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A B S T R A C T   

Functional Near Infrared Spectroscopy (fNIRS) is an important neuroimaging technique in cognitive develop-
mental neuroscience. Nevertheless, there is no general consensus yet about best pre-processing practices. This 
issue is highly relevant, especially since the development and variability of the infant hemodynamic response 
(HRF) is not fully known. Systematic comparisons between analysis methods are thus necessary. We investigated 
the performance of five different pipelines, selected on the basis of a systematic search of the infant NIRS 
literature, in two experiments. In Experiment 1, we used synthetic data to compare the recovered HRFs with the 
true HRF and to assess the robustness of each method against increasing levels of noise. In Experiment 2, we 
analyzed experimental data from a published study, which assessed the neural correlates of artificial grammar 
processing in newborns. We found that with motion artifact correction (as opposed to rejection) a larger number 
of trials were retained, but HRF amplitude was often strongly reduced. By contrast, artifact rejection resulted in a 
high exclusion rate but preserved adequately the characteristics of the HRF. We also found that the performance 
of all pipelines declined as the noise increased, but significantly less so than if no pre-processing was applied. 
Finally, we found no difference between running the pre-processing on optical density or concentration change 
data. These results suggest that pre-processing should thus be optimized as a function of the specific quality 
issues a give dataset exhibits.   

1. Introduction 

Functional Near Infrared Spectroscopy (fNIRS) is a non-invasive 
neuroimaging technique based on the measurement of the optical ab-
sorption of cerebral blood (Ferrari and Quaresima, 2012; Scholkmann 
et al., 2014). Thanks to the different absorption spectra of oxygenated 
and deoxygenated hemoglobin (HbO and HbR, respectively) in the 
near-infrared region of the electromagnetic spectrum (650− 900 nm), 
fNIRS measures the relative changes of oxygenation and blood perfusion 
in the human brain at rest or in response to a specific task. 

NIRS is a relatively young technique, but it is gaining increasing 
recognition in many areas of cognitive neuroscience. One of the most 
thriving areas of application is developmental neuroscience (Gervain 
et al., 2011; Aslin et al., 2014). The technique is fully non-invasive, 
easy-to-use, silent, and well tolerated by even the youngest partici-
pants. It doesn’t require the use of a tracer substance or a strong mag-
netic field/pulse. Also, and importantly, infants’ skulls and other tissues 
surrounding the brain are relatively thin, allowing for a deeper pene-
tration of the light into the cortex. At a source-detector distance of 3 cm, 

NIR light penetrates up to 1–1.5 cm into the cortex in newborns, as 
opposed to 0.5 cm in adults (Fukui et al., 2003). For all these reasons, 
NIRS is rapidly becoming one of the imaging techniques of choice in 
many areas of developmental research, including the study of speech 
perception and language development (Benavides-Varela and Gervain, 
2017; Minagawa-Kawai et al., 2008; Peña et al., 2003), social cognition 
(Lloyd-Fox et al., 2013, 2009), object perception (Wilcox et al., 2010, 
2005), and prediction (Emberson et al., 2017, 2015) in young infants. 

As fNIRS is a relatively recent technique, there is no general 
consensus yet about the best pre-processing practices. This issue is 
further exacerbated by the fact that the development and variability of 
the infant hemodynamic response (HRF) is not fully known. Systematic 
comparisons between analysis methods are thus necessary. The purpose 
of the current study is, therefore, to investigate the performance of five 
data pre-processing pipelines, selected from the infant NIRS literature. 
In Experiment 1, we used synthetic data to compare the recovered HRFs 
with the true HRF and to assess the robustness of each method against 
increasing levels of noise. In Experiment 2, we analyzed experimental 
data from a published study, which assessed the neural correlates of 
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artificial grammar processing in newborns (Gervain et al., 2012). 

1.1. The infant HRF 

Infants and toddlers are challenging experimental participants. They 
cannot comply with instructions, their behavioral repertoire is limited 
and their attention span is short. When using brain imaging such as 
NIRS, additional difficulties arise. Infants cannot be instructed to stay 
motionless, do not tolerate capping well, making adjustments in cap 
position or combing away hair difficult. These issues result in large and 
frequent motion artifacts, high frequency noise and other problems in 
the measured signal. These data quality issues thus need to be taken into 
account during data processing and analysis. Data quality is often much 
less good in infant than in adult studies, requiring processing and 
analysis methods that are specific for infants. 

Furthermore and importantly, the characteristics of infant fNIRS 
data are intrinsically different from adult data. First, despite increasing 
research efforts, the infant hemodynamic response function (HRF) is not 
yet fully characterized. In addition to canonical responses (an increase in 
HbO and a corresponding decrease in HbR), inverted responses (a 
decrease in HbO and an increase in HbR) are often reported. Such 
inverted responses have been found across all brain regions (Zimmer-
mann et al., 2012). They tend to appear more frequently between 0 and 
3 months of age, but this trend interacts with channel location, the 
choice of baseline and the nature and complexity of the experimental 
task and stimuli (Issard and Gervain, 2018). According to a recent re-
view, the morphology of HbR appears to be especially heterogeneous 
(De Roever et al., 2018). But even canonical infant responses are 
different from adult responses. Using fMRI, Arichi and colleagues (Arichi 
et al., 2012) found that the infant HRF typically has smaller amplitude 
and longer time-to-peak, as well as a significantly deeper undershoot. 
The delay in peak latency decreases through infancy (Lloyd-Fox et al., 
2017). The physiological reasons underlying these differences are likely 
multi-factorial, but grounded in the substantial developmental changes 
in brain development and neurovascular coupling in infancy (Roche--
Labarbe et al., 2012). The morphology of preterm newborns’ HRF cor-
relates significantly with the weight and height at birth, rather than with 
postmenstrual age (Karen et al., 2019), thus showing individual differ-
ences even within the same age group. 

These distinctive traits have important implications for data pre- 
processing and analysis. Even when data quality is similar, the infant 
HRF is less likely to be detected than its adult equivalent due to its 
smaller amplitude and longer latency, especially in short presentation 
blocks or in an event-related design (Aslin et al., 2014). Pre-processing 
routines for infant data should, therefore, clean the HRF from back-
ground noise while preserving as much as possible its amplitude. 
Furthermore, preprocessing should retain individual HRF shapes, even 
when those are atypical, since they may provide important insights 
about the underlying developmental causes, e.g. differential states of 
brain maturation or different neurocognitive mechanisms triggered by 
varying stimulus complexity etc. 

1.2. The most common pre-processing strategies for infant data 

The analysis methods commonly used in the NIRS literature differ in 
several ways. The most important ones are (i) how motion artifacts are 
handled, (ii) how physiological noise is filtered and (iii) how pre-
processing steps are ordered. 

