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Abstract

Several approaches exist to ascertain the connectivity of the brain, and these approaches lead to markedly different
topologies, often incompatible with each other. Specifically, recent single-cell recording results seem incompatible with
current structural connectivity models. We present a novel method that combines anatomical and temporal constraints to
generate biologically plausible connectivity patterns of the visual system of the macaque monkey. Our method takes
structural connectivity data from the CoCoMac database and recent single-cell recording data as input and employs an
optimization technique to arrive at a new connectivity pattern of the visual system that is in agreement with both types of
experimental data. The new connectivity pattern yields a revised model that has fewer levels than current models. In
addition, it introduces subcortical–cortical connections. We show that these connections are essential for explaining latency
data, are consistent with our current knowledge of the structural connectivity of the visual system, and might explain recent
functional imaging results in humans. Furthermore we show that the revised model is not underconstrained like previous
models and can be extended to include newer data and other kinds of data. We conclude that the revised model of the
connectivity of the visual system reflects current knowledge on the structure and function of the visual system and
addresses some of the limitations of previous models.
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Introduction

What are the elements of the visual system in the brain and how

are they connected? A large amount of research in vision science has

been devoted to these questions. The most apparent way to answer

the question of connectivity is to look at the structural connections

between functionally defined areas in the visual system, and these

have been studied systematically with experimental tracing studies in

rats, cats and monkeys. Because of the invasive and time-consuming

manner in which these studies have to be done, results are gathered

incrementally and scattered across hundreds of separate research

publications. If all these separate results are put together, a model of

the large-scale structural connectivity of the visual system can be

made. For such a model to make sense however, it should be

structured according to an organizational principle. Because there

are several possible organizational principles, a number of different

models can be found in the literature (see, e.g., [1–4]). However, the

model published by Felleman and Van Essen in 1991 [3] has since

been accepted as a standard model, and is cited in numerous

academic books (e.g., see [5]) and articles (e.g., see [6]). These models

can be compared in Figure 1.

However, a number of limitations of all these models have been

identified. We will focus on five limitations, namely that most

models are (1) method dependent (2) indeterminate, (3) incom-

plete, (4) restricted, and (5) invalid with respect to latency data. We

discuss each of these limitations in more detail below. (1) The

structure of the models is dependent on the method used. All three models

mentioned earlier are based on studies using different methods.

The hierarchical model [3] is based on the pattern of origin and

termination of fibers to and from an area, the models by Andersen

Asanuma et al. [2] and the model by Distler et al. [4] are based

mostly on tracer data and the model by Zeki and Shipp [1] is used

to explain segregation and integration of features of the visual

image. If we look at Figure 1 we see that all these models differ, yet

they all describe the same system. It seems that the structure of

these large-scale models is very much dependent on the kind of

data used to constrain the model and the phenomena it is designed

to explain, whereas these models should agree as they describe the

same physical system. (2) The models are indeterminate. Hilgetag,

O’Neill et al. (1996) developed an algorithm to generate 150,000

candidate hierarchies, all of which agree with the anatomical

constraints specified by Felleman & Van Essen [3] in their

hierarchical model. Every one of these hierarchies violated fewer

constraints than the original Felleman and Van Essen hierarchy.

In addition, only two of the considered 30 brain areas were

assigned to levels consistently across these candidate hierarchies.

From these results, Hilgetag et al. concluded that the constraints

(connection types) used by Felleman & Van Essen reduce the

number of candidate hierarchies insufficiently. In other words, the

hierarchical model, and probably all models like it are under-

constrained. (3) The models are incomplete. The connectivity data

employed by most of the models of the visual system are

incomplete because their connection matrix contains many

unknown entries [7]. A large number of possible connections

have not been investigated. Even with the additional studies done

since then, a large percentage remains unknown. (4) The models are
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often restricted. The connection matrices of these models contain

only cortico-cortical connections within a single hemisphere.

Potentially important connections to and from the contralateral

hemisphere and to and from subcortical structures are excluded

from the connection matrix [7]. Some of the models in Figure 1 do

not even include the LGN. (5) The models are invalid with respect to

latency data. A final limitation identified by Mountcastle [7]

concerns the validity of the models in the light of latency data.

According to Mountcastle, single unit recordings show that areas

in different levels of the hierarchy of these models are nevertheless

simultaneously activated by visual stimuli. Clearly, such simulta-

neous activation seems to disagree with the associated areas being

at different levels in the hierarchy.

