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Procedure via cross‑Kerr 
nonlinearities for encoding 
single logical qubit information 
onto four‑photon decoherence‑free 
states
Jino Heo1 & Seong‑Gon Choi1,2*

We propose a photonic procedure using cross-Kerr nonlinearities (XKNLs) to encode single logical 
qubit information onto four-photon decoherence-free states. In quantum information processing, 
a decoherence-free subspace can secure quantum information against collective decoherence. 
Therefore, we design a procedure employing nonlinear optical gates, which are composed of XKNLs, 
quantum bus beams, and photon-number-resolving measurements with linear optical devices, to 
conserve quantum information by encoding quantum information onto four-photon decoherence-free 
states (single logical qubit information). Based on our analysis in quantifying the affection (photon loss 
and dephasing) of the decoherence effect, we demonstrate the experimental condition to acquire the 
reliable procedure of single logical qubit information having the robustness against the decoherence 
effect.

The influence of decoherence, nonunitary process, is one of the most significant obstacles hindering the reli-
able performance of various quantum information processing schemes, such as quantum communication1–8, 
quantum entanglement9–14, and quantum computation15–22. Therefore, the influence of decoherence should be 
reduced via active processes (quantum error corrections23–25, entanglement purifications26–28, and entanglement 
concentrations30,31) or passive processes (decoherence-free subspaces32–36).

In particular, utilizing a decoherence-free subspace prevents collective decoherence32–36 which occurs the 
identical decoherence occurring in each qubit in a system to be spread from one subspace to another subspace 
in a system when uncontrolled interactions between a system and environment affect the schemes of quantum 
information processing. Applications (passive processes)37–48 employing a decoherence-free subspace can provide 
immunity against collective decoherence32–34. For the passive process, a simple method is to encode quantum 
information onto two-qubit systems as a singlet state36 or three-qubit systems as an entangled W state12,14,49,50, 
and a three-qubit decoherence-free state37–41, 51. However, applications12,14,36–41,49–51 using two- or three-qubit 
systems can guarantee only a limited effect for maintaining the coherence of quantum information from the 
influence of collective decoherence in quantum channels. Hence, four-qubit decoherence-free subspaces, passive 
processes, utilizing various physical resources have been proposed to enhance the efficiency of coherent quantum 
information, e.g., linear optics with post-selections41, spontaneous parametric down conversions52,53, source of 
entangled state54,55, and cavity-QED42,43,48.

For the design of quantum information processing schemes, including passive processes, cross-Kerr non-
linearity (XKNL)56–59 is an appropriate candidate. Quantum controlled operations using XKNLs have been 
performed to implement various quantum information processing schemes by the indirect interaction between 
photons, signal systems, and probe beams, ancillary systems: coherent state, based on quantum non-demolition 
detections10,12,14,16,18,56–64. However, the decoherence effect (photon loss and dephasing)57–59,63,65, which results 
in the evolution from a quantum pure state to a mixed (classical) state, is inevitable when nonlinear optical 
gates via XKNLs are operated. To utilize quantum bus (qubus) beams and photon-number-resolving (PNR) 
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measurements10,12,14,16,18,66 in nonlinear optical gates via XKNLs with a strong amplitude of coherent states (qubus 
beams), the decoherence effect should be reduced57–59.

In this study, we designed a photonic procedure based on nonlinear optical gates using XKNLs, qubus beams, 
and PNR measurements to encode quantum information onto four-photon decoherence-free states (single logi-
cal qubit information) to achieve robustness against collective decoherence32–34. Subsequently, using XKNLs, 
we quantified the efficiencies and performances of nonlinear optical gates under the decoherence effect (photon 
loss and dephasing57–59,63,65). In addition, we derived an experimental condition to reduce the decoherence effect 
in nonlinear optical gates.

We demonstrate that the proposed procedure for generating single logical qubit information (quantum infor-
mation on four-photon decoherence-free states) with immunity against collective decoherence can be realized 
experimentally and that it is robust against the decoherence effect (photon loss and dephasing).

Optical procedure via XKNLs for single logical qubit information
Four‑qubit decoherence‑free state.  To prevent quantum information in qubits from being affected by 
collective decoherence32–34, logical qubits using decoherence-free subspaces37–48 have been utilized. Herein, logi-
cal qubits { |0L� , |1L� } based on the four-qubit decoherence-free state are expressed as

Using the logical qubits in Eq. (1) (four-qubit decoherence-free states), we can encode arbitrary quantum 
information to acquire immunity against collective decoherence, as |φL� = α|0L� + β|1L� with |α|2 + |β|2 = 1 
(single logical qubit information).

