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Abstract: Torulaspora delbrueckii has attracted interest in recent years, especially due to its biotech-
nological potential, arising from its flavor- and aroma-enhancing properties when used in wine,
beer or bread dough fermentation, as well as from its remarkable resistance to osmotic and freez-
ing stresses. In the present review, genomic, biochemical, and phenotypic features of T. delbrueckii
are described, comparing them with other species, particularly with the biotechnologically well-
established yeast, Saccharomyces cerevisiae. We conclude about the aspects that make this yeast a
promising biotechnological model to be exploited in a wide range of industries, particularly in wine
and bakery. A phylogenetic analysis was also performed, using the core proteome of T. delbrueckii,
to compare the number of homologous proteins relative to the most closely related species, under-
standing the phylogenetic placement of this species with robust support. Lastly, the genetic tools
available for T. delbrueckii improvement are discussed, focusing on adaptive laboratorial evolution
and its potential.
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1. Introduction

Non-Saccharomyces yeasts were described for many years as sources of spoilage and
contamination, and are also associated with a negative contribution to the organoleptic
profile of wines. However, in recent decades, wines produced by some non-Saccharomyces
yeasts revealed distinct and unique characteristics attracting the attention of many research
groups [1]. Improved wines are obtained benefiting from their physiological and metabolic
features, which have a positive effect on the wine’s sensorial and chemical properties,
namely in terms of sugar and acid consumption, alongside an enhanced aroma complexity
through the release of important metabolites [2–4]. Within this group of yeasts, Torulaspora
delbrueckii stands out as one of the most advantageous non-Saccharomyces species due to its
potential to introduce diversity and multiplicity to the standard wine’s market, currently
established by the use of Saccharomyces cerevisiae [5]. The rising interest in T. delbrueckii
is reflected by the number of scientific publications involving this species. According
to the Web of Science™ database, between the years 1987 and 2013, an average of eight
publications per year were related to the topic T. delbrueckii (search queries by title, abstracts
and keywords), and this number is continuously growing with a 6-fold increase between
2013 and 2021.

In the present review, we explored available information on the biochemical, genomic
and phenotypic features of T. delbrueckii, with special emphasis on the aspects that make
this yeast a promising biotechnological model to be exploited in a wide range of industries,
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but particularly in wine and bakery. Genomic, phenotypic, and metabolic characteristics of
T. delbrueckii were scrutinized to enrich the understanding of this non-Saccharomyces yeast,
comparing it with the yeast well-established in the market, S. cerevisiae. In addition, the
importance of applying genetic tools towards T. delbrueckii improvement was highlighted.

2. Occurrence and General Characteristics

Yeasts from the genus Torulaspora have been reported in a wide variety of habitats,
such as fruits [6], insects [7,8], soils [9], soil invertebrates [10], plants [11,12], seawa-
ter [13], spoiled food [6] and malt environments [6], where yeast from other genera like
Saccharomyces and Zygosaccharomyces may also be present [14,15]. Although not considered
a human pathogen, the species T. delbrueckii can also be found as a clinical isolate [16]. In
addition to the diversified isolation substrates, T. delbrueckii also presents a worldwide
geographical distribution, with reports describing its isolation in 37 countries from the five
continents, as shown in Figure 1
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Species belonging to the genus Torulaspora can reproduce asexually by cell division
(budding division) or sexually through asci, containing one to four spherical ascospores,
characteristic of ascomycetous yeasts [4,18,19]. Regarding its shape, Torulaspora yeasts are
mainly discerned by spherical cells (hence the torulu terminology), but also ovoid and
ellipsoidal forms, with dimensions of approximately 2–6×3–7 µm, which are smaller than
those of S. cerevisiae. The sharing of multiple morphological and physiological character-
istics between some species has led to a misclassification of some of them. Within the
genus Torulaspora, four strains presumed to be T. delbrueckii were later reclassified into the
genera Debaryomyces and Saccharomyces. Currently, this group includes at least six species:
T. delbrueckii (anamorph Candida colliculosa), T. franciscae, T. pretoriensis, T. microellipsoides,
T. globosa and T. maleeae [20]. Two other species—T. indica and T. quercuum—have also
been proposed to be included in this genus, after the employment of molecular tools to
discriminate them [21]. For many years, T. delbrueckii was described as a haploid yeast,
essentially because of its small cell size and due to the rare detection of tetrads in sporu-
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lation media [20]. However, Albertin et al. [6] suggested that this species may be mainly
diploid. The reduced size of this yeast is not, in this way, associated with the ploidy level,
and may be explained by the fact that T. delbrueckii only possesses 16 chromosomes in the
diploid phase, instead of the 32 chromosomes found in S. cerevisiae diploid yeasts [20].
Given the lack of deep knowledge about the life cycle of T. delbrueckii, it is still difficult
to design strategies for the biotechnological improvement of T. delbrueckii using classical
genetic techniques such as those commonly proposed for S. cerevisiae [22]. New techniques
are, in this way, being explored, as will be detailed further.