1.2.1. Processing artifacts 
When data exhibits motion artifacts, those can either be discarded or 

corrected. Several motion correction methods have been proposed in the 
literature and previous studies systematically comparing their effec-
tiveness concluded that wavelet-based filtering (WF, Molavi and 
Dumont, 2012) often performs best on adults data (Brigadoi et al., 2014; 
Cooper et al., 2012; Hocke et al., 2018). Studies with fNIRS data from 

children (Hu et al., 2015) found that the combination of a moving 
average filter and WF worked even better than WF alone, although the 
studies noted that WF may reduce the magnitude of the recovered signal. 
Of particular relevance for the purposes of the present study, for NIRS 
data acquired from 6− 12-month-old infants, WF alone performed better 
than targeted PCA (tPCA) or the combination of tPCA and WF (Behrendt 
et al., 2018), whereas for data from infants between 4 and 11 months, 
the combination of spline interpolation (Scholkmann et al., 2010) and 
WF performed best with very noisy datasets, while WF alone performed 
well with moderately noisy datasets (Di Lorenzo et al., 2019). The major 
advantage of WF is that it retains a large number of experimental trials, 
whereas its drawbacks are that it reduces the amplitude of the HRF 
(Brigadoi et al., 2014; Chiarelli et al., 2015) and that it is computa-
tionally intensive. 

1.2.2. Filtering 
A systematic review of filtering methods in adult NIRS studies (Pinti 

et al., 2019) compared Infinite Impulse Response (IIR) and Finite Im-
pulse Response (FIR) filters of different orders, and found that high order 
(>500) bandpass FIR filters perform best. When filters were compared in 
terms of their impact on classification performance in a Brain-Computer 
Interface study, the hemodynamic response filter (Penny et al., 2011) was 
found to work best (Khan et al., 2020). 

1.2.3. Order of pre-processing steps 
Pre-processing may be applied to light intensities, optical densities or 

hemoglobin concentration changes and different processing steps may 
be applied to different data types. The implications of these choices 
remain largely unexplored. The only available findings (Pinti et al., 
2019) suggest that in terms of the final statistical outcome, there is no 
difference between applying frequency filtering to optical densities or to 
hemoglobin concentration changes. 

1.3. The current study 

Given the specificities of infant NIRS data outlined above, which are 
particularly marked in newborns and the youngest infants, the question 
of how different analysis strategies perform in this developmental 
population is particularly relevant. Yet to date, no study has investigated 
this systematically. 

In this study, we therefore systematically compared several pre- 
processing pipelines adopted from published infant NIRS studies and 
show how different data processing options lead to substantially 
different results in terms of the characteristics of the recovered HRF and 
data rejection. 

Since the use of different processing methods might change the re-
sults and thus the conclusions of a study considerably, the choice of 
processing methods is a particularly timely question. In the last few 
years, considerable attention and important research efforts have been 
dedicated to investigating the replicability of studies in psychology and 
neuroscience (Open Science Collaboration, 2015). Several studies sug-
gest that many published results are not replicable, possibly due in part 
to cross-laboratory variation in methodological and analysis practices, 
many of them not explicitly reported or documented in publications 
(Klein et al., 2014). Diverging analysis practices is an important po-
tential source of variation, possibly compromising replicability. Infant 
NIRS research is no exception. It is thus crucial to compare and sys-
tematically investigate analysis pipelines to better understand how an-
alytic decisions impact results and thus replicability. 

To achieve this, we first reviewed the NIRS literature published be-
tween 2016 and 2020 with 0− 12-month-old infants, and summarized 
the pre-processing pipelines they used. We then created five proto- 
typical pipelines, which differ from one another parametrically, i.e. in 
one processing step at a time, and together cover 86 % of the variation 
among pre-processing methods found in the reviewed literature. The 
five pipelines are illustrated in Fig. 2 and described in detail in Section 
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4.2.1. 
We compared the impact of these five pipelines as well as of a control 

pipeline on data quality during the analysis of two datasets. The first was 
a synthetic dataset that we generated specifically for this study, con-
sisting of synthetic artifacts, in the form of spikes and baseline shifts, 
physiological confounds and hemodynamic responses, similar to the 
types of data quality issues found in infant data. This allowed us to 
compare the HRFs recovered by the five pipelines with the true HRF 
embedded in the synthesized data, as well as to vary the parameters of 
the artifacts and the amplitude of the true HRF in a controlled manner in 
order to assess the robustness of each method against increasing levels of 
noise. The second dataset was actually measured data from a published 
study using NIRS to assess the neural correlates of artificial grammar 
processing in newborns (Gervain et al., 2012). 

2. Literature review of pre-processing strategies 

2.1. Literature review: selection criteria 

A search of fNIRS studies published between 2016 and 2020 was 
conducted with the goal of reviewing the most common pre-processing 
methods employed in developmental research. The literature search was 
performed over the PubMed, Scopus and Web of Science databases using 
the following criteria:  

1 Papers published between 2016 and 2020 (included), i.e. the last 5 
years.  

2 Studies with infants aged 12 months or below (if the age range of 
participants spanned the 12 months cut-off, e.g. 10–14 months, the 
study was included).  

3 Peer-reviewed reports of original fNIRS studies. Articles reporting 
secondary analyses of already published datasets were not included.  

4 Studies employing block or event-related stimulus design. Since this 
study focuses on the recovery of the HRF, functional connectivity and 
resting state studies were not included.  

5 Studies performed using a continuous wave (CW) NIRS instruments.  
6 Papers including more than one study were considered the same, if 

the studies applied the same pre-processing pipeline, separate 
otherwise. 

With these inclusion criteria, 75 studies were selected (a full list is 
provided in the Supplementary Material). The most important 

methodological characteristics of the studies are summarized in Fig. 1. 

2.2. Selection of pipelines for further analysis 

The selected studies varied considerably in their pre-processing 
strategies. Fig. 2 summarizes this variation. Below, we discuss them 
following the three pre-processing steps discussed earlier: (i) artifact 
rejection/correction, (ii) filtering and (iii) order. 

2.2.1. Artifacts 
Out of the 75 papers, 42 rejected trials contaminated by motion ar-

tifacts after identifying them visually (8/42) or using an automatic 
detection algorithm (33/42), in combination with a visual assessment. 
Among the latter, many studies reported using either a threshold on the 
signal amplitude change within a certain time window, or on the stan-
dard deviation of the signal, or both. These thresholds were typically 
fixed for the entire group of participants, but in some studies they were 
adjusted at the participant level after visual inspection. Among the 33 
studies applying motion artifact correction, 14 used WF (Molavi and 
Dumont, 2012), 10 tPCA (Yücel et al., 2014), 6 spline interpolation 
(Scholkmann et al., 2010), 2 linear interpolation (Xu et al., 2014) and 1 a 
combination of several algorithms. 