Interaction of XKNL.  For the interaction, UK , in Kerr medium, XKNL, which can be employed to realize 
the diverse quantum information processing schemes, the interaction between a photon A, signal system, and 
coherent state P, ancillary system, to induce a phase shift θ by the Kerr medium is described in Fig. 1. For exam-
ple, we assume an input state, |R�A⊗|α� P , to represent the interaction of the XKNL where 
|α� = e−|α|2/2 ∑∞

n=0
αn√
n! |n� . After the input state passes through a polarizing beam splitter (PBS), the state is 

transformed by the interaction (dotted-red box in Fig. 1) of XKNL, as follows:

where the operations of the interaction, conditional phase shift, by XKNL and the PBS are described in Fig. 1. 
As described in Fig. 1 and Eq. (2), the phase of ancillary system, |α� aP , is changed, according to the state, |H� 1A or 
|V� 2A , of signal system via the interaction of XKNL. From this interaction, or procedure, we can realize quantum 
non-demolition detections10,12,14,16,18,56–66, which can obtain the information of signal system by the indirect 
detection in ancillary system, to utilize the various procedure for quantum information processing. For the 
interaction of XKNLs, the magnitude of XKNL can obtain to ∼ 10−2 , due to the electromagnetically induced 
transparency67,68. Recently, to the measurement-induced quantum operation on weak quantum states of light69 
can generate a strong XKNL at the single photon level for the applicable quantum information processing. Also, 
for the Hamiltonian, HK = ℏχN1N2 , of XKNL with χ =

(
g21 g

2
2

)
/
(
��2

c

)
 , the scheme70 have been designed in 

(1)

|0L� 1234 ≡
1

2
(|0101� + |1010� − |0110� − |1001� )1234 =

1√
2
(|01� − |10� )12 ⊗

1√
2
(|01� − |10� )34,

|1L� 1234 ≡
1√
12

(2|0011� + 2|1100� − |0101� − |1010� − |0110� − |1001� )1234

= 1√
3

[
(|0011� + |1100� )1234 −

1√
2
(|01� + |10� )12 ⊗

1√
2
(|01� + |10� )34

]
.

(2)

|R� 1A⊗|α� aP
PBS→ 1√

2

(
|H� 1A + |V� 2A

)
⊗|α� aP

UK→ 1√
2

(
|H� 1A⊗|α� aP + UK |V� 2A⊗|α� aP

)
= 1√

2

(
|H� 1A⊗|α� aP + |V� 2A⊗

∣∣αeiθ � a
P

)
,

Figure 1.   Schematic diagram of the interaction of XKNL: In the Figure, this interaction, conditional phase shift 
θ into the phase space of the coherent state P, |α� P , is induced by the polarization |V� P (path 2) of the photon 
A in the Kerr medium. Here, the photon and coherent state P play the roles of the control qubit, signal system 
|V� 2P , and target qubit, ancillary system 

∣∣αeiθ 〉 a
P
 , respectively.
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circuit QED where gi is coupling strength, �c is the transition strength between levels driven by a classical pump 
field with � , detuning. This can show the Kerr medium can be substituted by circuit QED as the proposition71 
in which the non-maximal entangled states of photons can be concentrated.

Procedure via XKNLs for single logical qubit information.  Our procedure pertaining to single logi-
cal qubit information comprises two parts: in the first part, four-photon decoherence-free states (the super-
position of logical qubits) are generated; in the second part, quantum information is encoded, as described in 
Fig. 2. In this procedure, all gates, first, second, third, fourth, and final gates, employ the interactions of XKNLs, 
qubus beams, and PNR measurements. For the single logical qubit information, we prepared the initial state as 
|ψin� 1111ABCD = |L� 1A ⊗ |L� 1B ⊗ |R� 1C ⊗ |R� 1D , where |R�-right; |L�-left and linear |H�-horizontal; |V�-vertical repre-
sent the circular and linear polarizations of photon, respectively (Fig. 1). After the initial state, |ψin� 1111ABCD passes 
two 50/50 beam splitters (BSs), and the four-photon state |ψ0�ABCD can be expressed as 

where the operation of the BS is illustrated in Fig. 2.
In the first gate, two-photon interactions between photons C and D, shown in Fig. 3, four conditional phase 

shifts θ by XKNLs, two linear phase shifts −θ , qubus beams (two BSs and PNR measurement), and feed-forward 
(phase shifter and path switch) were exploited for a controlled operation between photons C and D. After the 
state |ψ0�ABCD passes through the first gate, the pre-measurement (before PNR measurement) state 

∣∣∣ψ
′
0�

ABCD
 

can be expressed as

where |α� P is the coherent state, probe beam: ancillary system. The operation of the BS in the qubus beam (coher-
ent state) is shown in Fig. 3. |±iαsinθ� P = e−(αsinθ)2/2

∑∞
n=0

(±iαsinθ)n√
n! |n� P for α ∈ R . Subsequently, by PNR 

measurement on path b of the qubus beams, if the outcome is 0 ( |0� bP : no detection), then the output state, 
|ψ1�ABCD of the first gate can be obtained as |ψ1�ABCD = |L� 1A|L� 1B

(
|R� 1C|R� 1D + |R� 2C|R� 2D

)
/
√
2 . Meanwhile, 

if the outcome is n ( |n� bP : n  = 0 ), then the output state |L� 1A|L� 1B
(
|R� 1C|R� 2D + (−1)n|R� 2C|R� 1D

)
/
√
2 can be 

transformed to state |ψ1�ABCD by feed-forward (phase shifter and path switch), as described in Fig. 3.