The phylogenetic proximity between T. delbrueckii and S. cerevisiae may contribute
to explain why T. delbrueckii is one of the non-Saccharomyces yeasts suggested to be most
promising for use in biotechnological industries, especially the ones using fermentative pro-
cesses such as wine- or bread making. T. delbrueckii was one of the first non-Saccharomyces
species to be applied commercially in wines, even though only a few species are available
in companies’ catalogues: PreludeTM, BiodivaTM, Zymaflore® Alpha, Vinifer NSTD, and
Primaflora® VB BIO [4].

3. Genomics and Taxonomy

In opposition to the extensive knowledge about S. cerevisiae genome, the most thor-
oughly annotated eukaryotic organism [23], there has been a hinder in progress regarding
T. delbrueckii genomic characterization, also delaying the understanding of the genomics
underlying the unique aptitudes showed by this species, in comparison with other yeasts.
The genome of T. delbrueckii type strain CBS1146 is organized in eight chromosomes, it is
9.52 Mb long and has a GC content of 41.9% [24]. Recently, our in-depth study [25] anal-
ysed publicly available genomes of T. delbrueckii strains, improving their annotation and
concluding about important intra-strain differences. In terms of genome size, variations
between 9.22 Mb and 11.53 Mb were found. This variation corresponds also to a diverse
number of protein-coding genes being annotated (between 464 and 503). Interestingly,
the similarity obtained when analysing pairwise comparisons between the four tested
strains’ genomes was only as high as 99.63%, and in one case was as low as 97.62%. The
improved genome annotation obtained in this work allowed to extend this diversity to a
particular functional characterization, showing inter-strain differences in proteins related
to ATP-synthesis, proton transports, biosynthesis of inositol and resistance to antiviral
Brefeldin A. These differences highlight the importance of using different yeast strains in
beverages production (and also in other biotechnological applications), improving their
quality and diversity.

T. delbrueckii belongs to the phylum Ascomycota, subphylum Saccharomycotina, class
Saccharomycetes, order Saccharomycetales, family Saccharomycetaceae. In our previous
work [25] we detailed the T. delbrueckii phylogenetic placement in relation to 386 other
fungal species/strains, concluding about the proximity between this species and the genera
Zygosaccharomyces and Zygotorulaspora. Our results were in accordance with the work of
Shen et al. [26], which showed the phylogenetic reconstruction of more than 300 budding
yeasts, even though the T. delbrueckii branch was concluded as not being robustly supported.
Aiming at elucidating the proximity between the three genera—Torulaspora, Zygosaccha-
romyces and Zygotorulaspora—we performed a robust phylogenetic reconstruction, filling
this gap with the inclusion of additional genomes publicly available in NCBI. As can be
depicted in Figure 2, all the 15 available genomes of T. delbrueckii were grouped together
in a single isolated clade (highlighted in green in Figure 2), separated from the ones of
T. pretoriensis, T. franciscae, T. maleae, T. globosa and T. microellipsoides. The large branch
containing all genomes of the genus Torulaspora revealed to be isolated from Zygotorulas-
pora clade (containing species Zygotorulaspora florentina and Zygotorulaspora mrakii, and
highlighted in red in Figure 2). In addition, both these genera—Torulaspora and Zygotoru-
laspora—formed an isolated group, separated from the one containing Zygosaccharomyces
species (highlighted in blue in Figure 2).
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4. Metabolism

Concerning T. delbrueckii fermentative behaviour, no consensus has yet been gathered
regarding its fermentative power. Some authors characterized this species as having a good
fermentation performance in wines [3,4,14,20]. Bely et al. [14] even categorized T. delbrueckii
as having a performance 9 to 10% higher when considering other non-Saccharomyces yeasts.
On the contrary, Belda et al. [27] and Loira et al. [28] concluded that Torulaspora spp. have
lower fermentative power. Still, Almeida and Pais [29] described similar fermentation
ability for T. delbrueckii and S. cerevisiae strains in bread dough. These observations could
support the idea of a strain dependent profile with respect to the fermentative capacity of
this species, which is also supported by our unpublished data showing a heterogenous
performance when analyzing a collection of T. delbrueckii strains.

T. delbrueckii presents poor fructose and glucose consumption under conditions of
high ethanol and moderate acetic acid concentrations, that can be present in stuck wine
fermentations, although it can survive in this environment. This behavior has been associ-
ated with the sensitivity of its hexose transport to the inhibitory effect of ethanol [30,31].
To address this limitation, a hybrid strain (F1-11) was constructed by Santos et al. [31]
combining the advantageous characteristics of high tolerance to both ethanol and acetic
acid of T. delbrueckii, and the high hexose consumption of S. cerevisiae. This hybrid exhibited
a hexose consumption comparable to the one of the S. cerevisiae and revealed improved
resistance to ethanol and acetic acid, presenting lower cell death rates.

Comparatively, both T. delbrueckii and S. cerevisiae species behave quite particularly
regarding oxygen availability. As the oxygen feed rate decreases, S. cerevisiae is the first
yeast to switch to a respiro-fermentative metabolism, thus exhibiting lower biomass yields
at reduced amounts of oxygen, in comparison to T. delbrueckii, which is able to maintain
full respiration under these conditions, translating into a lower fermentation strength and
a slower growth rate [32]. This occurrence could be less favorable in a winemaking envi-
ronment since wine production is usually performed under strictly anaerobic conditions
(e.g., white, and sparkling wine), or in the presence of very low oxygen concentrations (e.g.,
red wines) [33].

