compensation method
The ComBat compensation method was evaluated for its 
ability to correct for variations in the radiomic features 
derived from different MRI scanners (https://​github.​com/​
Jfort​in1/​ComBa​tHarm​oniza​tion). The ComBat function was 
performed using R software (version 3.4.2; R Foundation for 
Statistical Computing, Vienna, Austria).

Feature selection methods and machine learning 
algorithms
Radiomics features extracted from the training cohort 
were used for the feature selection procedures. Four 
feature selection methods were included in the study: 
least absolute shrinkage and selection operator 

(LASSO), recursive feature elimination (RFE), mini-
mum redundancy maximum relevance feature selection 
(mRMR), and mRMR combined with LASSO.

Five machine learning algorithms were used to sepa-
rate poor responders from good responders: decision 
tree (DT), random forest (RF), support vector machine 
(SVM), logistic regression (LR), and Adaboost. All fea-
ture selection and classification operations were per-
formed using R software.

The combination of four feature selection methods 
and five machine learning classifiers resulted in 20 
(4 × 5 = 20) predictive models. The predictive values 
of the models were quantified by the receiver operat-
ing characteristics (ROC) curve and the area under the 
curve (AUC), and confusion matrix analysis with indi-
cators of F1 score. Accuracy, sensitivity, and specificity 
were also used to assess the diagnostic performance of 
the models. The AUCs of the models were evaluated 
using the Delong test.

Statistics
For the clinical data, independent t-tests or Mann–
Whitney U tests were used to analyze continuous vari-
ables. Fisher’s exact test or chi-square tests were used 
to analyze categorical variables. A two-sided p value of 
< 0.05 was used as the criterion to indicate a statisti-
cally significant difference. The R packages used in this 
study are listed in Supplementary Table S3.

Results
Patient characteristics
The patient selection process is displayed in Fig.  1. A 
total of 207 patients with LARC were enrolled in the 
study. The clinical characteristics of the patients and 
their responses to nCRT are presented in Table  2. 
Patient age and sex showed no significant differences 
between the two cohorts (P > 0.05, both).

Table 1  Parameters of the MRI sequences

T2WI T2-weighted imaging, CE-T1WI contrast-enhanced T1-weighted imaging, DWI diffusion-weighted imaging, TR relaxation time, TE echo time

Scanner Sequence b value (s/mm2) TR (ms) TE (ms) image resolution 
(mm)

Slice Thickness 
(mm)

Slice 
Gap 
(mm)

Signa 3.0-T T2WI – 4200 102 0.75×  0.75 3 1

CE-T1WI – 680 13 0.6× 0.6 4 0

DWI 0,800 4000 68 2× 2 6 6

Signa HDX 3.0-T T2WI – 3900 90 0.6× 0.6 3 0.5

CE-T1WI – 573 20 0.55 × 0.55 3 0

DWI 0,800 3800 80 1.5 × 1.5 5 5

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/Jfortin1/ComBatHarmonization
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Analysis of intra‑observer and inter‑observer agreement
The median Dice coefficient for the intra-observer over-
lap in VOIs was 0.912, with an inter-quartile range of 
0.871–0.953. For inter-observer VOI overlap, the median 
Dice coefficient was 0.887, with an inter-quartile range of 
0.848–0.937.

A total of 1027 radiomics features were extracted 
from the three MRI modalities of T2WI, DWI, and CE-
T1WI. The inter-observer assessment showed a satis-
factory agreement rate of 91.82% (mean ICC = 0.862, 
range 0.012–0.989), while the intra-observer assessment 
showed a satisfactory agreement rate of 94.27% (mean 
ICC = 0.901, range 0.030 to 0.996). Finally, 85 radiomics 
features (ICC < 0.75) were excluded.

Radiomics features selected with different feature 
selection methods
The radiomics features selected after application of the 
four feature selection methods are listed in Supplemen-
tary Tables S4, S5, S6 and S7.

Classifier performance
No significant difference in AUC, F1 score, or accu-
racy was observed between classifiers using ComBat 

compensation and those not using ComBat compensa-
tion (Fig.  3), leading us to conclude that the predictive 
performance of the models was not improved by the use 
of ComBat compensation.

The AUCs of the models for the prediction of poor 
responders in the training cohort and validation cohort 
are shown in Tables 3 and 4 and Fig. 4. The AUC scores 
ranged from 0.624 to 1.000 in the training cohort, and 
from 0.429 to 0.923 in the validation cohort.