(3)|ψ0�ABCD = |L� 1A ⊗ |L� 1B ⊗
(
|R� 1C + |R� 2C

)
/
√
2⊗

(
|R� 1D + |R� 2D

)
/
√
2,

(4)
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′
0�

ABCD
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[
1√
2

(
1√
2
|R� 1C|R� 1D + 1√

2
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)
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+ 1√
2
e
− (αsinθ)2

2

∞∑
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(
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2
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2
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)
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]
,

Figure 2.   Procedure via XKNLs for single logical qubit information: First part is to generate the superposition 
of four-photon decoherence-free states. In this part, two-photon interaction of XKNLs is used in the first gate, 
and the fourth gate (via XKNLs) can merge photon paths. Meanwhile, the second and third gates are operated 
by three-photon interactions of XKNLs. In the second part, the encoding process can encode (arbitrary) 
quantum information onto four-photon decoherence-free states, which are output states of the first part.
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In the second and third gates, which interact with three-photon, shown in Fig. 4, conditional phase shifts θ 
by XKNLs, linear phase shifts −θ , qubus beams (BSs and PNR measurements), feed-forwards (phase shifters and 
spin flippers), and linear optical devices, including polarizing beam splitters (PBSs), were utilized for controlled 
operations between three photons, i.e., (A, C, and D: second gate) and (B, C, and D: third gate). After the state 
|ψ1�ABCD (the output state of the first gate) passes through the second gate, the pre-measurement (before PNR 
measurement) state 

∣∣∣ψ
′
1�

ABCD
 can be expressed as

Figure 3.   First gate (two-photon interactions between photons C and D) via XKNLs: For path arrangement of 
photons C and D, the first gate comprises XKNLs, qubus beams, PNR measurement, feed-forward, and linear 
optical devices. After PNR measurement, feed-forward (phase shifter and path switch) on photon D is either 
operated or not operated, depending on the result (photon number n ) of PNR measurement.

Figure 4.   Second and third gates (three-photon interactions) via XKNLs: For controlled operations between 
three photons, two (second and third) gates consist of XKNLs, qubus beams, PNR measurement, feed-forward, 
and linear optical devices were used. Feed-forwards (phase shifters and spin flippers) of two gates are either 
operated or not operated on photons (A, C, and D: second gate) and (B, C, and D: third gate) depending on 
results of PNR measurements.
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Depending on the PNR measurement result on path b of the qubus beams, if the outcome is 0 ( |0� bP : no detec-
t ion) ,  t hen  t he  output  s t ate ,  |ψ2�ABCD  of  t he  s e cond  gate  c an  b e  obt a ine d  as 
|ψ2�ABCD =

{
|H� 1A|L� 1B

(
|V� 1C|R� 1D + |R� 2C|V� 2D

)
− |V� 1A|L� 1B

(
|H� 1C|R� 1D + |R� 2C|H� 2D

)}
/2 . Otherwise, if n 

( |n� bP : n  = 0 ), then the output state can be changed to |ψ2�ABCD by feed-forwards (phase shifter and spin flippers). 
Subsequently, the state |ψ2�ABCD enters the third gate for another controlled operation. After the third gate, the 
state 

∣∣∣ψ
′
2�

ABCD
 (before PNR measurement) can be written as

After the operations applying feed-forwards or not in Fig. 4, owing to the outcome of the PNR measurement, 
the output state |ψ3�ABCD of the third gate can be expressed as

Subsequently, as described in Fig. 2, two BSs were applied to photons C and D of the output state |ψ3�ABCD 
in Eq. 7. Next, the output state |ψ3�ABCD was transformed to state 

∣∣∣ψ
′
3�

ABCD
 of the superposed (four-photon) 

decoherence-free states, as follows:

where we define the polarizations ( |H� and |V� ) of photons corresponding to states ( |0� and |1� ) of the qubit 
as {|H� , |V� } ≡ {|0� , |1� } . Hence, state |ψ ′

3�ABCD is the photonic superposition of logical qubits (four-qubit 
decoherence-free states in Eq. 1), according to the paths of photons C and D.

In the fourth gate (photon C) shown in Fig. 5, two conditional phase shifts θ by XKNLs, one linear phase 
shift −θ , qubus beams (two BSs and PNR measurement), and feed-forward (path switch) were utilized to merge 
the path of photon C (path 1 and path 2 → path 1). After state |ψ ′

3�ABCD passes through the fourth gate, the pre-
measurement (before PNR) state |ψ ′′

3 �ABCD can be expressed as

Subsequently, by PNR measurement on path b of the qubus beams, if the outcome is 0 ( |0� bP : no detection), 
then output state is |ψ4�ABCD =

(
|0L� 1112ABCD +

√
3|1L� 1111ABCD

)
/2 . Meanwhile, if the outcome is n ( |n� bP : n  = 0 ), 
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2
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2

∞∑
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n!
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√
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√
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√
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then the output state 
(
|0L� 1121ABCD +

√
3|1L� 1122ABCD

)
/2 can be transformed to state |ψ4�ABCD by feed-forward (path 

switch), as shown in Fig. 5.
The encoding process shown in Fig. 5 comprises two parts (linear: arbitrary-BS, and nonlinear: final gate via 