Even though T. delbrueckii possesses lower tolerance to low-oxygen conditions [14,34],
its metabolism is usually associated with several positive characteristics, mainly regarding
the wine industry, related to high osmotic and sulphur dioxide resistance [23–28,35],
enhanced capacity for biotransformation of terpenes [28,36,37], or high competence to
produce lactic and succinic acids [28,36].

The volatile acidity associated with wine is mainly due to the presence of acetic acid
which, above a threshold of 0.8 g/L is considered as negatively affecting the quality of the
product, contributing to a vinegar character. Regarding acetic acid production, T. delbrueckii
presents an advantage towards S. cerevisiae, since it typically produces lower levels. In
fact, according to Bely et al. [14], it originated between 0.27 g/L and 0.56 g/L of acetic
acid, even in high-sugar fermentations, while S. cerevisiae produced amounts ranging
between 1.0 and 1.17 g/L. Values reported for S. cerevisiae can be even higher under some
conditions, reaching up to 1.8 g/L [14,20] and Paraggio et al. [38] reported acetic acid
production as a strain-dependent feature of this yeast. Other works have reported even
lower values of acetic acid production by T. delbrueckii, ranging from 0.14 to 0.28 g/L [4,14].
T. delbrueckii is also a lower producer of acetaldehyde, in comparison with S. cerevisiae,
which is an important advantage, since concentrations above 125 mg/L of acetaldehyde
pertain to a negative effect on wine’s flavor, often being described as oxidized. In red wines,
acetaldehyde is, on the other hand, described as being of interest to produce vitisin B, a
red stable phenol compound [4]. In fact, vitisin B belongs to the group of the most stable
anthocyanins, which are normally used as a strategy to increase the intensity of wines’
red color. Nevertheless, beyond this strategy, color perception can be increased through
a reduction in the pH [5]. Regarding malic acid degradation, some contrasting reports
characterize T. delbrueckii as consuming, for one side, between 20–25% of this acid [27,39],
but on the other side as having no consumption at all [28]. Malic acid degradation seems to



J. Fungi 2021, 7, 712 6 of 18

be, in this way, a strain-dependent feature, as also concluded by Du Plessis et al. [40]. In a
similar way to malic acid, citric acid is an organic acid produced through the Tricarboxylic
Acid Cycle (TCA) pathway, standing out as a pleasant citrus-like taste contributor to wines’
aroma profile. Liu et al. [41] carried out pure fermentation of T. delbrueckii and S. cerevisiae
and observed similarities between both species in terms of production of this acid, reaching
concentrations of 2.18–2.36 g/L and 2.23 g/L, respectively.

Another favorable characteristic associated with the use of T. delbrueckii is its higher
production of succinic acid, in comparison with S. cerevisiae, being able to reach concen-
trations above 1 g/L depending on the oxygen availability during fermentation [41,42].
In fact, Puertas et al. [43] reported productions by T. delbrueckii between 0.84 g/L and
1.11 g/L, while in the same study S. cerevisiae only reached maximum values of 0.65 g/L.
However, Franco-Duarte et al. [44] obtained maximum concentrations of 1.13 g/L using
natural isolates of S. cerevisiae. Alongside, in comparison with S. cerevisiae, T. delbrueckii
generates amounts of mannoproteins up to 25% higher (expressed as mannose concen-
tration) that are released from the yeast cell during alcoholic fermentation and during
the ageing processes, and contribute to the chemical stabilization of white wines [4,5]. A
similar study was performed by Domizio et al. [45], where T. delbrueckii revealed up to 50%
more polysaccharides, in pure fermentations, than the S. cerevisiae controls.

Oenological importance of glycerol stands out by its enhancement of softness and vis-
cosity of wine [4,5]. Wines fermented by non-Saccharomyces yeasts, particularly T. delbrueckii,
are recognized to result in slightly higher glycerol yields than those fermented by S. cere-
visiae, in concentrations ranging between 1 g/L [46] and 10.5 g/L [47] for T. delbrueckii,
while S. cerevisiae revealed maximum concentrations of 9.1 g/L (depending on the wine
style). Beyond glycerol production, T. delbrueckii is usually described as a low ethanol
producer (40.6–72.7 g/L [48]) in comparison to traditional fermentations carried out by
S. cerevisiae [4,7]. These concentrations are in a much lower range of values than the one
obtained with S. cerevisiae strains—103 to 121 g/L [49]. In addition, the great mouthfeel
traits [14] reinforce the wide potential of T. delbrueckii in winemaking [7,28,50]. Table 1 re-
views experimental results obtained regarding the most relevant fermentation parameters
towards wines’ organoleptic profile, comparing T. delbrueckii and S. cerevisiae.

Table 1. Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae concerning fermentation parameters
quantified at the end of fermentation process with relevance in wine organoleptic profiles.