These five limitations question the validity of large-scale models of

the visual system. Now, more than 20 years after the inception of the

first large-scale models, novel insights and experimental results may

give rise to a reconsideration of these models. In this paper, we

present a method that integrates the anatomical constraints with

functional (temporal) constraints extracted from more recent

experimental results. Our method leads to the identification of a

new structure that meets all the constraints imposed by the

integrated data. Before presenting our approach, we expand on

the fifth limitation mentioned above, viz. the validity of current large-

scale models of the visual system in the light of single unit latency

recording studies [8,9]. In our method we will use the data from

these studies as temporal constraints for our model.

First-spike time coding might be the only available neural

mechanism to bring about rapid behavioral responses, as the

alternative neural code, rate coding, is too slow for such responses

(e.g., [10,11]). It has been shown that first spikes can be selective

for orientation, faces and optical flow [12]. Given these

considerations, an analysis of the spike arrival times at various

cortical areas may reveal part of the underlying functional

architecture. Schmolesky and colleagues [8] performed a study

in which they measured the onset latencies of single-cell responses

at several cortical areas in individual anesthetized macaque-

monkey brains, evoked by flashing visual stimuli. In Figure 2, we

replotted the results obtained by Schmolesky et al. These data

reveal a number of inconsistencies with the large-scale anatomical

models. For instance we would expect that first spikes arrive later

in areas at higher levels in a hierarchy than those in lower levels,

but when comparing the latencies in Figure 2 with the models in

Figure 1 it turns out that this is often not the case. For example, we

can see that area FEF, which is in level 7 in our schematized

Figure 1 (it is even at level 9 of the original publication [3]) has

latencies comparable to those in V3 (level 3/4), MT (level 3–5) and

MST (level 3–7). The latencies of FEF even overlap considerably

with those of V1 (level 2). Schmolesky et al. also noted this and

they concluded ‘‘our data simply indicate that the … anatomical

hierarchies fail to account for the initial flow of signals in the visual

system and therefore may not accurately represent the ‘functional’

hierarchy of the visual system’’ (p. 3277). It seems that large-scale

anatomical models of the visual system do not agree with the

timing data of Schmolesky et al. [8]. Several others have also noted

similar inconsistencies. In a review of mammalian spike timing

data, Bair [13] observed that neurons assigned to different

hierarchical levels are often activated at the same time or in the

wrong order with respect to their presumed hierarchical relation.

In another review of the available latency data, Nowak and Bullier

[14] state that ‘‘latencies to visual stimulation in monkey are not

ordered as expected from [anatomical hierarchies]’’ (p. 229) and

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

   

 

 

 

  

 

Figure 1. Schematized models of the visual system compared. Areas are placed in a level according to the figures in the original publications.
If levels were not present in the original model, areas were placed according to hodology [29], i.e., according to the shortest possible route to connect
two areas. The original model by Felleman & Van Essen contains many more levels and areas in the original (see Figure 2).
doi:10.1371/journal.pcbi.1000159.g001

Author Summary

Visual perception is very important to us, something we can
easily come to realize if we imagine ourselves blind. The
visual system consists of numerous interconnected brain
areas. If we are to understand the functioning of the visual
system, then we will need to understand the connectivity
between these areas. Current models of the visual system
have a number of limitations. One of these is that the time it
takes for the neural signal to reach a certain area often seems
inconsistent with the place of that area in the overall
structure of the system; e.g., the signal might arrive relatively
quickly at an area generally located ‘‘higher’’ in the visual
system and slowly at an area located in the ‘‘lower’’ part. We
combine data about the known connectivity in the monkey
brain with timing data to find a network structure that is
consistent with both kinds of data. The results show that the
timing data can be explained when the network contains
direct routes from subcortical areas to ‘‘higher’’ cortical
areas. We show that our model has fewer limitations than
previous models and might explain unresolved issues in the
study of connectivity in the human brain.

Combining Structure and Time in the Visual System
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they cite several studies in support of this claim. The conduction

velocity in the efferent fibers also plays a role in latencies, but this

alone cannot explain the discrepancies between timing data and

structural data fully and determining or approximating this

velocity is not possible with our current knowledge.