2.2.2. Filtering 
The majority of studies performed bandpass filtering, either with a 

bandpass filter (N = 41) or with the consecutive combination of a low- 
pass and a high-pass filter (N = 6). Twenty-four studies employed a low- 
pass filter alone. Three studies did not include information on the fre-
quency filter. 

2.2.3. Order 
Filtering was applied to hemoglobin concentration changes in 18 

studies. In 10 of these, motion artifact detection followed filtering, in 8 it 
preceded filtering. In 10 instances, motion artifacts detection, trial 
rejection and filtering were carried out on light intensities, before direct 
conversion to hemoglobin changes, while in 7 studies these steps were 
performed on optical densities, before conversion to hemoglobin 
changes. Among the 33 studies applying artifact correction, the majority 
(N = 28) did so on optical densities, 2 on light intensities, and 3 on 
hemoglobin changes. 

Based on the above-described trends in the infant NIRS literature and 
the theoretical questions we sought to answer, we selected the five most 

Fig. 1. Summary of the most important methodological properties of the 75 studies identified in the literature search. (A) The average number of trials per condition 
were 9.2. (B) The average sample size was 46. (C) Proportion of studies using a given stimulus modality. 
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common pre-processing pipelines (Fig. 2C), labeled A, B, BA, BB and C. 
These pipelines account for 65 studies, i.e. 86 % of the reviewed articles. 
Importantly, these five pipelines are intended as broad categories, 
namely they do not represent each cited study in the exact settings and 
parameters employed, but rather in terms of the three key aspects 
described above: the way artifacts are handled, frequency filtering and 
the order of preprocessing steps. 

Notably, the five pipelines were chosen in a systematic way, with 
specific pipeline pairs differing in a single step, making it possible to test 
the impact of each analysis step on HRF recovery. Thus pipeline C im-
plements artifact correction, while the others implement rejection. The 
pipelines using trial rejection differ in the order of steps: pipeline A 
differs from BA in that filtering and artifact detection are inverted; B, BA 
and BB differ in terms of the data type to which processing is applied (Hb 
changes, OD and light intensities, respectively). All the pipelines employ 
a bandpass filter. 

The specific settings employed for pipelines A, B, BA, BB and C were 
chosen to best suit the characteristics of the data of this study and are 
described in Section 4.2.1. 

3. Experiment 1 

As a first comparison, we assessed the performance of the pipelines 
on a synthetic dataset with systematically varying parameters for noise 

and for the HRF. 

4. Methods 

4.1. Data generation 

Synthetic data was generated according to the montage and stimulus 
design employed in Gervain et al. (2012). In that study, NIRS was ac-
quired in 22 newborns using a montage with 24 channels (Fig. 8). We 
thus generated a synthetic dataset with 22 “participants”, each with 24 
time series corresponding to the 24 channels. Like in the original study, 
the time series comprised 14 trials, each lasting approximately 18 s, and 
spaced at time intervals of varying duration between 25 and 35 s. 

Synthetic data was generated using tools available in the Brain 
AnalyzIR Toolbox for Matlab (Santosa et al., 2018). For each participant, 
baseline noise was produced by first generating white noise, then 
imposing temporal correlation on it by employing an autoregressive 
model of order 30. Different channels were not spatially correlated. 
Then, to simulate the contribution of heart rate, respiration and Mayer 
waves to the NIRS signal, the signal amplitude was increased by a factor 
ranging between 0.01 and 0.03 mM x mm (amounting to about 3–10 % 
of the total signal change, (Boas et al., 2004)) at frequencies typical of 
the newborn HRF, namely in the ranges around 1.5 ± 0.2 Hz, 0.25 ±
0.05 Hz and 0.1 ± 0.02 Hz, respectively. 

Fig. 2. Summary of the literature review of pre-processing strategies; the pipelines that are selected and compared in this work are those highlighted in orange (A, B, 
BA, BB and C). Grayed-out pipelines have been employed in very few studies (2 or 3 each) and will not enter the comparison. Among the motion artifacts correction 
algorithm, WF is selected both because it is the most popular and in light of recent literature. Additionally, a Control pipeline is defined that only applied bandpass 
filtering and does not control for motion artifacts; the five pipelines are compared to each other and to the Control, that is not used in any study, allowing to have a 
direct measure of efficacy of each pipeline in dealing with the presence of artifacts. 
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To this “resting state” dataset, we then added HRFs and motion ar-
tifacts, simulating functional responses. Twenty different such func-
tional datasets were created by systematically varying the parameters of 
the HRFs and the artifacts. Motion artifacts were added, in the form of 
spikes and baseline shifts. Spikes were modelled as a sudden change of 
voltage ranging between 0.1 and 2 V across the 20 datasets, while 
baseline shift artifacts were modelled as a random positive or negative 
change of voltage, also ranging between 0.1 and 2 V. In turn, HRFs had 
an amplitude value ranging between 0.1 and 0.35 mM x mm for HbO, 
between -0.05 and -0.175 mM x mm for HbR and an onset-to-peak time 
of 6 s. HRFs were added to 12 channels, i.e. 50 % of all channels. These 
will be referred to as “active channels”. 

Using this procedure, for each participant, channels within the same 
datasets differed in terms of baseline and physiological noise but shared 
the same HRF and artifact amplitudes, while the same channel across 
different datasets shared the same baseline noise, but differed in terms of 
HRFs and motion artifacts. 

The scheme in Fig. 3 describes the simulation steps and shows an 
example of simulated data. This approach for producing synthetic fNIRS 
data is similar to the one used in other studies investigating analysis 
methods (Barker et al., 2013; Gemignani et al., 2018; Huppert, 2016). 

4.2. Data analysis 

4.2.1. Pre-processing pipelines 
The data was pre-processed using the following pipelines. For all the 

pipelines, the Beer-Lambert Law was applied using the following ab-
sorption coefficients (μa, mm− 1 x mM− 1): μa(HbO, 695 nm) = 0.0955, 
μa(HbO, 830 nm) = 0.232, μa(HbR, 695 nm) = 0.451 and μa(HbR, 830 
nm) = 0.179. The product of the optical pathlength and the differential 
pathlength factor was set to 1, so that the resulting concentration 
changes were expressed in mM x mm. 

Channel-wise block averages were computed using 5 s before the 
stimulus onset for the baseline correction, for each block. Grand aver-
ages were then calculated by averaging across participants. 

4.2.1.1. Pipeline A. Light intensities were first converted to optical 
densities and to HbO and HbR concentration changes, using the modi-
fied Beer-Lambert Law. Subsequently, data was bandpass-filtered be-
tween 0.01 and 0.7 Hz, using a fft filter. The lower value is defined on the 
basis of the design, as the expected peak has a frequency of 0.02 Hz 
(duration of block and inter-block interval ~ 45 s). The higher value 
allows the suppression of heart rate, sucking on a pacifier and other 
physiological noise. 