Product Torulaspora
Delbrueckii

Saccharomyces
Cerevisiae Notes References

Acetic acid 0.27–0.56 g/L 1.0–1.17 g/L Key signature in volatile acidity of wines [14,20]

Malic acid Consumption
between 10.5–25%

Whether degradation or
production is desirable depends on the

must characteristics.
[23,39,48]

Citric acid 2.18–2.36 g/L 2.23 g/L Citrus-like taste [41]

Succinic acid

0.84–1.11 g/L Maximum of
0.65 g/L

Minor acid in the overall wine acidity, although the
combination with one

molecule of ethanol creates the ester mono-ethyl
succinate, responsible for a mild, fruity aroma

[43]

- Maximum of
1.13 g/L [44]

Mannoproteins T. delbrueckii produces 25% more than
S. cerevisiae Released during fermentation or ageing processes [23]

Polysaccharides T. delbrueckii releases 50% more than
S. cerevisiae Increases the quality of mouthfeel properties [45]

Glycerol 1–10.5 g/L Maximum of
9.1 g/L Smoothness and viscosity features [46,47]

Ethanol 40.6–72.68 g/L 103–121 g/L [48,49]
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Regarding higher alcohols, several authors presented contradictory results related to
high and low levels of these compounds as produced by T. delbrueckii [2,23,51], leading
to conclude that this characteristic is, once again, strain-dependent. Particularizing for
nitrogen metabolism, Bely et al. [14] observed higher residual nitrogen levels in pure
fermentation with T. delbrueckii, in comparison to those obtained with S. cerevisiae alone.
This discrepancy may be due to the fact that this species is less demanding for amino acids.

5. Biotechnological Importance of T. delbrueckii
5.1. Bread Industry

Bread making is a practice that has long been discovered and has been the subject
of much progress. In more recent years, developments in bread making have been in-
creasingly focused on the enhancement and diversification of the sensory pleasures of
taste, texture, and appearance of the final product [19]. The degradation of the dough
carbohydrates (namely fructose, glucose, sucrose and maltose) present in the flour, or
even wittingly added, is carried out by yeasts, resulting in the release of carbon dioxide
and ethanol, produced through glycolysis and posterior pyruvate decarboxylation and
reduction [17,19,30]. Carbon dioxide is responsible for the dough leavening, while most
of the ethanol evaporates during the baking process. However, the latter also plays an
important role in the properties of the dough [17]. The choice of the appropriate yeast is
usually based on (i) good fermentative power which could be translated into its ability to
leaven the dough; (ii) capacity to use different carbon sources; and (iii) tolerance to stressful
conditions, namely, osmotic, and freezing stresses [30,52,53]. S. cerevisiae strains have been
domesticated and optimized for baking applications and are usually the manufacturer’s
required yeast for the baking industry. This species efficiently uses maltose as a source
of energy, as opposed to Candida humilis and Kazachstania exigua which, according to de
Vuyst et al. [17], are sourdough-specific maltose-negative yeasts. S. cerevisiae is commonly
implemented as a leavening agent, becoming an alternative to sourdough (extensively
used for years) particularly in rapid and industrial-scale bread productions [17]. How-
ever, T. delbrueckii is being pointed out as an alternative to S. cerevisiae in this industry,
mainly due to its high osmotic and freeze-thawing resistance, showing improvement of the
quality of the bakery products [29,30]. Experiments conducted by Almeida and Pais [29]
demonstrated greater leavening activity in lean and frozen dough for T. delbrueckii strains,
comparing to S. cerevisiae, as the traditional yeast was more prone to suffer from freeze
damage during the storage of the doughs. Apart from this feature, T. delbrueckii strains
displayed rapid growth, a more rapid response when exposed to hyperosmotic conditions,
and high biomass production accompanied with sweet properties (associated with the
release of aromatic compounds). These observations were later confirmed by Hernandez-
Lopez, Prieto and Randez-Gil [54]. Due to its osmotolerant properties, T. delbrueckii has
already been used in the bakery industry in Japan, for the production of sweet breads and
pastries [55].

Co-cultures using S. cerevisiae and T. delbrueckii species enhanced bread quality with su-
perior aroma and improved sensorial attributes, with 47 volatile compounds—predominately
alcohols, aldehydes, and esters—being identified in the bread crumb leavened with both
yeasts [19]. Wahyono et al. [19] highlighted some properties of the resulting mixed bread
which, using a radar plot, rated within a range of 4.73–5.57 from a total of 7 points, such as
acceptability, enhanced flavor, mouthfeel, and color, in comparison with S. cerevisiae single
cultures, which recorded within 4.07–5.71 range in the same radar plot.