Taken together, it seems that the response latencies in the visual

system are incompatible with large-scale models of the known

structural connectivity of the visual system. We aim at resolving

this inconsistency by integrating structural connectivity data with

single unit recording data. Finding networks with a connectivity

pattern that fits both kinds of data might not only eliminate the

observed inconsistencies, but also suggest a different model better

constrained by multiple sources of data. If the model is more

constrained, we might learn more about possible connections that

have not been investigated yet, or have been excluded from the

model. If the generated networks differ substantially (in both fit

and architecture) from current models we cannot only conclude

that the hierarchical model does not explain the timing data

optimally, but we can also point to possible reasons. We want to do

this by adopting an extendible method (it should be possible to add

both new data and other kinds of data) that can use both structural

and functional data as ‘‘converging evidence’’ to model the

structure of the visual system. The structural data will be extracted

from a database, CoCoMac, which combines several hundred

studies about the anatomical connectivity of the adult macaque

brain. The functional data will be taken from a single

representative study and a review article of the available latency

data. To find network topologies that fit both kinds of data an

optimization method called simulated annealing will be used. A

schematic overview of the method can be seen in Figure 3. In

short, with our new method we want to arrive at a revised, more

constrained model of the visual system, integrating both structural

and functional data, with the additional goal of mitigating the

problems of exclusion and incompleteness.

Results

Dataset 1
In the first dataset we included the areas used in the study by

Schmolesky, Wang et al. [8]. This dataset contains 8 areas: LGN,

V1, V2, V3, V4, MT, MST, and FEF. The LGN is the node of the

system that receives the first input, the seed node. Note that

because we are only studying bottom-up processing, any

subcortical area can play exactly the same role as the LGN in

the dynamics of the system. Therefore we will call this node SCA

(Sub Cortical Area). As we will see later, subcortical areas such as

the superior colliculus and pulvinar are also likely candidates for

this role. The connectivity data were extracted from the CoCoMac

data base [15] in the form of an 8 by 8 connectivity matrix.

The resulting average connection matrix is shown in Figure 4.

New connection entries (as compared to the original connection

matrix) have been marked with an asterisk. New connections from

the SCA have been added to almost every area in the network,

except to V4. (The connection to V1 was already present.) In

Figure 5 the measures of fit fanat and flat of our resulting network

are compared to those of the most influential large-scale structural

model, hierarchical model [3]. The connectivity and timing costs

of the hierarchical model are compared to the costs of the new

resulting connectivity matrix. Our network clearly fits the data

better. The structural fit (meaning the fit of the network with the

known structural data) is maximal (fanat = 1) for the solution. This

means that our network does not have any connections that are

incompatible with the known tracer data. There is an increase in

the temporal fit with respect to the hierarchical model, implying

that our network fits the available timing data better than the

hierarchical model. Simply put: the newly generated network

explains the first spike timing data better without violating any

constraint from the known tracer data. Figure 6 depicts our

solution superimposed on an actual macaque brain. The newly

introduced connections are colored. It is clear that a subcortical

route has been added to accommodate the temporal constraints.

As we shall argue in the discussion this finding confirms

Mountcastle’s (1998) suspicion that subcortical routes play a

significant role in cortical connectivity and agrees with recent

connectivity studies.

Dataset 2
In our results with dataset 1 we have shown that the method

works for a small dataset from one parcellation scheme. With

dataset 2 we want to use our method on a larger dataset, with

more areas from different parcellation schemes (using ORT, [16]),

hoping to increase the validity of our claims. Also, a larger dataset

might increase the constraints on the model. The first spike time

data chosen for this purpose were those of Lamme & Roelfsema

[12]. After applying the inclusion criteria, we used the data for the

following 27 areas: SCA, V1, 7ip, V3, Ipa, Pga, TE2, TE3, 5, 7a,

FEF, FST, MST, MT, SEF, SMA, V2, V4, MI, TS, TAa, TE1,

TEa, Tem, and TPO. The resulting connection matrix can be

seen in Figure 7. New cell entries that differ from the original

connectivity matrix have been marked. The connections added to

the matrix as a result of including the constraints of the timing data

are again mainly connections from the Sub-Cortical Areas (SCA).

New cell values also show that some connections have to be absent

in order to account for the timing data. In Figure 8 the fits of the

most prominent large-scale model, the hierarchical model [3], and

our network are compared. Again, the connectivity and timing

costs of the hierarchical model are compared to the costs of the

new resulting connectivity matrix. The anatomical fit is at its

maximum value of 1, meaning that the resulting network is in

complete concordance with the known anatomical data. Our

network is clearly an improvement over the hierarchical model

regarding the fit with the latency data (an increase from 0.67 to

0.93). These results indicate that adding sub-cortical routes to the

network yields a substantial increase of the timing fit. These results

Figure 2. Mean onset latencies in milliseconds (y-axis) of
several areas in the visual system (x-axis). For each area, its level
in the hierarchical model [3] is indicated between brackets. Data used
from Schmolesky, Wang et al [8].
doi:10.1371/journal.pcbi.1000159.g002

Combining Structure and Time in the Visual System
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establish that the inclusion of the subcortical routes is also essential

for explaining latencies in large visual networks.