Single blocks were rejected if the light intensity reached the satu-
ration value, if the block contained motion artifacts or both. Motion 
artifacts were defined as concentration changes larger than 0.1 mM x 
mm over 0.2 s. This procedure was performed on each channel inde-
pendently. Channels with fewer than 30 % valid blocks per condition 
were discarded. 

For the non-rejected blocks, a baseline was linearly fitted between 
the means of the 5 s preceding the onset of the block and the 5 s starting 
15 s after onset of the block to allow enough time for the HRF to return to 
baseline. 

A conceptually similar pre-processing approach has been employed, 
with variations in specific settings, in Abboub et al. (2016); Minagawa 
et al. (2017) and Arimitsu et al. (2018). 

4.2.1.2. Pipeline B. Light intensities were converted to optical densities 
(OD). Motion artifacts were then identified, channel by channel, as 
changes in signal amplitude of 0.4 or more within a 1 s window, or as 15- 
fold or larger changes in standard deviation, within 1 s. These param-
eters were chosen according to the most recent literature (Di Lorenzo 
et al., 2019; Jackson et al., 2019). 

Based on the results of this step, trials were excluded if a motion 

artifact fell in the stimulation window, defined as starting 2 s before the 
stimulus onset and ending 10 s after. This operation was also performed 
channel by channel. 

Finally, optical densities were bandpass-filtered between 0.01 and 
0.7 Hz with a Butterworth filter of order 3 and concentration changes 
were computed by applying the Beer-Lambert Law. 

A conceptually similar pre-processing approach has been employed, 
with variations in specific settings, in De Oliveira et al. (2019); Miguel 
et al. (2019) and Miguel et al. (2020). 

4.2.1.3. Pipeline BA. Light intensities were converted to optical den-
sities and then to relative concentration changes by applying the Beer- 
Lambert Law. 

Then, analogously to Pipeline B, motion artifacts were identified as 
amplitude changes equal to or greater than 1.3 mM x mm within 1 s, or 
as 15-fold or greater standard deviation changes within 1 s. Based on the 
results of this step, trials were excluded if a motion artifact fell in the 
stimulation window, defined as starting 2 s before the stimulus onset and 
ending 10 s after. 

Finally, concentration changes were bandpass-filtered between 0.01 
and 0.7 Hz with a Butterworth filter of order 3. 

A conceptually similar pre-processing approach has been employed, 
with variations in specific settings, in Taga et al. (2018); Hakuno et al. 
(2020) and Ujiie et al. (2020). 

4.2.1.4. Pipeline BB,. Light intensities were pre-processed prior to con-
version to optical densities and concentration changes. In particular, 
analogously to Pipelines B and BA, motion artifacts were identified as 
amplitude changes equal to or greater than 0.6 V within 1 s, or as 15-fold 
or greater changes in standard deviation within 1 s. Based on the results 
of this step, trials were excluded if a motion artifact fell in the stimu-
lation window, defined as starting 2 s before the stimulus onset and 
ending 10 s after. 

Then, data was bandpass-filtered between 0.01 and 0.7 Hz with a 
Butterworth filter of order 3. Lastly, pre-processed data was converted to 
optical densities and relative concentration changes, with the modified 
Beer-Lambert Law. 

A conceptually similar pre-processing approach has been employed, 
with variations in specific settings, in Lloyd-Fox et al. (2017); Mercure 
et al. (2020) and Van Der Kant et al. (2020). 

4.2.1.5. Pipeline C. This pipeline is the same as Pipeline B, except that 
before detecting motion artifacts, an automatic detection and correction 
step was performed. To this end, the wavelet-based filtering algorithm 
proposed by Molavi and Dumont (Molavi and Dumont, 2012) was 
employed. Briefly, the channel-wise timeseries are decomposed in a 
series of wavelet detail coefficients. The rationale behind this algorithm 
is that while coefficients related to the signal of interest are distributed 
around zero, coefficients representing motion artifacts will lie at the 
extremes of the distribution. The automatic correction of artifacts is 
performed by removing these latter coefficients and then reconstructing 
the signal. The tuning parameter α specifies the boundaries of the dis-
tribution beyond which the coefficients are considered outliers and 
therefore artifacts: coefficients exceeding α times the interquartile range 
are then removed, and the artifact-free signal is reconstructed using the 
inverse discrete wavelet transform. Following findings of recent studies 
(Behrendt et al., 2018; Di Lorenzo et al., 2019), the algorithm was 
applied using a threshold of α = 0.5, and the appropriateness of this 
choice was confirmed by visual inspection. After automatically detect-
ing and correcting artifacts, the remaining uncorrected motion artifacts 
were identified using the thresholds described for Pipeline B and the 
corresponding blocks were rejected. 

A conceptually similar pre-processing approach has been employed, 
with variations in specific settings, in De Klerk et al. (2018); McDonald 
et al. (2019) and Porto et al. (2020). 

J. Gemignani and J. Gervain                                                                                                                                                                                                                 



Developmental Cognitive Neuroscience 48 (2021) 100943

6

Fig. 3. The scheme describes the workflow that was employed to produce the synthetic dataset. First, temporally correlated noise was generated. Then, the 
amplitude of the signal was increased at specific frequencies to resemble the contribution of physiological noise. After that, hemodynamic responses were added 
according to a stimulus design and lastly, motion artifacts were included in form of spikes and shifts. The last panel at the bottom shows an example of a simulated 
dataset (left: light intensities, right: corresponding concentration changes). 
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4.2.1.6. Control pipeline. This pipeline was used as the baseline. It 
consisted of conversion to Hb and filtering using the same parameters as 
in Pipelines A–C. 

4.2.2. Metrics of comparison 
The effect of employing the different pre-processing schemes was 

assessed by comparing several metrics: the root mean square error 
(RMSE) between the recovered and the true HRF, their correlation, the 
percentage of included trials and the largest amplitude of the signal in 
the activation window. The metrics were computed as follows: 

RMSE: the RMSE was computed, for each subject and channel, as the 
square root of the mean squared difference between the block-average of 
the recovered HRFs and the true HRF. 

Correlation: for each subject and channel, the correlation between 
the average recovered HRFs and the true HRF was evaluated by 
computing their Pearson correlation coefficient. 

Trial inclusion rate: the trial inclusion rate was computed as the 
proportion of retained trials with respect to the total number (N = 14), 
averaged across channels. 

Amplitude of the signal: The largest positive or negative amplitude 
of the recovered HRF within the activation window was extracted. The 
activation window was the time window in which the response in a 
block was significantly different from the zero baseline, as computed 
with permutation tests (Abboub et al., 2016; Maris and Oostenveld, 
2007). 