5.2. Production of Fermented Beverages

In recent years, researchers worldwide have been paying particular attention to
T. delbrueckii exploitation to improve wines organoleptic final profile and quality. As
referred above, its physiological and metabolic properties revealed positive effects in wines
characteristics towards acids and sugar consumption, but also an enhancement of the
aroma complexity through the production of important metabolites [2–4,23,56–59]. During
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wine fermentation, higher alcohols (also termed fused alcohols) and esters contribute 30 to
80% to the aroma profiles of wine, being the two most relevant groups of metabolites [59].
Isobutanol, phenyl ethanol and isoamyl alcohol are the main fusel alcohols reported to
contribute to the wine’s scent in concentrations ranging from 1.41 mg/L to 9.2 mg/L [60].
According to Ebeler [61], yields of this type of metabolites can achieve 140–420 mg/L,
but concentrations over 300 mg/L contribute negatively to the aroma quality. Besides
fusel alcohols, the aromatic matrix of wine is composed of esters, which are by-products
of yeasts metabolism during malolactic fermentation, ageing and, most relevant in this
context, alcoholic fermentation. These molecules reach maximum values when yeasts
achieve the stationary growth phase [62], as its production by T. delbrueckii is a strain-
dependent feature [60]. Two main esters classes are present in wine: the ethyl esters and the
acetate esters. The contribution of the latter encompasses desirable floral and fruity sensory
properties in wine, contributing about 75% to the flavor profile [60–62]. However, as stated
in Belda et al. [62], wines holding concentrations of ethyl acetate higher than 90 mg/L are
considered to be faulty. Other important metabolites are fatty acids, which are detected
in alcoholic beverages as mainly straight-chain and saturated molecules, with palmitoleic
acid considered the most relevant unsaturated fatty acid. Besides these, fatty acids with
different chain lengths are part of the wine’s matrix but prevail in small amounts, which
makes them not so significant as the previous ones [61].

In order to respond to the consumers’ demands for wines with low content of ethanol,
alongside with obtaining innovative and differentiated wine’s profiles, non-Saccharomyces
yeasts stand out as the organisms per excellence to achieve a reduction in initial ethanol con-
tent by about 1–2% (v/v), having into account the used species and the conditions in which
fermentations are performed [5]. Although the production of wines using T. delbrueckii
cultures can be more expensive and time-consuming, in comparison to those produced with
S. cerevisiae [33], the fermentation of grape juice with T. delbrueckii tends to originate wines
with lower content of alcohol and, at the same time, with higher levels of glycerol. These
properties are particularly advantageous for full-bodied and well-structured red wines,
obtained from grapes with increased maturity [42,63]. Global warming is a concerning
and alarming issue at different levels, also with regard to viniculture, since this situation
has an impact on the accelerated ripening of grapes promoting a faster increase in their
sugar content which, ultimately, result in the production of wines with increased alcohol
content [63,64]. Thus, the search for new yeasts that completely consume sugars and have
the ability to both decrease the final ethanol yields and increase the glycerol concentrations
is imperative for the construction of organoleptically improved wines, as an alternative
to the standardization of the food industry. The variation found between yeast strains
plays a very important role to address this issue. In many cases, producers choose to mix
different strains to improve the quality of the beverages, and to balance their aromatic and
fermentative profile.

Co-cultures of T. delbrueckii and S. cerevisiae, in synthetic grape must medium show
that from the moment S. cerevisiae is inoculated, the viability of T. delbrueckii decreases even
if it is at higher concentrations than the former. This was confirmed by Taillandier et al. [65]
who used an inoculum of T. delbrueckii twenty times higher than S. cerevisiae and observed
growth inhibition of the first yeast. As a valid explanation of the phenomenon, the authors
pointed to the possible metabolite release by S. cerevisiae, excluding substrate competition
and cell-to-cell contact mechanism as probable causes. On the other hand, Azzolini et al. [3]
demonstrated clear distinct aroma patterns of sequential fermentations of T. delbrueckii
and S. cerevisiae, and of S. cerevisiae individual inoculations. The authors detected (i) im-
provements in the analytical profile and flavor complexity of wines; (ii) freshness and
acidity sensory features; (iii) floral and more differentiated wines. Thus, the introduction
of non-Saccharomyces species in the manufacturing of wines is a useful tool to modulate the
organoleptic profile of wines and include innovative and differentiated styles compared to
the standardized wines already present in the market.
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The dominance ratio of T. delbrueckii when inoculated in fresh must depends on
numerous factors, from the inoculum size, quantity, and type of viable wild microorganism
initially present in the must, fermentation stage, sugar and ethanol concentrations, killer
and killer sensitivity phenotype of the inoculated yeast, the concentration of SO2 and
copper, pesticides potentially present in grapes, among many other [12]. As a result, under
the conditions usually present in grape must fermentations, T. delbrueckii initial population
growth is high, becoming a protagonist at an earlier stage of the process [23]. Since
sugar-rich musts originate high levels of ethanol, in the latter stages, slower fermentation
rates and increased cell death of this yeast are observed, probably as a result of its lower
resistance to high ethanol concentrations in comparison with S. cerevisiae and of its higher
hexose transport sensitivity [31]. As a consequence, the process may cease prematurely or
become sluggish unless a more resistant yeast is added in a co-inoculation or sequential
process, as aforementioned [15].

In addition to wine, T. delbrueckii can be explored in the dynamics of other beverages.
One example with a great economic value and one of the most popular drinks around
the world is beer. The wort ingredients—composed of malted cereals, hops, and fresh
water—are transformed not only in alcohol but additionally into organoleptic compounds
released by the yeasts, such as aldehydes, higher alcohols, esters, carbonyl compounds,
organic acids, and terpenic substances, giving identity to the beer as the final product.
However, just like wine, consumers have been switching from classic style beer to new
beer-blended beverages as they look for innovative aroma palates. Since this can be
achieved by using different yeast strains, the search for new yeasts, particularly in the
non-Saccharomyces group including T. delbrueckii, has increased [63,66,67]. Three studies
have reported the aromatic profile of beers influenced by the use of T. delbrueckii strains in
the brewing process [35,68,69]. These yeasts displayed the ability to transform hop aroma
terpenoids and enhance ethyl hexanoate and ethyl octanoate levels.