As mentioned in the introduction, one of the shortcomings of

the large-scale structural connectivity models is their indetermi-

nate organization, most notably the indeterminate organization of

the hierarchical model [17]. Our method integrates two types of

constraints, thereby reducing the ‘‘indeterminateness’’. To confirm

the reduction of indeterminateness, 100 solutions were analyzed to

determine the levels at which individual areas were placed.

Subsequently, we determinen the average level (and variance) of

each area. Figure 9 shows the results of this analysis. In the left-

most part of Figure 9 we can see that when using our method with

anatomical constraints only, we get roughly the same indetermi-

nate organization as observed for the hierarchical model, even

though we used a different cost function than was used in the

original publication. Areas can be at multiple levels without

Figure 3. Schematic overview of the method used.
doi:10.1371/journal.pcbi.1000159.g003

Figure 4. Results for dataset 1. Connectivity entries not in the original connectivity matrix have been marked with an asterisk.
doi:10.1371/journal.pcbi.1000159.g004

Combining Structure and Time in the Visual System

PLoS Computational Biology | www.ploscompbiol.org 4 August 2008 | Volume 4 | Issue 8 | e1000159



violating the anatomical constraints as Hilgetag, O’Neill et al. [17]

have pointed out. The right part of Figure 9 shows the results for

the combined temporal and anatomical constraints. The number

of candidate hierarchies is reduced considerably. More areas are

confined to a single level of the hierarchy, and the remaining areas

have a smaller number of possible levels to which they can be

assigned. Overall the determinateness (or constrained-ness) is

greatly improved due to the inclusion of timing data.

Discussion

This paper presented a data-driven method to generate

plausible models of cortical connectivity between areas of the

visual system based on a combination of anatomical and temporal

data. Our results show that connectivity patterns with subcortical

routes fit the timing data of the visual system better then those

without subcortical routes, such as the hierarchical model [3].

Figure 5. The fit of the hierarchical model by Felleman & Van Essen (1991) compared with the fit of the network generated by our
method using dataset 1.
doi:10.1371/journal.pcbi.1000159.g005

Figure 6. Best-fit connectivity superimposed on an MR-image of the macaque brain. MR-image courtesy of R. Goebel and N. K. Logothetis,
rendered with BrainVoyager software. Added connections are red.
doi:10.1371/journal.pcbi.1000159.g006

Combining Structure and Time in the Visual System
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Advantages of the Model
One of the strong points of the method used is that it is

completely data driven. Large-scale network architectures can be

generated with one main assumption only: the time it takes for a

signal to pass from one area through the afferent pathway to

another area can be treated as a unitary whole. We do not need to

rely on any assumptions about the structure or the hierarchy of the

areas in the network. One of the possible pitfalls of neural

networks models is that the complexity of the model does not add

to the predictive power of the model. Sometimes models require

setting many parameter-values of which the validity is hard to

ascertain. In our method there are only four annealing parameters

that need to be set to perform an analysis, the effect of these

parameters are well-known [18] and the results do not depend

critically on the specific parameter settings, as we can see in

Figure 10. See Methods, Optimization, for more details.

Possible Additional Constraints
Our method combined two types of constraints derived from

connectivity and timing data, which is more than the single type of

constraint used in earlier work [1,3,19]. One might argue that

more than two types of constraints may or need to be included to

generate even more plausible models of cortical connectivity. We

mention three additional types of constraints: (1) the conduction

velocity, (2) the inter-area distance and, (3) variance in spike time

latencies. Although the inclusion of additional types of constraints

is rather straightforward in our method, we also motivate why we

did not include them in our method.

1. Conduction velocity. One might argue that conduction velocity is a

possible additional constraint that needs to be added in our

method, because it affects the first spike latencies. For instance,

the relatively early response of area FEF could be due to a high

conduction velocity in the fibers leading to FEF, rather then

due to the existence of a direct route to FEF. We argue that it is

not beneficial to add conduction velocity as a constraint to our

method for three reasons; (I) it cannot explain the latency data

fully, (II) data on cortico-cortical conduction velocities are

scarce, and (III) conduction velocity cannot be reliably

estimated. We will elaborate briefly on these reasons. (I)

Differences in conduction velocities cannot fully account for the inter-area

latency differences. In the hierarchical model [3] for instance,

areas separated by one level or more have extremely small

differences in first-spike latencies (e.g., MST – FEF differ in 1

level and 1 ms in latency; V1 – MT differ in 4 levels and 5 ms

Figure 7. Results for dataset 2. Connectivity entries not in the original connectivity matrix have been marked with an asterisk.
doi:10.1371/journal.pcbi.1000159.g007