4.2.3. Statistical analysis 
To compare the performance of the pipelines statistically, a mixed 

effects linear model was fitted to each metric as the dependent variable, 
with fixed effects for the within-subjects factors Pipeline (A, B, BA, BB, C, 
Control) and Noise (20 levels), as well as their interaction, and random 
slope for Noise and random intercept for Dataset. Noise in the 20 syn-
thetic datasets was quantified as the coefficient of variation, i.e. the 

standard deviation of the channel-wise time series divided by their mean 
amplitudes. We tested all models, starting with the random intercept 
only model, and adding factors incrementally. We report here, for each 
metric, the best fitting model, i.e. the one that achieved the lowest 
Akaike’s Information Criterion (AIC). This turned out to be the full 
model (fixed effects for the within-subjects factors Pipeline and Noise, 
their interaction, random slope for Noise and random intercept for 
Dataset) for each of the metrics. 

Models were implemented in SPSS v. 25.0 (IBM Corporation, 2017). 
SPSS outputs an ANOVA-like assessment of the significance of the fixed 
effects, which we report below. Subsequent pairwise comparisons were 
adjusted for multiple comparisons with the Bonferroni procedure. 

5. Results 

The performance of the pipelines on the four metrics is shown in 
Fig. 4 for HbO. The results of the pairwise comparisons for HbR are 
reported in the Supplementary Material, as they are highly similar to the 
HbO results. The recovered HRFs (HbO and HbR) are illustrated in 
Fig. 5. 

5.1. Amplitude 

The best fitting (full) mixed effects model yielded a significant main 
effect of Pipeline (HbO: F(5, 2153) = 35.78, p < 0.001, HbR: F(5, 2151) 
= 44.84, p < 0.001). The pairwise comparisons carrying this main effect 
are shown in Fig. 4A. Of relevance here is that Pipeline C yielded the 
lowest amplitude, significantly lower than those recovered by every 
other pipeline (all ps<0.001: mean difference C-A= -0.137, C-B=-0.157, 
C- BA= -0.156, C-BB= -0.124) Furthermore, the amplitude of the HRF 
recovered by Pipeline BB was significantly lower than the amplitudes of 
Pipelines B (mean difference = -0.033, p < 0.001) and BA (mean dif-
ference = -0.032, p < 0.001), as also illustrated in Fig. 6. The distortion 

Fig. 4. The amplitude (A), RMSE (B), correla-
tion co-efficient (C) and % included trials (D) 
achieved by the different processing pipelines 
averaged across all levels of noise. The red line 
within each box represents the median value, 
the two whiskers indicate the first and third 
quartile and the red asterisks represent outliers. 
(For interpretation of the references to colour in 
this figure legend, the reader is referred to the 
web version of this article). 
Pairwise comparisons are indicated by the lines 
above the distributions: each line represents the 
comparison between the level underlying the 
right extremity of the line and every other level; 
asterisks indicate the results of the pairwise 
comparisons: ***, ** and * mark comparisons 
with p < 0.001, 0.01 and 0.05, respectively.   
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of the HRF shape by Pipeline BB is particularly evident at higher noise 
levels (Fig. 7). 

The main effect of noise was not significant (HbO: F(1, 436) = 1.52, p 
> 0.05, HbR: F(1,437)= 0.97), but the Pipeline x Noise interaction was 
(HbO: F(5, 2154)=43.79, p < 0.001, HbR: F(5, 2152) = 18.3, p<0.001). 
This interaction (Fig. 7) was carried by a large increase in amplitude 
with increasing noise for the Control Pipeline, a small increase for 
Pipelines B and BA, and a decrease for Pipelines A, C and BB. 

5.2. RMSE 

The best fitting (full) mixed effect model yielded a significant main 
effect of Pipeline (HbO: F(5, 2158) = 18.12, p < 0.001, HbR: F(5,2164) 
= 27.4, p < 0.001). This was due to lower RMSE for Pipeline A than for 

the other Pipelines: A–B = -0.037, A-C=-0.27, A–BA= -0.036, A–BB=

-0.031, all ps<0.001. There was also a significant main effect of noise 
(HbO: F(1, 435) = 118.9, p < 0.001, HbR: F(1,439)=184.74, p<0.001). 
The interaction between Pipeline and Noise was also significant (HbO: F 
(5, 2162)=36.79, p < 0.001, HbR: F(5,2167)=48.97, p<0.001) This was 
carried by a smaller increase in RMSE with noise for Pipelines A (β =
0.076), C (β = 0.017) and BB (β = 0.068) than for the other pipelines. 

5.3. % Included trials 

The best fitting (full) mixed effects model yielded a significant main 
effect of Pipeline (F(5, 2190) = 257, p < 0.001). This was carried by all 
pipelines except pipeline C having a significantly lower inclusion rate 
than the control pipeline (no rejection) : A-Control= -0.49, B-Control =

Fig. 5. Three examples of recovered HRFs in randomly chosen “participant” dataset. HRFs are averaged across active channels. Shaded error bars represent the 
respective standard deviations. 

Fig. 6. Three examples of recovered HRFs in randomly chosen “participant” datasets. As in Fig. 5, HRFs are averaged across active channels and shaded error bars 
represent the respective standard deviations. Note that the averages and standard error bars of Pipelines B (pink) and BA (violet) largely overlap. 
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-0.181, BA-Control= -0.176, BB-Control= -0.164, all ps<0.001. Notably, 
the difference was significant between Pipelines BB and B (0.018, p <
0.05), but not between Pipelines BB and BA.. The main effect of Noise (F 
(1, 424) = 32.55, p < 0.001) was also significant, as was the Pipeline x 
Noise interaction (F(5, 2190)= 67.31, p < 0.001): the decrease in 
number of retained trials with increasing levels of noise is significant for 
both Pipeline A (β= -0.54) and B (β = -0.01), but not for the others. 

5.4. Correlation between recovered and true HRF 

The best fitting (full) mixed effects model yielded a significant main 
effect of Pipeline (HbO: F(5, 2156) = 5.13, p < 0.001, HbR: F(5, 2153) =
6.76, p < 0.001). This was carried by Pipelines A and C yielding the 
highest correlations (mean value 0.94, SE 0.008 and 0.92, SE 0.008, 
respectively). The main effect of Noise was also significant (F(1,437) =
34.62, p < 0.001) as was the interaction between Pipeline and Noise (F 
(5, 2158)= 11.68, p < 0.001). This was carried by a smaller decline in 

correlations for Pipeline A (β = - 0.123) and Pipeline C (β= -0.131) than 
for B, BA and BB (βs = -0.26, -0.30, -0.37, respectively). For all the 
pipelines the decrease was smaller than applying no pre-processing 
(Control pipeline, β=-0.496, all ps < 0.05). 

6. Discussion 

The first and most important implication of these results is that pre- 
processing is a crucial step in the analysis of infant fNIRS data, since 
every pipeline recovered the HRF better than applying no pre- 
processing, i.e. the Control Pipeline. 