One particular application of T. delbrueckii, only superficially explored, is in the mezcal
fermenting process. The use of this species in this process revealed an increase in the levels
of β-fructofuranosidase enzymes with fructosyltransferase activity [70], and also high
levels of phenyl acetate [71]. Similarly to other applications, mezcal fermentations benefits
from a mixed inoculum of S. cerevisiae and T. delbrueckii, to obtain a balanced aromatic
and fermentative profile. Furthermore, in cider production, monoculture fermentations
using T. delbrueckii strains showed to produce more diverse volatile compounds than
with S. cerevisiae strains [72]. In another study from 2019, Lorenzini et al. [73] tested
several Saccharomyces and non-Saccharomyces yeasts for their capacity to ferment apple
juice and to influence the volatile compound production in cider fermentations. Among
non-Saccharomyces yeasts, T. delbrueckii was the greatest producer of ethyl decanoate and
ethyl hexanoate, key aroma compounds in cider production, conferring fruity aromas.

The main fermented beverages in which T. delbrueckii is employed are reviewed in
Table 2.

Table 2. Torulaspora delbrueckii’s applications in fermented beverages.

Beverages
Applications Used Substrate Advantages Disadvantages References

Beer Wort High tolerance to hop compounds; good
flavor-forming properties Low sugar utilization [35,66,68,69]

Mezcal Agave juice † Rich in volatile compounds; acceptable in
sensory tests Low performance [67,70,71]

Tequila Agave juice * Positive influence on the final sensory profile – [74]

Cider Apple juice † Great production of ethyl decanoate and
ethyl hexanoate

Low performance;
negligible amounts of

acetate esters
[72,73]

Mead Honey sugar Good fermentation ability; Good sensory features Grassy flavor [7]

Soy alcoholic
beverage Soy whey

Enrich aroma profiles: high levels of ethyl
decanoate and ethyl hexanoate; metabolize

hexanal;
– [75]

* Specifically from Agave tequilana; † sterile.
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5.3. Other Food Applications

The reported versatility of T. delbrueckii makes it a remarkable asset to be explored, not
only for bread and fermented beverages purposes, but also in other diverse food products
(Table 3). One example is the production of chocolate in which yeasts play a key role
in flavour development, as the quality of chocolate is reduced if the cocoa fermentation
process is conducted without these microorganisms [76]. This importance is reinforced by
Visitin et al. [77] by showing the involvement of T. delbrueckii in the fermentation of cocoa
beans (Theobroma cacao [76]) to produce chocolate, despite not yet being standard in this
industry. Authors showed that through a combination with S. cerevisiae, modifications on
the analytical profile of the chocolate are obtained. Moreover, differences in the samples
obtained from S. cerevisiae and T. delbrueckii inoculated chocolate had a significant impact
on the consumers’ perception of the final product, mentioned by some as fruitier. Therefore,
the use of this unconventional yeast resulted in a positive contribution to the development
of the chocolate’s final aroma. In addition, T. delbrueckii can also be explored in the cheese
industry, benefiting from its tolerance to low temperatures, low pH, high salt concentrations
and low water activity [78]. Andrade et al. [79] produced cheese from fermented milk,
with the aim of evaluating the impact of T. delbrueckii (in mixed or pure inocula) on cheese
production, detecting a slow consumption of lactose which can be translated into a reduced
β-galactosidase activity, as stated by the authors.

Table 3. T. delbrueckii industrial food applications.

Food Applications Used Substrate Advantages Disadvantages References

Chocolate Cocoa beans Good flavor quality of cocoa and,
therefore, the chocolate

Expedite in mixed fermentations
with S. cerevisiae [77]

Cheese Cheese Varied aromatic properties
Unable to inhibit pathogenic

bacteria; low
β-glucosidase activity

[79,80]

Honey Honey sugar Rapidly ferment sugar Large-scale productions only in
combination with S. cerevisiae [7]

Olive oil Black olives Easy hydrolyzation of olive oil
Growth inhibition at

concentrations higher than 0.5%
(w/v) of oleuropein

[81]

Coffee Coffee cherries Improve coffee’s sensorial quality Pronounced astringency
depending on the coffee variety [82,83]

Bio-protection –
Reduction in the use of chemical

preservatives to control
food spoilage

– [50,84]