Combining Structure and Time in the Visual System
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in latency, whereas V1-V2 differ in 1 level but 18 ms in

latency) and sometimes the latencies are even reversed (e.g., V4

– FEF). This also holds when the hierarchy is based on the

shortest possible route to connect two areas like the model used

by Petroni, Panzeri et al. [20]. (II) Relatively little is known about

conduction velocities of cortico-cortical connections [21]. Most of our

knowledge on conduction velocities stems from neural cells

outside of the cortex and was not investigated in mammals.

This limitation is aggravated by the fact that conduction

velocities differ substantially between cortical and subcortical

pathways [22] and species (cf., e.g., compare Nowak, James et

al. [21] with Girard, Hupe et al. [23]). (III) The conduction velocity

Figure 8. Fit of the hierarchical model by Felleman & Van Essen (1991) compared with the network generated by our method using
the dataset 2. Results graphed in the same manner as in Figure 5.
doi:10.1371/journal.pcbi.1000159.g008
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Figure 9. Comparison of the distribution of areas (y-axis) over the levels in the hierarchy (x-axis) in 100 solutions. On the x-axis is the
average level an area is assigned to +/2 two standard deviations. On the left side the distribution is given without the areas being constrained by the
latency data. On the right the distribution is given when the timing constraints are used. The areas are indicated by their respective area names and
parcellation schemes (as indicated in CoCoMac) separated by a hyphen.
doi:10.1371/journal.pcbi.1000159.g009
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Figure 10. Illustration of the parameter sensitivity of the model. Each graph shows the anatomical and latency fits (vertical axis) as a function
of the parameter value. The varied parameter, the range of variation and the parameter actually used in the results are listed in the first column, the
total fit for the first dataset is plotted in the second column and the fitness for the second dataset is plotted in the last column. Within each plot, the
black line represents the anatomical fit and the white line represents the latency fit.
doi:10.1371/journal.pcbi.1000159.g010
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cannot be reliably estimated. One might argue that even if the

actual conduction velocities between areas have not been

measured, they may be generalized from an estimation of the

conduction velocities in an entire functional stream (e.g., the

magno- and parvocellular streams). We argue that knowledge

of the conduction velocity of different cell types in different

functional streams does not automatically lead to a reliable

estimate of the conduction velocity. Conduction velocity is

dependent on myelinization and the diameter of neurons and

these are known to differ for different cell types. Different cell-

types are associated with different functional streams and

therefore conduction velocity might differ per functional

stream. However, the number and nature of functional streams

in the visual system and their constituent cell types are debated

(e.g., see [24–27]). It is unclear how the conduction velocity of

connections between areas within one functional stream or

between two functional streams could be estimated. The fuzzy

demarcation of the functional streams and the lack of

knowledge about how the conduction velocities of different

cell types ‘‘add up’’, make any estimation quite unreliable.

Despite the current limited knowledge on conduction velocities,

it would be interesting to study the effect of conduction

velocities by systematically varying conduction velocities in a

model where all else is constant and we plan on doing this in

future work. To sum up, conduction velocity probably does

play a role in latencies, but we did not add it as a constraint

because it cannot explain the discrepancies between timing

data and structural data fully, data on cortico-cortical

conduction velocities is scarce, and any approximation of the

conduction velocity in a functional stream is unreliable.

2. Inter-area distance. Another constraint that might influence the

spike timing is the distance between areas. It is important to

note that the Euclidean distance between areas represent the

lower bound on the true inter area distance. Actual inter-area

fibers must follow the sulci and the gyri, in effect increasing

their lengths beyond the Euclidian distance. To the best of our

knowledge, actual inter-area fiber distances are not known.

However, Kaiser and Hilgetag [28] have shown that only a

small percentage of the connections in the macaque brain are

curved so that Euclidean distances might be a good

approximation of true inter-area distances. But even when

trying to ascertain true inter-area distances some problems

remain. One of these problems is the use of Objective

Relational Transformation (ORT) [16] as is done for dataset

2. ORT transforms multiple areas from multiple parcellation

schemes into areas in a single coordinate free scheme. As a

consequence, information on absolute distances is lost.

Therefore, the inter-area distances for dataset 2 cannot be

determined. Another problem is that, for reasons mentioned

above in the context of conduction velocities, inter-area

distance differences probably do influence timing, but not to

the extent that it can explain latency differences. Overall, inter-

area distance was not used as an additional constraint because

true distances are not yet known, measuring distances between

areas from different parcellation schemes is problematic and it

is unlikely that inter-area distance differences could explain

large latency differences.