We fine-tuned the characteristics of the synthetic dataset to closely 
match real infant data: noisy, dense with motion artifacts, and with 
HRFs that often have small amplitudes, which are difficult to detect. We 
varied these parameters systematically in order to evaluate the perfor-
mance of each method as a function of noise and HRF amplitude. We 
used three metrics, Amplitude, RMSE and the Correlation Coefficient, 

Fig. 7. The top panel shows the parameters of the artifacts used to generate the different datasets, in terms of voltage change. These varying levels of noise are 
quantified in terms of the coefficient of variation (CV%). The bottom panel shows the performance of each pipeline at different levels of noise for RMSE, Amplitude 
and the Correlation Coefficient, the metrics for which the Pipeline X Noise interaction was significant. ***, **, * for p < 0.001, 0.01 and 0.5, respectively. 
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related to the shape of the recovered HRF, and one metric, % Included 
Trial, which assesses the “cost” of recovering the HRF in terms of data 
inclusion/exclusion. 

We found that Pipeline A achieved the best Correlation Coefficient 
and RMSE among all the pipelines, and it has proven to be the most 
robust against increasing levels of noise. It thus recovers the HRF 
particularly faithfully. It does so by using very strict inclusion criteria, i. 
e. by rejecting the highest number of trials. Such a faithful recovery may 
be particularly well suited to situations where the targeted effects are 
small or where the shape of the HRF is itself of interest, e.g. how the 
shape of the HRF changes over development in a given brain area or 
cognitive/perceptual domain or whether two populations, e.g. one 
typical and one atypical group of infants, show differences. Results for 
HbR point in the same direction (Figure S1). 

The HRF recovered by Pipeline C also correlated well with the true 
HRF and this pipeline maintained its performance quite robustly as the 
noise increased, but importantly the Amplitude and the RMSE of the 
recovered HRF were relatively poor. This was likely due to the Wavelet 
filtering used for motion artifact correction strongly dampening the 
amplitude of the HRF. This strong reduction of the amplitude of the HRF 
may be a particularly important issue when testing subtle experimental 
manipulations with small effect sizes, which is often the case in cogni-
tive developmental studies (e.g. fine-grained perceptual discrimination 
between two speech sounds, two faces etc.). At the same time, artifact 
correction makes it possible to retain many more trials, as a result of 
which Pipeline C had the highest number of retained trials, a useful 
feature when data is limited, e.g. by participant availability in clinical 
populations etc. 

Pipeline B returned intermediate approximations of the true HRF, 
but it was more affected by the underlying noise. This can also be 
observed in the HbR results. Here, only Pipelines A and C yield better 
correlations than the Control pipeline (Figure S1). and remain robust in 
the face of increasing levels of noise. 

These results reveal a trade-off between the quality of the recovered 
HRF and inclusion. This balance needs to be considered carefully when 
processing noisy fNIRS data, such as infant data. On one hand, the 
correction of motion artifacts is desirable when few trials or few par-
ticipants are available, e.g. with atypical populations, and thus rejection 
is not a viable option. On the other hand, if a large number of trials per 
participant and/or a large sample of participants are available, it is 
possible for researchers to use stringent quality criteria, by rejecting 
noisy trials, which in turn allows a better recovery of the HRF. In 
addition, the overall data quality, e.g. signal-to-noise ratio (SNR), also 
plays a role, as different pipelines resist noise to different extents. Re-
searchers should thus consider at least the following factors when 
deciding on the pre-processing steps: (i) whether the exact character-
ization of the shape of the HRF is relevant; (ii) what the expected effect 
size is; (iii) the number of trials per participant and the number of 
participants, and (iv) the data quality (SNR, the quantity and type of 
artifacts etc.). Similar trade-offs between data inclusion and quality have 
also been documented in behavioral infant data, such as looking time 
measures (ManyBabies Consortium, Frank et al. (2020)), suggesting that 
this compromise is inherent in noisy datasets in general. 

We also tested the impact of the order of pre-processing steps by 
comparing the same pre-processing applied to optical densities (Pipeline 
B), to Hb concentrations (Pipeline BA) or to raw light intensities (Pipe-
line BB). We found little difference between using optical densities or 
HbO/HbR concentrations. This result is in line with the findings re-
ported in Pinti et al. (2019), who also found that the two approaches did 
not differ in their statistical outcomes (in a General Linear Model). Our 
analysis shows that this is because applying the pre-processing to optical 
densities or to hemoglobin concentration changes does not produce 
significant differences in the size and shape of the recovered HRF. 
Interestingly, however, applying the pre-processing steps on light in-
tensities (BB) resulted in lower amplitudes. The recovered HRF was also 
more irregular in shape. We speculate that the filter specifications that 

work well with optical densities and concentration changes, such as a 
3rd order bandpass Butterworth filter, might not have been equally 
appropriate for use with light intensities. As it has been suggested by 
other studies (Pinti et al., 2019), future work should investigate the 
optimal filter parameters specifically suited for infants data. 

7. Experiment 2 

Applying the pipelines to synthetic data allowed us to explore their 
performance in a systematic manner. In Experiment 2, we now test them 
on real data in order to explore the ecological validity and generaliz-
ability of the findings from Experiment 1. 

8. Methods 

8.1. Data 

The data was obtained from Gervain et al. (2012), Experiment 1. The 
purpose of the study was to assess whether the newborn brain dis-
criminates random sequences from repetition-based regularities in 
speech stimuli. Here, we briefly summarize the methodological details 
regarding the participants, the stimuli and the experimental procedures. 

8.1.1. Participants 
Twenty-two healthy, full-term neonates (13 boys, 9 girls; mean age =

1.14 days, range = 0–3 days; Apgar score ≥ 8) born in the Vancouver 
area participated in the experiment. Data from 13 additional infants 
were collected but excluded from the data analysis, as they (1) failed to 
complete the experiment because of fussiness and crying (11 infants) or 
(2) provided poor quality data because of large motion artifacts or thick 
hair (2 infants). All parents gave informed consent before participation. 
The ethics boards of the University of British Columbia and BC Women’s 
Hospital, where the experiments took place, granted permission. 

8.1.2. Stimuli and procedure 
Infants were tested with a HITACHI ETG-4000 NIRS machine 

(source-detector separation: 3 cm; two continuous wavelengths of 695 
and 830 nm; sampling rate: 10 Hz) using 24 channels over the bilateral 
temporal, parietal and frontal areas (Fig. 8B). Auditory stimuli were 
presented according to a block design, in which each block (trial) 
included 10 trisyllabic words characterized by sequence-initial repeti-
tions (“AAB”, e.g. “babamu”, “nanape”) or by random sequences 
(“ABC”, e.g. “mubage”, “penaku”). The stimuli were synthesized to have 
monotonous pitch (200 Hz) and equal syllable durations (270 ms). A 
detailed description of the stimuli can be found in (Gervain et al., 2012). 