XKNLs). To encode arbitrary quantum information for our purposes, communication, computation, teleporta-
tion, etc., onto the output state |ψ4�ABCD of the fourth gate, we can control the transmission rate ( κ1 ) and reflec-
tion rate ( κ2 ) of an arbitrary-BS, in which the operations are expressed as described in Fig. 5. Therefore, after 
applying the arbitrary-BS to state |ψ4�ABCD =

(
|0L� 1112ABCD +

√
3|1L� 1111ABCD

)
/2 , the encoded (superposition of) 

state |ψ5�ABCD is expressed as

where |αi|2 + |βi|2 = 1 . αi and βi denote the arbitrary information encoded by the arbitrary-BS. Subsequently, 
through the final gate, the pre-measurement (before PNR measurement) state 

∣∣∣ψ
′
5�

ABCD
 is expressed as

After PNR measurement on path b, we can obtain the final state (single logical qubit information), which 
is the encoded arbitrary information, for the outcomes ( n = 0 or n  = 0 ) of the PNR measurement, as follows:

where the final state 
∣∣ψf _n〉ABCD ( n  = 0 ) can be converted to state 

∣∣ψf _0〉ABCD ( n = 0 ) by applying unitary opera-
tions since the transmission rate, κ1 , and reflection rate, κ2 , of an arbitrary-BS are known. Consequently, for the 
single logical qubit information, the proposed procedure shown in Fig. 2 can encode the arbitrary quantum 
information ( αi and βi ) onto four-photon decoherence-free states which are superposed state of |0L� and |1L� , 
as shown in Eq. (12).

Herein, we propose a procedure comprising nonlinear optical gates, first, second, third, fourth, and final gates 
via XKNLs, and linear optical devices, including the arbitrary-BS, to encode single logical qubit information 
onto logical qubits (four-photon decoherence-free states) to protect quantum information against collective 
decoherence32–34. However, the nonlinear optical gates, which are components critical to this procedure (Fig. 2), 
cannot avoid the influences of photon loss and dephasing induced by the decoherence effect57–59,63,65,72,73. There-
fore, we should derive the experimental condition to reduce the decoherence effect57–59,63,65 based on the master 
equation74 to quantify the efficiency and performance of the nonlinear optical gates.

(10)

|ψ5�ABCD = 1√
2

[
1√

3|κ2|2 + |κ1|2
(
κ1|0L� 1111ABCD +

√
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√
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≡ 1√
2
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α1|0L� 1111ABCD + β1|1L� 1111ABCD

)
−

(
α2|0L� 1112ABCD − β2|1L� 1112ABCD

)]
,

(11)

∣∣∣ψ
′
5�
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= 1√

2

(
α1|0L� 1111ABCD + β1|1L� 1111ABCD

)
⊗ |α� aP|0� bP

− 1√
2
e−

(αsinθ)2

2

∞∑

n=0

(−iαsinθ)n√
n!

(
α2|0L� 1112ABCD − β2|1L� 1112ABCD

)
⊗ |αcosθ� aP|n� bP.

(12)
(n = 0) →

∣∣ψf _0�ABCD = α1|0L� 1111ABCD + β1|1L� 1111ABCD,

(n �= 0) →
∣∣ψf _n�ABCD = α2|0L� 1112ABCD − β2|1L� 1112ABCD,

Figure 5.   Fourth gate via XKNLs; encoding process with arbitrary-BS and final gate (XKNLs): The fourth gate 
merged the path of photon C using XKNLs, qubus beams, PNR measurement, and feed-forward (path switch). 
During encoding, the arbitrary-BS (linear optical device) and final gate (via XKNLs) encode arbitrary quantum 
information onto four-photon decoherence-free states (single logical qubit information).
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Quantification of efficiency and performance of nonlinear optical gates via XKNLs 
under decoherence effect
In the proposed procedure, the nonlinear optical gates, first, second, third, fourth, and final gates, using XKNLs 
are the most important components for generating decoherence-free states (logical qubits) and encoding arbitrary 
quantum information. Hence, these gates must be highly efficient and reliable when the proposed procedure 
is implemented in optical fibers72,73. Regarding the interaction of XKNLs of these gates, we should derive an 
experimental condition to decrease the decoherence effect57–59,63,65 using the master equation74, which can indicate 
the open quantum system, as follows:

where HK = ℏχN1N2 . The Lindblad operators are Ĵρ = γ aρa+ and L̂ρ = − γ
2

(
a+aρ + ρa+a

)
 , where γ is the 

energy decay rate. The solution to this equation is ρ(t) = exp
[(

Ĵ+ L̂
)
t
]
ρ(0) for time t(= θ/χ) . Using this solu-

tion, we can exploit the process model, which can be used to formulate the influences of photon loss and dephas-
ing of coherent parameters caused by the interaction (conditional phase shift) of XKNLs in nonlinear optical 
gates under the decoherence effect, as follows:

where D̂t X̂t =
(
D̂�t X̂�t

)N
 for θ = χ t = χN�t = N�θ owing to an arbitrarily small time �t(= t/N) for 

obtaining a good approximation57–59,63,65. Here, the decoherence D̂t (photon loss and dephasing) and the rate, 
�t = e−γ t/2 of the remaining photons in the probe beam can be calculated from the solution of the master equa-
tion shown in Eq. (13). Furthermore, the operation of the operator X̂t (of the interaction of XKNLs) is expressed 