3. Variance. Latencies vary across multiple replications under the

same experimental conditions. In our method, the simulated

spike times are deterministic and fall within discretized intervals.

Given an average latency, the variance represents a measure of

certainty on the spike times. Larger variance implies more

uncertainty about the actual latency and relaxes the associated

timing constraint. Variance might have been incorporated as an

extra term in the evaluation function for dataset 1 (for which

variances are available), but not for dataset 2. The data in this set

are obtained from a meta analysis of from multiple studies [12].

The raw data from the original studies used in the meta-analysis

or data from another review paper (e.g., [14]) might have been

used here, but then we would also have lost the advantages of

weighing the data [see 12].

Resolving Inconsistencies
Do our results really solve the inconsistencies between the latency

data and the earlier anatomical models? Clearly, if a model agrees

with latency data, all the areas assigned to higher levels of the

hierarchy should have longer latencies then those assigned to the

lower levels. In Figure 11 the timing data is plotted as a function of

the level an area is in. This is done for the hierarchical model [3]

(Figure 11A and 11C) and for our network (Figure 11B and 11D). In

Figure 11A and 11C the sequence of the first spikes does not follow

the levels, once again illustrating the shortcomings of all earlier large-

scale models. For instance, in Figure 11A, FEF and V4 pop-out as

areas with ‘‘wrong’’ timing for their position in the hierarchy.

Figure 11B and 11D show that the networks generated by our

method do not suffer from this shortcoming; each area is assigned to

its appropriate temporal level. As is evident from Figure 11B and

11D, our solution has three levels only.

Alternate Explanation of the Latencies
We have argued that our results solve the inconsistencies

between the latency data and earlier anatomical models. An

earlier study has attempted to show that these inconsistencies do

not exist [20]. Petroni, Panzeri et al. simulated the cortical network

of the areas examined by Schmolesky et al. [8], using the

connectivity matrix of the hierarchical model [3]. However,

Petroni, Panzeri et al. [20] used something they call the hodology

[29], i.e., the shortest possible route to connect two areas, to

determine the level at which an area is placed, instead of the levels

of the earlier models [1–4]. Their simulated latencies resemble the

real latencies. They conclude that hodology correlates better with

latency than the hierarchical organization. However, our work

shows that even the hodological hierarchy can not explain the

latencies fully. In the results of Petroni, Panzeri et al. [20] it is

already evident that the timing in areas FEF and V4, prominent

dorsal and ventral areas, do not fit the model. In their own words:

‘‘two areas where we found some disagreement between simulated

and experimental latency were FEF … and V4’’. Furthermore, as

we have argued earlier, even a hierarchy based on hodology

cannot explain the extremely short latencies or :reversals’’ in the

latencies. Our results show that the hodological hierarchy cannot

explain the overall latencies optimally. In Figure 11 we have

shown that even when hodology is considered (the topology we use

is always based on the shortest route) the hierarchical model

remains incompatible with the latencies. We shall argue below that

our explanation provides a better alternative, because it addresses

some of the limitations of previous models and might explain some

functional characteristics of the human visual system.

The Importance of Subcortical Connections
For both our datasets, the most prominent and remarkable

result is the large increase in goodness of fit with the latency

resulting from the introduction of direct connections from the

subcortical areas (SCA) to the cortical areas, bypassing V1.

Such direct connections are typical long-distance projections. It

has been suggested that the brain shows strict optimal component

placement and therefore only has short projections between
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adjacent brain areas. However Kaiser and Hilgetag [28] noted

that long-range projections also exist and that they have an

essential role to play, e.g. in the minimization of processing steps.

Our findings demonstrate this principle perfectly.

Additional analysis reveals that discarding all subcortical areas

from the dataset, the best fit is to connect all extrastriate areas to

V1, with the exception of V4. Although the resulting connectivity

pattern is still superior in terms of fitness to the hierarchical model

(i.e., fanat = 0.947, flat = 0.871) the fits are still smaller than those

obtained in our main solution. Apparently subcortical pathways

explain the data better then cortico-cortical ‘‘shortcuts’’.

The importance of the subcortical route has been recognized

before in various publications. Lamme and Roelfsema [12] noted

that a reason for the lack of correspondence between the

hierarchical organization and the response latencies might be that

subcortical structures like the LGN, the superior colliculus (SC),

and the pulvinar (PUL), also project to various extrastriate areas.