A total of 14 blocks for each condition was presented; blocks lasted 
approximately 18 s, were spaced by time intervals of varying duration 
(25− 35 s) and were presented in a randomized order (Fig. 8A). 

8.2. Data analysis 

8.2.1. Pre-processing pipelines 
The pre-processing pipelines were identical to those used in Exper-

iment 1. 

8.2.2. Metrics of comparison 
The pipelines were compared in terms of percentage of included 

trials and signal amplitude, as described in Experiment 1. Since the true 
HRF was not known, the RMSE and the Correlation Coefficients could 
not be computed. We also added a new measure, the standard deviation 
of the HRF in order to assess the noise and variability in the recovered 
signal. 

8.2.3. Statistical analysis 
Statistical analyses for signal amplitude and the standard deviation 

were performed on the channels that were reported to have a significant 
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response to the AAB condition in Gervain et al. (2012), i.e. they showed 
a detectable hemodynamic response (Gervain et al., 2012), in a time 
window defined using a permutation test with 100 iterations comparing 
the AAB responses to a zero baseline. The channels were 3, 4, 6 and 15 
(Fig. 8). Of relevance here is the fact that these channels have varying 
levels of noise, with channel 4 being particularly noisy (Fig. 9, insets in 
the top and middle row plots) Specifically, the standard deviation of the 
signal averaged across blocks and participants, is 0.3416 for channel 4, 
as opposed to 0.17, 0.18 and 0.16 for channels 3, 6 and 15, respectively. 

Linear mixed effects models were fitted to HRF amplitude and 
standard deviation, separately, as the dependent variable, with fixed 
effects for Pipeline (A, B, BA, BB, C) and Channel (3, 4, 6, 15) and their 
interaction, as well as a random slope for channel and a random inter-
cept for participant. This model was selected based on the minimization 
of the AIC criterion, analogously to Experiment 1. 

The percentage of trial inclusion was averaged across all channels 
and across the two conditions, and a linear mixed model was fitted to it 
with a fixed effect for Pipeline and a random intercept for participant, 
which was the best fitting model based on AIC. 

Models were implemented in SPSS v. 25.0 (IBM Corporation, 2017) 
and subsequent pairwise comparisons were adjusted for multiple com-
parisons with the Bonferroni procedure. 

9. Results 

The recovered HRFs for HbO and the corresponding amplitude and 
standard deviation values are shown in Fig. 9. The results for HbR are 
highly similar and are, therefore, shown in the Supplementary Material. 
But we report the statistics for both Hb species here. 

The mixed effects model over amplitude values yielded a significant 
effect for Pipeline (HbO: F(5, 368) = 24.9, p < 0.001, HbR: F(5, 
366) = 13.86, p < 0.001), for Channel (HbO: F(3, 76) = 2.78, p = 0.046, 
HbR ns), as well as for their interaction (HbO: F(15, 368) = 3.55, 
p < 0.001, HbR: F(15, 366) = 3.42, p < 0.001). The main effect of Pipe-
line was mainly due to Pipeline C producing lower HRF amplitudes than 
the other pipelines (mean differences C-A − 0.067, C-B − 0.059, C-BA 
− 0.084, C-BB − 0.11, all ps < 0.001). The main effect of Channel was 

carried by Channel 15, characterized by a significantly lower amplitude 
than the others: mean difference between Channel 15 and Channel 
3− 0.059, p < 0.05, Channel 15− 4 − 0.035, p < 0.05; Channel 15− 6: 
− 0.054, p < 0.001. The significant Pipeline x Channel interaction (post 
hoc test results are shown in Fig. 9) was mainly attributable to the 
amplitude obtained by Pipeline C being significantly lower than the 
amplitudes of the other pipelines to different extents in the different 
channels. The amplitude recovered by Pipeline B was not different from 
that recovered by Pipeline BA in any of the channels, while BB had 
significantly higher amplitudes than the other pipelines in channel 4, 
which was particularly noisy. 

The mixed effects model over the standard deviation of the HRF 
yielded a significant effect for Pipeline (HbO: F(5, 417) = 23.35, 
p < 0.001, HbR: F(5, 411) = 22.88, p < 0.001), for Channel (HbO ns, 
HbR: F(3, 120) = 3.47, p < 0.05) and for their interaction (HbO: F(15, 
417) = 3.42, p < 0.001, HbR: F(15, 411) = 4.26, p < 0.001). The main 
effect of Pipeline was driven by the three Pipelines B (B-BB-BA) yielding 
significantly greater variability in the HRF than the other pipelines. 
Post-hoc tests revealed no significant differences between Pipelines B, 
BA and BB, but all three had higher standard deviations than Pipelines A 
(B-A 0.025, p < 0.01; BA-A 0.029, p < 0.001; BB-A 0.028, p < 0.001) and 
C (B-C 0.043, p < 0.001; BA-C 0.046, p < 0.001; BB-C 0.046, p < 0.001). 
The main effect of Channel was not carried by any significant pairwise 
comparisons in the HbO timetraces, while in HbR Channel 3 displays a 
significantly lower standard deviation than Channel 4 (mean difference 
3-4 = − 0.011, p < 0.05). Lastly, the significant Pipeline x Channel 
interaction is mainly due to Channel 4 yielding significant differences 
between Pipelines more than the other channels (post-hocs are shown in 
Fig. 9). 

The trial inclusion rates are shown in Fig. 10. The effect of pipeline 
was significant (F(5, 105) = 135.9, p < 0.001), with all post hoc pairwise 
comparisons being statistically significant, except between the Control 
pipeline and Pipeline C, as well as between Pipelines B, BA and BB. 

10. Discussion 

The analysis of experimental data provided similar results to those 

Fig. 8. The design of the experiment (figure adapted from Gervain et al., 2012).  
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found for the synthetic data. Wavelet-based artifact correction retained 
a large amount of data, at the cost of yielding a low amplitude HRF. 
Conversely, the pipelines that involved trial exclusion, i.e. Pipelines A, 
B, BA and BB, showed almost no differences in amplitude, and yielded a 
more discernible HRF. 

There was, however, a difference between these pipelines in how 
variable (noisy) the recovered HRFs were, with Pipelines A and C 
yielding the cleanest timeseries, and Pipelines B, BA and especially BB 
yielding HRFs with large standard deviations, particularly in the noisiest 
channel (Fig. 9, Channel 4), for both HbO and HbR. This confirms what 
we had already observed in Experiment 1: Pipelines A and C are robust 
in the face of noise, while Pipeline BB performs poorly under noisy 
conditions, likely because its filter specifications are sub-optimal for 
light intensities. 

Pipelines also varied in the amount of trials they excluded: A dis-
carded the largest number; higher rates are achieved by the other 
pipelines. This confirms the inclusion-quality trade-off, also observed in 
Experiment 1. 