as 
(
X̂�t

)N
|1� �0| ⊗ |α� �α| = |1� �0| ⊗

∣∣αeiN�θ ��α| = |1� �0| ⊗
∣∣αeiθ ��α| for |1� (one photon) and |0� (zero 

photon). Using this process model (decoherence: D̂t and interaction of XKNL: X̂t ) of Eqs. (13) and (14), we can 
quantify the influences of photon loss ( �t = e−γ t/2 ) and dephasing of the value of the coherent parameter, i.e., 
the coefficient of the right-hand side of Eq. (14), induced by the decoherence effect. For the large phase shift 
( ≈ π ) at room temperature, researchers in Ref.75 demonstrated that the implementation of large phase shifts on 
a single-photon level probe pulse ( 1.5µs ) is mediated by Rb87 vapor in a double-�atomic configuration to apply 
to quantum non-demolition detections 10,12,14,16,18,56–64. Also, for the practical realization of nonlinear optical 
gates, we should consider the experimental parameters and the features in the optical fibers72,73. In commercial 
fibers, which are pure silica-core fibers with a signal loss of 0.15 dB/km ( χ/γ = 0.0303)73, a length of approxi-
mately 3000 km is required to acquire the magnitude of the conditional phase shift, θ = π from XKNLs. Hence, 
using the process model (Eqs. 13 and 14) with the experimental parameters and features of the optical fiber 
(length of 3000 km for θ = π and signal loss of 0.15 dB/km), we can analyze and quantify the efficiencies and 
performances of the nonlinear optical gates in the proposed procedure for encoding single logical qubit informa-
tion (Fig. 2).

For the quantification of efficiency in ideal cases without the decoherence effect, we can obtain the error prob-
abilities of nonlinear optical gates from the probabilities of measuring state |0� bP (zero photon) in state |±iαsinθ� bP 
(Eqs. 4, 5, 6, 9, and 11), as follows: Perr =

[
exp

(
−α2sin2θ

)]
/2 ≈

[
exp

(
−α2θ2

)]
/2 for α2sin2θ ≈ α2θ2 with a 

strong amplitude of coherent state and small phase shift magnitude by the XKNL ( α ≫ 1 and θ ≪ 1 ). If we do 
not consider the decoherence effect (ideal case), then the error probabilities of all nonlinear optical gates (first, 
second, third, fourth, and final) will be identical, as Perr ≈

[
exp

(
−α2θ2

)]
/2 . In addition, when the parameter is 

fixed as αθ = 2.5 , we can acquire highly efficient nonlinear optical gates (first, second, third, fourth, and final) 
because Perr < 10−3.

However, in the practical cases where the decoherence effect is considered, we should recalculate the error 
probabilities ( P1sterr , P2nderr  , P3rderr  , P4therr  , and Pfinerr ) including the photon loss (the rate �t = e−γ t/2 of remaining pho-
tons) due to the decoherence effect, as follows:

where γ t = 2.5/(α × 0.0303) for �t = e−γ t/2 with a fixed αθ = αχ t = 2.5 , and a signal loss of 0.15 dB/km 
( χ/γ = 0.0303 ) in optical fibers73. From these calculations, we can obtain the efficiency values of the nonlinear 
optical gates under the decoherence effect. Figure 6 shows the tendencies of the error probabilities ( P1sterr , P2nderr  , 
P3rderr  , P4therr  , and Pfinerr ) and rates ( �4

t  , �6
t  , and �2

t  ) of the remaining photons of the gates (first, second, third, fourth, 
and final) in terms of the differences in the amplitude of the coherent state ( α ) with the following parameters: 

(13)
∂ρ(t)

∂t
= −i

ℏ
[HK , ρ]+ γ

[
aρa+ − 1

2

{
a+aρ + ρa+a

}]
,

(14)

(
D̂�t X̂�t

)N
|1� �0|⊗|α� �α| = exp

[
−α2

(
1− e−γ�t

) N∑

n=1

(
1− ein�θ

)
e−γ�t(n−1)

]
|1� �0|⊗

∣∣�tαe
iθ ���tα| ,

(15)

P1sterr =
[
exp

{
−�4

t α
2θ2

}]
/2 =

[
exp

{
−e−2γ t × 2.52

}]
/2 =

[
exp

{
−e

−2
(

2.5
α×0.0303

)

× 2.52
}]

/2,

P2nderr = P3rderr =
[
exp

{
−�6

t α
2θ2

}]
/2 =

[
exp

{
−e−3γ t × 2.52

}]
/2 =

[
exp

{
−e

−3
(

2.5
α×0.0303

)

× 2.52
}]

/2,

P4therr = Pfinerr =
[
exp

{
−�2

t α
2θ2

}]
/2 =

[
exp

{
−e−γ t × 2.52

}]
/2 =

[
exp

{
−e

−
(

2.5
α×0.0303

)

× 2.52
}]