In the validation cohort, the SVM classifier was supe-
rior to the other classifiers, with a median AUC of 0.878 
(IQR 0.864–0.887). Using the features selected by the 
mRMR-LASSO analysis, the SVM achieved the highest 
AUC of 0.923 (CI: 0.862–0.985) in the validation set, fol-
lowed by LASSO plus SVM (AUC, 0.892). A Delong test 
comparison of the AUCs of the constructed models for 
prediction of poor responders in the validation cohort is 
illustrated in Fig. 5.

Figure 6 illustrates the accuracy, sensitivity, and speci-
ficity values of the constructed models. The model using 
the mRMR-LASSO feature selection and SVM classi-
fier achieved the highest F1 score (88.14%), accuracy 
(91.03%), and sensitivity (89.60%). The model using the 
LASSO feature selection and SVM classifier showed the 
highest sensitivity at 93.88%, followed by the model using 
the mRMR-LASSO feature selection and SVM classifier 
(91.84%).

Scatterplots of the AUCs and F1 scores (Fig.  7) show 
that the combination of the mRMR-LASSO feature 
selection method and SVM machine learning classifier 
without ComBat compensation achieved the highest per-
formance in the prediction of poor responders.

The radiomics quality scores (QRS) of the current study 
are listed in Supplementary Table S8.

Discussion
In the present study, we constructed effective machine-
learning classifiers using MRI-based multiparamet-
ric radiomics features for the early prediction of poor 
responders after nCRT. Overall, our results show that 

Table 2  Patients’ clinical characteristics

Total P Training 
cohort 
(n = 129)

Validation 
cohort 
(n = 78)

P

Age (median, 
[interquartile 
range])

66, [55-69] – 66, [56-70] 64, [51-68] 0.103

Sex

  male 132 < 0.001 80 52 0.599

  female 75 49 26

Response to nCRT​

  good 
responders

88 0.031 59 29 0.288

  poor 
responders

119 70 49

Fig. 3  Performance of models with and without ComBat compensation. a Comparison of AUC values between ComBat compensation and no 
ComBat compensation. Comparison of accuracy (b) and F1 scores (c) between ComBat compensation and no ComBat compensation
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80% of the predictive models achieved AUCs of more 
than 0.70. We also found that the predictive model using 
the SVM classifier with the mRMR-LASSO feature selec-
tion method showed the highest prediction performance, 
with an AUC of 0.923, an F1 score of 88.14%, and accu-
racy of 91.03%. Using this model, patients with a high risk 
of TRG 3–5 after nCRT could be accurately screened. 
The method provides a noninvasive and timely approach 
to screen poor responders before surgery.

From a therapeutic perspective, differentiating poor 
responders from good responders after nCRT is clini-
cally important for at least two reasons. First, early pre-
diction of poor responders prior to surgery could provide 
patients with the opportunity to undergo more exten-
sive surgery. According to Denost et  al. [8], extensive 

resection should be adopted in patients who do not 
respond well to neoadjuvant treatment, to achieve the 
optimum postoperative and oncological outcomes; 
patients who did not respond well to nCRT and under-
went extensive resection showed 3-year local recurrence 
significantly lower than those who underwent total mes-
orectal excision (22% VS. 39%, p = 0.04). Second, early 
prediction of the response to nCRT would allow patients 
to be divided into different prognostic groups to reduce 
treatment morbidity associated with second-line chemo-
therapy drugs and a higher radiation dose.

Pathological evaluation is considered a reliable 
method to evaluate the response to nCRT and to strat-
ify patients into poor and good responders. However, 
stratification according to pathological evaluations of 

Table 3  AUCs for the performance of the predictive models in the training cohort

Values in parentheses are 95% confidence intervals

LASSO least absolute shrinkage and selection operator, RFE recursive feature elimination, mRMR minimum redundancy maximum relevance feature selection, DT 
decision tree, RF random forest, SVM support vector machine, LR logistic regression

Feature selection methods Machine Learning Classifiers

DT RF SVM LR Adaboost

No ComBat

  REF 0.955 (0.921-0.989) 0.873 (0.817-0.959) 0.935 (0.896-0.974) 1 (1-1) 0.624 (0.587-0.661)

  mRMR 0.934 (0.888-0.98) 0.894 (0.846-0.942) 0.925 (0.864-0.986) 0.966 (0.94-0.992) 0.785 (0.713-0.856)