11. General discussion and recommendations 

The use of fNIRS has been growing rapidly in many areas of neuro-
science research. In particular, one of the most prolific areas of appli-
cation is the field of infant research (Gervain et al., 2011; 
Minagawa-Kawai et al., 2008). Nevertheless, being a relatively recent 
neuroimaging technique, standardized testing and analysis procedures 
are still lacking. This issue is especially pressing for infant studies, since 
the development of the hemodynamic response function (HRF) in 

Fig. 9. (First line) Grand averages of the AAB condition obtained through Pipelines A, B and C across all subjects for channels 3, 4, 6 and 15. The inset plots show the 
corresponding grand averages for the Control Pipeline. (Second line) Grand averages of the same channels obtained when using Pipelines B, BA and BB. (Third line) 
HRF amplitudes recovered in the same channels by the different pipelines (Fourth line) Standard deviations of the HRFs in the same channels and pipelines. 
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infants is not fully known and exhibits great variability across subjects, 
experimental designs, age and brain areas. 

Importantly, infants are non-compliant participants with little con-
trol over their head motion and have short attention spans, yielding 
noisy and artifacted data. For all these reasons, infant data is inherently 
variable and data quality may often be compromised. 

Data analysis therefore plays a crucial role in how well the HRF can 
be recovered. But many different data processing pipelines are used and 
reported in literature. 

The goal of this work was, therefore, to select a few representative 
pre-processing workflows from the existing infant NIRS literature and 
assess their performance. We performed a literature search, which 
identified 75 studies carried out with infants aged 12 months or 
younger, published between 2016 and 2020. Based on this, we defined 
five pre-processing pipelines that accounted for 86 % of the reviewed 
literature, and we compared their performance qualitatively and quan-
titatively on the same synthetic (Experiment 1) and real (Experiment 2) 
datasets. 

In both experiments, we observed that the pre-processing pipelines 
all performed better than the control pipeline, which included only 
filtering. Furthermore and more interestingly, we observed a trade-off 
between the quality of the recovered HRF and data inclusion. The per-
centage of included trials was highest when correcting motion artifacts 
with a wavelet-based filtering. The possibility of retaining a large 
quantity of data is the greatest asset of motion artifacts correction 
techniques. This is particularly relevant for infant studies or for studies 
with atypical, clinical or otherwise hard-to-recruit populations, where 
experimental time is limited, and it is impossible to fully control the 
participants’ behavior. 

However, the amplitude of the HRF recovered by correcting motion 
artifacts was found to be much lower than that of the true HRF, while the 
pipelines that did not apply this correction recovered the HRF with 
amplitudes closer to the true ones, in Experiment 1, and very similar to 
one another, in Experiment 2. These pipelines are thus more suitable for 
studies in which the shape of the HRF is relevant, where subtle differ-
ences between conditions or small effect sizes are to be expected and 
where appropriate amounts of data can be collected. 

In light of these results, we argue that researchers should consider a 
number of factors when selecting the pre-processing steps. First, the data 
quality/inclusion trade-off needs to be taken into account. Researchers 
need to consider whether a more accurate identification of the HRF or 
larger data inclusion is more desirable to best answer their research 
question. 

Second and relatedly, researchers need to take into account the 

quality of the raw data. We found that the performance of all pipelines 
deteriorated with increasing levels of noise, but pipelines A and C were 
considerably less impacted. When data quality is poor, the pipeline 
should be chosen accordingly. 

Third, the automatic correction of motion artifacts should be used 
cautiously. Several settings should be tested and verified. Since the 
amplitude of infant data is generally lower than that of adult data, and 
differences between experimental conditions may be small, decreasing it 
further may be detrimental, and could result in false negatives, reduced 
effect sizes and an underestimation of the hemodynamic response. 

Fourth, both experiments suggest that applying pre-processing to 
optical densities or concentration changes achieved overall very similar 
results, while applying it to light intensities yielded more irregular re-
sponses, especially when dealing with considerable underlying noise. 
We speculate that the 3rd order Butterworth filter is likely not well 
suited for light intensity data, and more work is necessary to identify the 
most appropriate filter design for this case. 

The findings of this work highlight how pre-processing choices have 
an impact on the shape and the amplitude of the recovered hemody-
namic response, and therefore on the conclusions of a study. Since 
neuroscience and psychology are increasingly concerned with the (non-) 
replicability of experimental findings, well-motivated analysis choices 
become central in ensuring the robustness of NIRS studies. The trans-
parent and explicit reporting of these choices is of utmost importance. 

While a one-size-fits-all approach is not feasible, as factors such as 
the number of available trials, the behavioral state of the participants, 
their age, the nature of the stimuli etc. all contribute to determine the 
best analysis choices, we nevertheless, provide some guidelines that can 
help researchers in designing a suitable pre-processing strategy. 

- In studies with atypical, clinical or otherwise hard-to-recruit pop-
ulations, where participant availability and experimental time are 
strongly limited, and it is particularly challenging to control the 
participants’ behavior, it is advisable to attempt the correction of 
motion artifacts.  

- Whenever it is possible to test for extended periods of time, e.g. with 
sleeping newborns, and a large number of trials can be obtained, 
artifact rejection can be applied in order to most faithfully recover 
the HRF, especially its amplitude.  

- If small effect sizes are to be expected based on literature, we 
recommend rejecting bad quality trials: this approach yields the 
highest amplitude and lowest standard deviation within blocks, 
contributing to a higher effect size.  

- When it is important that two conditions be maximally discriminable 
(e.g. in clinical applications, when a pathological state needs to be 
distinguished from a typical one), it is recommendable to reject bad 
quality trials.  

- When the study seeks to investigate or characterize the shape of the 
HRF itself in a given population, brain area, age range or task, it is 
reasonable to reject bad quality trials in order to best preserve the 
shape and amplitude of the HRF. 

12. Conclusions 

Although fNIRS is widely employed in the field of cognitive devel-
opmental research, a consensus on a common pre-processing workflow 
is lacking. In this work we selected five commonly employed pre- 
processing pipelines from recent infant fNIRS literature. The pre- 
processing stage has a critical impact on the shape of the recovered 
HRF and therefore, ultimately, on the interpretation of the results. By 
using both experimental and synthetic data, we demonstrated the 
strengths and limitations of different pre-processing choices; in partic-
ular, we highlighted that automatic correction of motion artifacts allows 
to retain the vast majority of noisy trials, but also produces a reduction 
in the recovered response amplitude. By contrast, employing strict 
criteria for trial inclusion results in a large exclusion rate, which is not 

Fig. 10. Trial inclusion rates across pipelines averaged across channels and 
across the two conditions AAB and ABC. The black lines indicate the results of 
the pairwise comparisons, and the asterisks mark comparisons with p < 0.001. 
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always feasible, but better preserves the characteristics and amplitude of 
the HRF. Finally, the same pre-processing steps may invariably be per-
formed on optical densities or concentration changes, but are not suited 
to raw light intensities. 
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