/2,
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signal loss of 0.15 dB/km ( χ/γ = 0.0303 ), αθ = αχ t = 2.5 , and N = 103 . In addition, the values of error prob-
abilities ( P1sterr , P2nderr  , P3rderr  , P4therr  , and Pfinerr ) and rates ( �4

t  , �6
t  , and �2

t  ) of the remaining photons of the gates were 
calculated for the amplitudes, α=10 , 100 , 1000 , 10000 , and 100000 , of the coherent state, as listed on Table (in 
Fig. 6). Compared with the dotted-blue box and dotted-red box in Table, we can conclude that high efficien-
cies, i.e., Perr < 10−3 (and low rate, �t ≈ 1.0 of photon loss), can be achieved in the nonlinear optical gates by 
employing a strong amplitude of coherent state ( α ≫ 10 ) under the decoherence effect.

Moreover, we should analyze the performances, the influence of dephasing, of the nonlinear optical gates, in 
addition to the efficiencies which are quantified by error probabilities by photon loss in Fig. 6. To quantify the 
influences of dephasing of coherent parameters induced by the decoherence effect, we require a process model 
(Eqs. 13 and 14) that can describe the dynamics of the interactions of XKNLs ( X̂t ) and the decoherence effect 
( D̂t ) to analyze the output states from the nonlinear optical gates.

In the first, fourth, and final gates, using the process model’s formula (Eqs. 13 and 14), the output states ∣∣∣ψ
′
0�

ABCD
 in Eq. (4), 

∣∣∣ψ
′′
3 �

ABCD
 in Eq. (9), and 

∣∣∣ψ
′
5�

ABCD
 in Eq. (11) can be expressed as density matrices ρ ′

0 of 

the first gate, ρ ′′
3 of the fourth gate, and ρ ′

5 of the final gate, respectively, to determine the dephasing of coherent 
parameters, as follows:

where the bases of ρ′
0 are the states in |L� 1A|L� 1B|R� 1C|R� 1D

∣∣�2
t α�

a

P
|0� bP , |L� 1A|L� 1B|R� 2C|R� 2D

∣∣�2
t α�

a

P
|0� bP , 

|L� 1A|L� 1B|R� 1C|R� 2D
∣∣�2

t αcosθ�
a

P

∣∣i�2
t αsinθ�

b

P
 , and |L� 1A|L� 1B|R� 1C|R� 2D

∣∣�2
t αcosθ�

a

P

∣∣−i�2
t αsinθ�

b

P
 ; the bases of ρ ′ ′

3 

are the states in 
(
1
2
|0L� 1112ABCD +

√
3
2
|1L� 1111ABCD

)
|�tα� aP|0� bP and 

(
1
2
|0L� 1121ABCD +

√
3
2
|1L� 1122ABCD

)
|�tαcosθ� aP

|−i�tαsinθ� bP ;  the bases of  ρ
′
5 are the states in 

(
α1|0L� 1111ABCD + β1|1L� 1111ABCD

)
|�tα� aP|0� bP and (

α2|0L� 1112ABCD − β2|1L� 1112ABCD

)
|�tαcosθ� aP|−i�tαsinθ� bP from left to right and top to bottom. Based on the process 

model expressed in Eq. (14), the coherent parameters in the density matrices ( ρ ′
0 , ρ

′ ′
3  , and ρ ′

5 ) are expressed as

(16)ρ
′
0 =

1

4





1 |CK|2 |L|2 |CO|2
|CK|2 1 |CO|2 |L|2
|L|2 |CO|2 1 |CM|2
|CO|2 |L|2 |CM|2 1



, ρ
′′
3 = ρ

′
5 =

1

2

�
1 |C|2

|C|2 1

�
,

C = exp

[
−
(
α/

√
2
)2(

1− e−γ�t
)∑N

n=1

(
1− ein�θ

)
e−γ�t(n−1)

]
,

Figure 6.   Error probabilities and rates of remaining photons in probe beam in practical case (under 
decoherence effect): Graph shows error probabilities ( P1sterr , P2nderr  , P3rderr  , P4therr  , and Pfinerr ) and rates ( �t = e

−γ t/2 ) of 
remaining photons of nonlinear optical gates (first, second, third, fourth, and final) for differences in amplitude 
( α ) of coherent state with fixed αθ = 2.5 and signal loss of 0.15 dB/km ( χ/γ = 0.0303 ). Values of error 
probabilities and rates of remaining photons in each gate are listed in table.
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where for θ = χ t = χN�t = N�θ and α ∈ R with an arbitrarily small time �t = t/N  (for a good 
approximation57–59,63,65). In the density matrices ( ρ ′

0 , ρ
′′
3 , and ρ ′

5 ), the off-diagonal terms refer to the coher-
ent parameters ( C , L , K , M , and O ) that can be used to evaluate the degrees of a mixed state and quantify the 
influences of dephasing. For example, if the values of the coherent parameters (off-diagonal terms) decrease by 
dephasing (decoherence effect), then the output states ( ρ ′