  LASSO 0.901 (0.847-0.956) 0.921 (0.870-0.972) 0.911 (0.863-0.959) 0.851 (0.808-0.894) 0.795 (0.726-0.864)

  mRMR+LASSO 0.909 (0.854-0.965) 0.911 (0.862-0.960) 0.945 (0.896-0.994) 0.930 (0.886-0.975) 0.833 (0.767-0.898)

ComBat

  REF 0.928 (0.881-0.975) 0.831 (0.788-0.874) 0.863 (0.812-0.914) 1 (1-1) 0.819 (0.754-0.885)

  mRMR 0.925 (0.878-0.973) 0.867 (0.813-1) 0.918 (0.857-0.961) 0.860 (0.827-0.892) 0.88 (0.822-0.937)

  LASSO 0.94 (0.899-0.982) 0.932 (0.901-0.963) 0.921 (0.878-0.964) 0.944 (0.908-0.981) 0.888 (0.834-0.941)

  mRMR+LASSO 0.948 (0.914-0.982) 0.894 (0.852-0.936) 0.938 (0.895-0.981) 0.909 (0.858-0.96) 0.731 (0.653-0.808)

Table 4  AUCs for the performance of the predictive models in the validation cohort

Values in parentheses are 95% confidence intervals

LASSO least absolute shrinkage and selection operator, RFE recursive feature elimination, mRMR minimum redundancy maximum relevance feature selection, DT 
decision tree, RF random forest, SVM support vector machine, LR logistic regression

Feature selection methods Machine Learning Classifiers

DT RF SVM LR Adaboost

No ComBat

  REF 0.569 (0.441-0.698) 0.781 (0.679-0.884) 0.851 (0.759-0.943) 0.648 (0.534-0.762) 0.429 (0.316-0.542)

  mRMR 0.735 (0.622-0.849) 0.841 (0.752-0.931) 0.864 (0.782-0.947) 0.745 (0.628-0.863) 0.664 (0.554-0.775)

  LASSO 0.715 (0.597-0.833) 0.879 (0.8-0.957) 0.892 (0.816-0.967) 0.738 (0.627-0.849) 0.62 (0.509-0.731)

  mRMR+LASSO 0.767 (0.653-0.882) 0.879 (0.804-0.953) 0.923 (0.862-0.985) 0.792 (0.686-0.897) 0.709 (0.604-0.814)

ComBat

  REF 0.774 (0.669-0.879) 0.726 (0.607-0.844) 0.79 (0.689-0.891) 0.728 (0.608-0.848) 0.72 (0.622-0.818)

  mRMR 0.754 (0.648-0.859) 0.821 (0.728-0.915) 0.852 (0.763-0.94) 0.702 (0.578-0.826) 0.722 (0.617-0.827)

  LASSO 0.781 (0.675-0.887) 0.877 (0.797-0.958) 0.878 (0.801-0.954) 0.682 (0.572-0.792) 0.747 (0.654-0.841)

  mRMR+LASSO 0.658 (0.53-0.786) 0.831 (0.739-0.923) 0.887 (0.806-0.969) 0.742 (0.625-0.86) 0.562 (0.446-0.677)
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surgical specimens involves a substantial time delay for 
poor responders, and cannot be used to guide tailored 
surgery strategies. Thus, there is important demand for 
a non-invasive method to provide accurate prediction 
of poor responders before surgery.

Previous studies highlighted the value of several imag-
ing modalities for distinguishing poor responders from 
good responders before surgery. Sun at al. revealed that 
an increase in mean ADC after nCRT for LARC corre-
lated with a good response to CRT [32]. This correlation 

Fig. 4  Scatterplots showing the AUCs of classifiers combining different feature selection methods with and without ComBat compensation

Fig. 5  Delong test comparison of the AUCs of the constructed models applied to the validation cohort data. LASSO, least absolute shrinkage and 
selection operator; RFE, recursive feature elimination; mRMR, minimum redundancy maximum relevance feature selection; DT, decision tree; RF, 
random forest; SVM, support vector machine; LR, logistic regression
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between mean ADC and response to nCRT was also 
found by Lambrecht and colleagues in a study on 20 
patients [20]. However, a previous study conducted by 
Kim et  al. included 76 patients with LARC and found 
that pre-CRT ADC values could not reliably discriminate 
patients according to their response to nCRT [19]. A pos-
sible explanation for these contrasting results is that the 
mean ADC value derived from a single ROI may under-
estimate tumor heterogeneity. In another study evaluat-
ing the prediction of poor responders after nCRT, Tang 
and colleagues [33] developed a predictive model using 
clinical parameters and MRI findings collected using a 
structured report template to predict poor responders 
after nCRT, and found an AUC of 0.820. Our best classi-
fier, which used an SVM combined with mRMR-LASSO 
feature selection, had better predictive performance than 
their model, with an AUC of 0.923.