Even Petroni et al. [20], who claim there is no large discrepancy

between latencies and the hierarchical model, propose that the

extremely fast response in FEF might be caused by a subcortical

connection through the superior colliculus. It is known that not

only the LGN, but also the PUL and the SC have retinal inputs

[30–32], making direct connections from the cortex to these areas

true shortcuts from the retina.

With the additional help of the CoCoMac database [15] and

Objective Relational Translation (ORT) analysis [16], a literature

search was done to assess the connections from the subcortical

areas suggested above, to the cortical visual areas named in our

results. Except for the obvious connections to V1, the LGN is also

connected to V2 [33]. The pulvinar is a structure that is densely

connected to cortical areas, i.e., it is connected to V2 [34], V3

[35], V4 [36], MST [37] FEF [38], and MT [39]. Interestingly,

MT not only resembles an early visual area because of this

subcortical connection but it is also an early visual area in the way

Figure 11. Comparing the hierarchical model [3] with the networks generated by our method, with regard to latency. On the x-axis is
the level in the hierarchy an area is in when only considering the shortest possible route from the source node. On the y-axis is the first spike latency
in ms. In part A and D the level structure of the hierarchical model can be seen, in part B and D the same is plotted for the structure suggested by our
results. Area names (indicated as in Figure 9) are included for general reference, overlapping labels omitted for clarity. Areas in a higher level in a
hierarchy should have longer latencies then areas lower in the hierarchy.
doi:10.1371/journal.pcbi.1000159.g011
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that it matures [6]. Although earlier studies repeatedly suggested

the SC might be connected directly to the visual cortex [20,40],

little structural evidence for the existence for such connections was

found. Relatively few studies have addressed the presence of these

connections. A connection from the SC to V1 exists [41], but

connections to the following visual areas were examined but not

found: V2 [42], V3 [43], PO [34], IT [44]. A possibility is that the

SC is involved indirectly by feeding input to the pulvinar [45] or

that it is connected via the mediodorsal thalamus [46].

Summarizing, the subcortical routes suggested by our results are

in line with the above findings as all ‘‘new’’ subcortical connections

(connections from SCA in the figures) found in the results from

dataset 1 have been confirmed by anatomical research. These

routes run through the lateral geniculate nucleus and the pulvinar

(but not through the superior colliculus). The fact that the

predictions made by our method have been verified validates our

method and lends credibility to our results.

Subcortical pathways appear to play a larger role in the

propagation of the visual signal then was assumed before. More

specifically, the connections from subcortical areas to extrastriate

areas have been left out of most models of the visual system.

Therefore these connections need to be considered in any future

description of the structure of the visual system.

Towards a New Model
Because of all the reasons described above we propose a new,

revised organization of areas that is based on both timing and

structural data (see Figure 12). It is important to note that the

organization proposed here is based on two kinds of data only, and

as such only reflects the combination of first spikes and structural

connectivity. Therefore, it can not claim to explain other aspects of

hierarchy like the increasing complexity of visual responses or

receptive field size. In how far the organization we propose reflects

the ‘‘general organizational principle’’ (if such a thing exists at all)

might be dependent on the importance of the processing of first

spikes compared to all processing in the cortex. It might well be

that the inclusion of other kinds of data (e.g., receptive field size)

will reorder the organization. Another possibility is that in order to

explain different kinds of data, different organizations are

necessary, and no single organization exists that can explain all

aspects of the visual system.

Human Visual System
Our study is entirely based on connectivity and timing data

from the macaque visual system. What does our work tell us about

the structure of the human visual system? Although the homologies

between monkey and human visual cortex remain uncertain for

some areas, one of the main reasons for studying the monkey

visual cortex are the clear similarities with the human visual cortex

[47]. All the areas from dataset 1 have a more or less clear

homology in the human brain [48,49] enabling at least some

generalization from our results to the human visual system.

Our results, when generalized to the human brain, might explain

some recent findings in humans. Goebel et al. [50] looked at the

functioning of the dorsal and the ventral stream in two blindsight

patients with long-standing post-geniculate lesions (FS and GY).

These patients show close to normal brain activity in hMT+ and V4

although a large part of V1 has been destroyed. Similar results were

found in a patient with hemianopia in the entire right visual field,

who could still report movement and color change in his blind

hemifield (Riddich syndrome). fMRI activity was reported in V4/V8

and V5 in the lesioned hemisphere and MEG recording showed it

preceded V2/V3 activity [51]. A functional connectivity study

showed that there was a flow of information from V5 to V4 and V2

[52]. How can areas higher ‘‘upstream’’ in the visual system be

activated normally when almost all of their input from lower levels

has been cut? Subcortical pathways like the ones suggested by our

simulations, originating in LGN and the pulvinar might play an

important role in explaining the residual functioning of the brain in

blindsight and Riddich syndrome.