Another highly sought product in the food market is honey. This is produced by
honeybees (namely Apis mellifera) and is a natural source of fermentable sugar ready to be
used by fermentative yeasts [7]. Barry et al. [7] were able to isolate two T. delbrueckii strains
directly from the microbiome of a honeybee and use them to ferment honey, obtaining
interesting results to be applied at an industrial scale, especially when in combination with
a S. cerevisiae champagne strain. The list of applications of T. delbrueckii can be extended
also to the fermentation of olives, with Psani and Kotzekidou [81] reporting good outcomes
from the exploitation of this species, such as being able to hydrolyse olive oil and tributyrin,
alongside the capacity of T. delbrueckii cultures to inhibit foodborne pathogens such as
Listeria monocytogenes, Bacillus cereus, and Salmonella typhimurium. However, the authors
also detected a strong growth inhibition of T. delbrueckii by the assimilation of oleuropein
at yields greater than 0.5% (w/v). T. delbrueckii can also be employed in the fermentation of
coffee beans, one of the most popular consumed beverages. Coffee fermentation occurs
naturally, however, the use of yeast as a starter culture was shown to improve coffee flavour
and aroma. Da Mota et al. [82] showed that T. delbrueckii inoculation exhibited the best
performance in natural coffee compared to S. cerevisiae and to the control (without inocula-
tion), by positively improving the sensorial quality of the final product. Nevertheless, other
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authors also reported that the performance of T. delbrueckii may vary according to coffee
varieties, production regions, processing methods, and microbial species naturally present
in the fruit [83–85]. In general, the use of T. delbrueckii during coffee fermentation can result
in coffees with distinct aromas and flavours that increase the possibility of producing spe-
ciality coffees, adding value to the product. In addition to the food applications mentioned
so far, the yeast T. delbrueckii has also been proposed as a biocontrol agent against spoilage
organisms improving the product quality and reducing the use of chemical preservatives
to control food spoilage. Simonin et al. [50] reported the successful implantation of the
T. delbrueckii strain as an alternative to sulphiting without compromising the fermentation
kinetics in two Burgundian wineries. Furthermore, Al-Qaysi et al. [4] also revealed a high
inhibitory effect of T. delbrueckii against the plant pathogens Fusarium oxysporium, Sclerotinia
sclerotiorum, and Macrophomina phaseolina, inhibiting mycelial growth in 55.3%, 66.2%, and
31.11%, respectively.

6. Genetic Tools Employed towards T. delbrueckii Improvement

The prompt progress of genetics, engineering and biology fields enhanced the continu-
ous search for yeasts with improved traits and phenotypes in order to expand their abilities
to be further implemented in the most diverse research areas or likewise for commercial-
ization. Yeasts are an advantageous research model due to the easiness with which genes
can be manipulated, in particular, recurring deletions, insertions or modifications under
controlled conditions. The combination of classical genetic approaches, transformation
methods, and DNA sequencing techniques have helped in the molecular characterization
of yeasts over the years. In order to apply these techniques, a deep understanding of
yeast’s biological diversity is mandatory, to explore the different metabolic pathways and
to incorporate the great degree of biological inter-strain diversity.

Regarding genetic tools development to manipulate T. delbrueckii strains, already in
1989, Compagno et al. [86] showed for the first time that a 2 µm vector could be maintained
and replicated in T. delbrueckii. Later on, the discovery of an endogenous circular plasmid
pTD1 (4.8 kbp) from T. delbrueckii strain CBS1090 was reported [78]. Over the past few
years, several attempts successfully identified, cloned, deleted or expressed several genes in
T. delbrueckii [87–91]. This knowledge opened the way to the improvement of T. delbrueckii
metabolism and to the development of new genetic tools. In recent years, CRISPR/Cas9
(Clustered Regularly Interspaced Short Palindromic Repeats/associated protein 9) revolu-
tionized research as a gene-based editing mechanism allowing the selective manipulation of
DNA [92,93]. Although there is yet no current employment of CRISPR towards T. delbrueckii,
this engineering tool has been extensively used for other non-conventional yeasts such as
Yarrowia lipolytica, Pichia pastoris, Komagataella phaffii, Kluyveromyces lactis, Kluyveromyces
marxianus [94], Schizosaccharomyces pombe, Candida albicans and Candida glabrata, and for the
conventional yeast S. cerevisiae [92–97].

Besides the versatility of T. delbrueckii species, some limitations have been hampering
its wide biotechnological use, such as the limited ethanol resistance of some strains during
wine fermentation, which ranges from 7.4% (v/v) [14] to 9% (v/v) [36], in addition to the
fact that Belda et al. [27] indicate decreases of cells viability already when ethanol levels
exceed 8% (v/v). In this context, some strategies have been proposed in this species in
order to improve phenotypes with a biotechnological impact, such as random mutagen-
esis, sexual hybridization, bioprospecting and metabolic engineering [67,96] to expand
the boundaries of T. delbrueckii’s biotechnological use. The use of Genetically Modified
Organisms (GMOs) involves a certain ambiguity and divergence of opinions, and their
implementation relies on the legislation in force in each country [97,98]. Currently, the
unacceptance of the use of GMOs by the International Organization of Vine and Wine (OIV)
makes the products obtained by New Genomic Techniques (NGTs), such as CRISP, unsuit-
able for commercialization in the European Union (EU) [99,100]. In the EU, Regulation
(EC) No. 1829/2003 (article 1) and Regulation No. 1830/2003 on genetically modified food
aim to ensure the achievement of a high level of protection to environmental, human, and
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animal health, alongside the tracing and labelling of genetically modified products, respec-
tively. Although the Directive 2001/18/EC (in particular, article 23) allows the Member
States to deliberate whether they restrict or prohibit the cultivation of genetically modified
crops in their territory, in 2018, the European Court of Justice clarified that organisms
modified by site-directed mutagenesis like CRISPR would be included in the definition
of a GMO [101]. On the other hand, the United States has no specific federal law aimed
at regulating GMOs, with the country being considered a major developer and marketer
of genetically modified crops [102–104]. Only two registered and approved genetically
modified wine yeasts are currently used in Canada, the USA, and Moldova [105–107].