0 of the first gate, ρ ′′
3 of the fourth gate, and ρ ′

5 of the 
final gate) evolve into mixed states, the ensemble of classical states. Therefore, to obtain reliable performances 
from the nonlinear optical gates, first, fourth, and final gates, the values of the coherent parameters should be 
retrained to approach 1 for the pure quantum state against dephasing by the decoherence effect. Figure 7 shows 
the tendencies of the coherent parameters ( 

∣∣|C|2
∣∣ , 
∣∣|L|2

∣∣ , 
∣∣|KC|2

∣∣ , 
∣∣|OC|2

∣∣ , and 
∣∣|MC|2

∣∣ ) in the density matrices ( ρ ′
0 , 

ρ
′′
3 , and ρ ′

5 ) of the first, fourth, and final gates for the amplitude of the coherent state, probe beam: α , with the fol-
lowing parameters: signal loss of 0.15 dB/km ( χ/γ = 0.0303 ), αθ = αχ t = 2.5 ( Perr < 10−3 ), and N = 103 under 
the decoherence effect. In addition, based on the table shown in Fig. 7, we calculated the values of the coherent 
parameters based on the differences in the amplitudes ( α= 10 , 100 , 1000 , 10000 , and 100000 ) of the probe beams. 
As shown in Fig. 7, if the amplitude of the coherent state (probe beam) increases ( α ≫ 100 ), then all values of 
the coherent parameters are approximately 1. Hence, by employing the strong (large amplitude) coherent state, 
we can maintain the output state ( ρ ′

0 , ρ
′′
3 , and ρ ′

5 ) of the first, fourth, and final gates to pure quantum states (pre-
vention of off-diagonal terms in the density matrices, Eq. 16) against the influence of dephasing induced by the 
decoherence effect. Herein, as shown by the dotted blue box, the values of coherent parameters are high (> 0.9) 
when the amplitude of the coherent state is small ( α = 10 ), compared with the values within the dotted-red box 
in Fig. 7. However, in the small amplitude range ( α < 10 ) of the coherent state, we could not acquire a high rate 
of highly efficient remaining photons in the first, fourth, and final gates, as shown in Fig. 6 (dotted-blue box). 

L = exp

[
−
(
α/

√
2
)2(

e−γ t
)(
1− e−γ�t

)∑N

n=1

(
1− ein�θ

)
e−γ�t(n−1)

]
,

K = exp

[
−
(
α/

√
2
)2(

e−γ t
)(
1− e−γ�t

)∑N

n=1

(
1− eiθ · e−in�θ

)
e
−γ�t(n−1)

]
,

M = exp

[
−
(
α/

√
2
)2(

e−γ t
)(
1− e−γ�t

)∑N

n=1

(
1− eiθ · ein�θ

)
e
−γ�t(n−1)

]
,

(17)O = exp

[
−
(
α/

√
2
)2(

e−γ t
)(
1− e−γ�t

)(
1− eiθ

)∑N

n=1
e−γ�t(n−1)

]
,

Figure 7.   Trends and values of coherent parameters in output states of first, fourth, and final gates by 
dephasing (decoherence effect): Graph represents coherent parameters in output states of the nonlinear optical 
gates (first, fourth, and final) for differences in amplitude ( α ) of coherent state with signal loss of 0.15 dB/km 
( χ/γ = 0.0303 ), αθ = 2.5 ( Perr < 10−3 ), and N = 103 . Values of coherent parameters in output states are listed 
in table.
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Hence, for high efficiencies (low error probabilities) and reliable performances (preserved pure quantum states 
in the output) in the first, fourth, and final gates, we should utilize the strong coherent state (probe beam) to 
reduce the influences of photon loss and dephasing.

In the second and third gates, using the process model’s formula (Eqs. 13 and 14), the output states ( 
∣∣∣ψ

′
1�

ABCD
 

in Eq. 5 and 
∣∣∣ψ

′
2�

ABCD
 in Eq. 6) can be expressed as density matrices ρ ′

1 of the second gate and ρ ′
2 of the third 

gate, as follows:

where the bases of ρ ′
1 are the states in |H� 1A|L� 1B|V� 1C|R� 1D

∣∣�3
t α�

a

P
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right and top to bottom. The coherent parameters ( C , L , K , M , and O ) can be calculated using Eq. (17). The other 
coherent parameters ( P , N , S , and R ) in density matrices ( ρ ′

1 and ρ ′
2 ) can be calculated from the process model 

(Eq. 14), as follows:

where θ = χ t = χN�t = N�θ for an arbitrarily small time �t(= t/N) with α ∈ R . For the experimental con-
dition to preserve the values of coherent parameters to 1 (pure quantum states) under the decoherence effect, 
we can determine the tendencies of the coherent parameters, off-diagonal terms, in the density matrices ( ρ ′

1 and 
ρ

′
2 ) of the second and third gates for the amplitude of the coherent state (probe beam: α ) using the following 

parameters: signal loss of 0.15 dB/km ( χ/γ = 0.0303 ), αθ = αχ t = 2.5 ( Perr < 10−3 ), and N = 103 , as shown 
in Fig. 8. In addition, the values of the coherent parameters are listed on Table (in Fig. 8) based on the differences 
in the amplitudes, α = 10 , 100 , 1000 , 10000 , and 100000 , of the probe beams. When the amplitude of the coherent 
state (probe beam) increased ( α ≫ 100 ), all values of the coherent parameters were approximately 1, similar to 
the coherent parameters in ρ ′

0 , ρ
′′
3 , and ρ ′

5 , as shown in Fig. 8. Therefore, we confirmed that the influences, which 
evolved to mixed states, of dephasing coherent parameters in ρ ′

1 and ρ ′
2 (Eq. 18) can be reduced using a strong 

coherent state. Furthermore, by comparing with the dotted-blue box and dotted-red box in Fig. 8, the nonlinear 
optical gates (second and third) can yield high efficiencies (low error probabilities) and reliable performances 
(preserving pure quantum states) in the large amplitude range ( α > 100000 ) of the coherent state.