The radiomics features used in our study were extracted 
from multi-parametric MRI, instead of a single imaging 
modality. These radiomics features extracted from dif-
ferent MRI modalities could reflect tumor heterogeneity 
caused by variations in tumor intensity, cellularity, and 
vascularization, and a combination of radiomics features 
from multi-parametric MRI is likely to improve prognos-
tication in comparison with radiomics features extracted 
from a single sequence. Although our results do not com-
prehensively identify the particular MRI sequences that 
provide the most relevant information for predicting the 
response to nCRT, radiomics analysis derived from mul-
tiparametric MRI clearly has the potential to provide 
added value to conventional MRI [34, 35]. Nie et al. found 
that radiomic features derived from T2WI, DWI, and 
CE-T1WI enhanced the predictive power of an artificial 
neural network classifier [28]. In another retrospective 

Fig. 6  Heatmaps of F1 score (a), accuracy (b), sensitivity (c), and specificity (d) for different methods for predicting poor responders

Fig. 7  Scatterplot illustrating AUC and F1 scores for different combinations of feature selection methods and machine learning methods applied to 
the validation set. The circle located in the upper right corner indicates the models with superior prediction performance
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study including 48 patients, Shi et  al. [36] showed that 
multiparametric MRI features helped to improve the pre-
dictive performance of a voxel-based analysis model for 
identifying pCR after nCRT, a finding in line with that of 
Liang and colleagues in a cohort of 108 patients [20].

To successfully assess the predictive performance of 
radiomics-based classifiers, it is necessary to adopt and 
compare different machine learning classifiers. The appli-
cation of appropriate machine learning classifiers is likely 
to help improve the stability and performance of predic-
tive models. We employed AUCs and F1 scores to assess 
performance, and our results revealed that machine 
learning using an SVM classifier had the best AUC and 
F1 score. The superiority of SVM algorithms for building 
predictive classifiers has been showed in previous studies 
on other tumor types [37, 38]. SVM classifiers are appli-
cable to the analysis of small datasets and dichotomous 
variables, and are highly stable.

We also compared the effects of four different feature 
selection methods reported in previous studies and found 
that the predictive performance of machine learning clas-
sifiers can be affected by the feature selection method. 
This is consistent with the results of Remeseiro et  al. 
[39]. We found the optimal feature selection method to 
be mRMR-LASSO, which was also employed in previous 
studies [40].

In the last phase of the processing, we evaluated the use 
of ComBat compensation to counteract the effects of dif-
ferent scanners and protocols on the radiomics features 
while retaining the original definitions of the features. 
Radiomics feature values can be affected by the use of dif-
ferent scanners [41, 42], and there is a need to lower the 
variability of radiomics features extracted from different 
machines [43–45]. However, the predictive performance 
of our classifiers was not improved by ComBat compen-
sation, which is in accord with a study by Wang et al. [46]. 
Thus, the value of ComBat compensation for improving 
the predictive performance of radiomics-based models 
requires further study.

This study has several limitations. First, this is a retro-
spective study, and may therefore be subject to selection 
bias. Some patients on a “wait-and-see” approach were 
not included in our study. Second, although internal vali-
dation of the current study showed optimal AUCs, data 
with greater variability are required (different scanners, 
magnetic fields, institutions). Third, because of edema 
and fibrosis accompanying nCRT, a few tumors showed 
indistinct margins, which may have impacted on the 
imaging segmentation. However, MRI demonstrates rela-
tively high tissue contrast compared with other imaging 
modalities such as computed tomography, making detec-
tion of the tumor margin more accurate.

Conclusion
In this retrospective study, a predictive model based 
on multiparametric MRI radiomics features and using 
an SVM classifier and mRMR-LASSO feature selector 
showed the best performance for presurgical predic-
tion of poor responders to nCRT. The technique should 
provide additional information to guide patient-tailored 
treatment plans.
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