In this context, adaptive laboratory evolution (ALE) emerges as a successful non-
genetically modified approach to improve yeast features. According to Dragosits and
Mattanovich [108], ALE stands as a powerful tool to study the evolutionary phenomena oc-
curring in microorganisms in controlled laboratory environments, being already performed
100 years ago by William Dallinger. However, these sorts of studies have been explored
frequently only in the past 25 years, employing S. cerevisiae and Escherichia coli as the main
models. ALE helps to gain insight into the basic molecular evolution mechanisms where mi-
croorganisms are usually inoculated for long-term adaptation (lasting for weeks or months)
under specific selective stress conditions [108]. During the design of ALE experiments,
several parameters need to be taken into account such as (i) the genetic diversity sources,
which includes natural mutations, UV or chemical mutagenesis, or mating; (ii) the selective
pressure that could be constant, increased or intermittent over time; and (iii) the cultivation
strategies which can be diverse but the most used ones are batch cultivations (performed as
sequential serial transfers) or continuous cultures (where the conditions are kept constant
and the limitation of one nutritional component is standard) [108]. When exposed to
these environments, different types of mutations are identified, such as single-nucleotide
polymorphisms (SNPs), transposable elements, small scale insertions and deletions (indels),
large scale amplifications or deletions, which contribute to certain changes at the gene
regulation and fitness levels, giving rise to improved phenotypes [108]. Several studies
performing adaptive evolution for S. cerevisiae and focusing on nutritional adaptation,
reported increased biomass yields and decreased fermentative performance in glucose-
limited selection environments [108,109]. Jansen et al. [110] also observed modifications in
the morphology of the cells, alongside with higher affinity for glucose. Regarding stress
limitations, Dhar et al. [111] described that increases in salt tolerance by ALE were related
to increases in the genome size and changes in the expression of several genes. Other
studies focused on improvements of ethanol tolerance by S. cerevisiae, have detected a
higher behavioral variability of the evolved clones in comparison with the parental strain,
when levels of ethanol in the medium were increased from 6 to 8% (v/v) [112], as well as
higher osmotic and temperature tolerances, in comparison with the original strain [113].
Avrahami-Moyal et al. [114] suggested that the stability of the cell wall is an essential factor,
and that mutations in the translational regulator SSD1 and UTH1 are responsible for the
ethanol tolerance of this species. This type of study benefits from the wide inter- and
even intra-strain diversity observed, manifested also in genomic differences during the
maintenance of microbial cultures in different environmental conditions, and associated
with adaptive microevolutionary changes observed even within the descendants of the
same strain [115]. When considering K. marxianus, strains with higher growth rates were
obtained under stressful high ethanol environments [116], within the range of 7–10% (v/v)
of ethanol [117]. In a similar way, a recent study and, to the extent of our knowledge,
the only report applying this technique to the generation of T. delbrueckii evolved strains,
was conducted by Catrielo et al. [96]. The authors efficiently obtained evolved clones
of T. delbrueckii with improved growth kinetic parameters, increased ethanol resistance,
variants capable of tolerating ethanol concentrations of 11.5% (v/v), and additional higher
resistance to SO2, in comparison with the original strain. In addition to these features,
co-inoculations with the evolved T. delbrueckii and S. cerevisiae clones were performed,
evidencing improved contribution effects to the aromatic profile of wine, with particular



J. Fungi 2021, 7, 712 13 of 18

emphasis to 2-ethylhexanol, total alcohol levels, total aldehydes, total sulphur compounds
and total phenolic derivates with significant differences to the control fermentation, desig-
nated only by S. cerevisiae evolved clone. Besides this parameter, other studies conducted
with S. cerevisiae model reported increases in copper resistance mediated by increased ex-
pression of CUP1, and decreased levels of the transporters CTR2 and CCC2 in the evolved
strain, together with lower activity of antioxidant enzymes [118].

7. Conclusions

S. cerevisiae is still the yeast of choice in different biotechnological areas, namely in the
wine and bakery industries. However, many studies have pointed out the great interest of
T. delbrueckii for industrial exploitation. Now, a higher number of studies are necessary to
assess the phenotypic, metabolic and genomic landscape of this species, and, especially, to
address strain similarities/dissimilarities with great importance to allow its more extensive
and rational exploitation, as detailed in this review. With advances recently obtained in the
genome characterization and annotation of T. delbrueckii, the elucidation of the molecular
bases that underlay this species’ specific traits will start to be revealed. This will allow
researchers to highlight particular advantages of this species that have caught the attention
of the bread and wine industries, and to overcome problems that make it less advantageous
in relation to S. cerevisiae.
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