According to our analysis, using the process model (Eq. 14), which can be used to formulate the interaction 
of XKNLs between a signal system (photon) and a probe beam (coherent state) via the master equation (Eq. 13), 
we can conclude that the only experimental condition is to utilize the strong coherent state (probe beam) to 
reduce the influences of photon loss and dephasing (decoherence effect). Hence, we can obtain high efficiencies 
(low error probabilities, Fig. 6) and reliable performances (values of coherent parameters approaching 1: Figs. 7 
and 8) in the nonlinear optical gates. Consequently, the proposed procedure for generating single logical qubit 
information (quantum information on four-photon decoherence-free states) with immunity against collective 
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decoherence can be experimentally implemented and is secure against photon loss and dephasing induced by 
the decoherence effect.

Conclusion
We proposed a procedure (Fig. 2) that can generate four-photon decoherence-free states, logical qubits, and 
encode quantum information onto the superposition of logical qubits (single logical qubit information) using 
XKNLs and linear optical devices to secure quantum information against collective decoherence. In addition, 
in the nonlinear optical gates, first, second, third, fourth, and final gates, we analyzed the influences of photon 
loss and dephasing induced by the decoherence effect, and then demonstrated the experimental condition to 
obtain high efficiencies and reliable performances for the feasible procedure (Fig. 2). The advantages of our 
procedure are as follows:

(1)	 Our procedure can be used to encode single logical qubit information and secure quantum information 
from collective decoherence using arbitrary information encoded onto the superposed state of four-photon 
decoherence-free states. The previous works, which proposed three-qubit decoherence-free states37–41, can 
provide the limited effect for the prevention against the affections of collective decoherence. Here, compared 
with three-qubit systems37–41, our scheme can generate four-qubit systems (four-photon decoherence-free 
states), which are more immune against collective decoherence, to maintain the coherence of quantum 
information.

(2)	 In various quantum information processing schemes, including the procedure of generating decoherence-
free states, the noises, photon loss and dephasing, induced by the decoherence effect is inevitable. Thus, 
the method to reduce the influences of decoherence effect should be proposed. Before the works42,43 using 
cavity-QED system for four-qubit decoherence-free states, their schemes overlooked the affections of deco-
herence effect. Here, in our scheme, we discussed the quantifications of the influences of photon loss and 
dephasing from the decoherence effect. Accordingly, we demonstrated the experimental condition by our 
analysis using master equation to utilize a strong, large amplitude, coherent state for the high efficiencies, 
low error probabilities, and reliable performances by preserving pure quantum state in nonlinear optical 
gates under the decoherence effect. Thus, our scheme is experimentally more feasible, compared with the 
previous works42,43.

Figure 8.   Trends and values of coherent parameters in output states of second and third gates by dephasing 
(decoherence effect): Graph represents coherent parameters in output states of nonlinear optical gates (second 
and third) for differences in amplitude ( α ) of coherent state with signal loss of 0.15 dB/km ( χ/γ = 0.0303 ), 
αθ = 2.5 ( Perr < 10−3 ), and N = 103 . Values of coherent parameters in output states are listed in table.
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(3)	 In our procedure, the nonlinear optical gates utilized only the positive conditional phase shifts ( θ ) of the 
XKNLs with qubus beams and PNR measurements because it is generally not possible to change the sign 
of the conditional phase shift ( −θ ) by Kok76. Moreover, the usage of a strong coherent state (for high effi-
ciency and reliable performance) can yield an experimental advantage from using the weak conditional 
phase shift magnitude of the XKNL (i.e., if we use α = 105 to reduce the influence of the decoherence effect, 
then the XKNL magnitude required is θ = 2.5× 10−5 for a fixed αθ = 2.5 and Perr < 10−3 ). Hence, our 
nonlinear optical gates are more feasible in practice, as realizing a large conditional phase shift magnitude 
via the XKNL is difficult (extremely weak: θ ≈ 10−18)77–79.

Consequently, our procedure, which can generate four-photon decoherence-free states, logical qubits, and 
encode quantum information onto the superposition of logical qubits (single logical qubit information), was 
designed to prevent quantum information from collective decoherence. In addition, for the feasible procedure 
(Fig. 2), we demonstrated that the nonlinear optical gates (first, second, third, fourth, and final) can yield high 
efficiencies, obtaining low error probabilities, and reliable performances, preserving pure quantum state, against 
photon loss and dephasing of the decoherence effect when a strong coherent state, probe beam, was used.
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