Future Work
To further understand the structure of the visual system, future

work should include attempts to complete the subcortical

pathways in the connectivity matrices. This goal might be reached

by adding existing tracer studies to the CoCoMac connectivity

database [15] or by doing new tracer studies into subcortical

pathways. It would also be very helpful for our understanding of

the large-scale structure of the visual system to see more latency

studies like the one done by Schmolesky et al. [8] with more areas.

This would allow us to use the current method without having to

rely on the ‘‘averaging’’ methods currently used in dataset 2 [from

12]. Our current approach could also be aided by more research

into conduction velocities in the cerebral cortex, the exact role of

conduction velocities in explaining latency data remains an open

question. A modeling study similar to this one using conduction

velocity as an (extra) constraint might help to resolve this question.

Conclusion
By combining data from both structural connectivity and spike

timing experiments using a data driven method with few

assumptions and parameters, topologies that fit both kinds of data

have been found. The results show the necessity of subcortical

routes to explain spike-timing data. Review of the literature

demonstrates that most of the connections predicted by our

method appear to exist. Furthermore we show that we are able to

further constrain our model, in effect reducing the problem of

indeterminacy associated with previous models [17]. We conclude

that our method successfully incorporates structural and functional

data to arrive at a new large-scale model of the visual system that

underscores the importance of subcortical routes.

Methods

Our method employs the following procedure: we define a

connection matrix W in which each element wAB represents the

presence (wAB = 1) or absence (wAB = 0) of a connection from area

A to area B. Initially, the elements of the connection matrix are

randomly assigned a value such that half of the elements is set to 1

and the remaining elements is set to 0. Subsequently, the values in

the connectivity matrix are adapted using an optimization

algorithm in order to minimize violations of the anatomical and

functional constraints. The optimized matrix represents a

connectivity pattern, i.e., a model for the connectivity of the

visual system that is in agreement with the anatomical and

temporal data. In what follows we describe the acquisition of the

 

 

     

 

 

Figure 12. Hierarchies of the visual system compared. Hierarchy
proposed in this article with the areas from dataset 1.
doi:10.1371/journal.pcbi.1000159.g012
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anatomical and temporal data, the criteria for data inclusion, the

evaluation of candidate connectivity patterns, and the optimiza-

tion algorithm.

Anatomical Data Acquisition
Anatomical connectivity data was obtained from the CoCoMac

(‘‘Collation of Connectivity data on the Macaque brain’’) database

[53]. At the moment of writing it contains the details of more then

400 studies about the anatomical connectivity of the adult macaque

brain using tracer studies. CoCoMac represents all of this data in an

objective, coordinate-free, parcellation-based fashion and enables

the user to integrate contradictory findings in the literature,

depending on the choice of several parameters. The advantage of

using CoCoMac over data from individual studies is that it combines

hundreds of tracer studies into a single connectivity matrix. With a

mathematical method called ORT (Objective Relational Transfor-

mation), it is possible to combine and transform brain mapping data

from any parcellation scheme to a coordinate-independent freely

chosen parcellation scheme [16]. This allows us to combine

connectivity data on areas from several parcellation schemes in

one of our datasets (dataset 2). The database is publicly available and

can be queried through the online interface CoCoMac-Online at

http://www.cocomac.org/[15].

Timing Data Acquisition
We define two datasets for the timing data. The first dataset is

from a single study mentioned in the introduction [8]. The data

was collected from four monkeys, over a relatively large number of

recording units (558) in nine areas of the brain, measured

repeatedly and with a broad range of visual stimuli designed to

elicit a response from the entire visual system. We obtained part of

the original data from the authors and therefore we were also able

to determine the variance in the data. The second dataset is from a

review which collected data from multiple studies ([12], box 2, p

573). It therefore includes data on more areas then the first

dataset. It suits our purposes very well, as it not only includes

several studies but it also weighs them as to reflect the reliability of

each experimental finding.

Comparisons of timing data in the literature often suffer from

differences in experimental and analytic methodologies between

studies. Although the first dataset is the smaller of the two, it does not

suffer from these ‘‘incompatibility effects’’, because all measurements

were made within individual monkeys using common stimulus

presentation and analysis techniques. This is especially important as

we are interested in differences between latencies across the visual

system. The second dataset is larger than the first, allowing us to

determine if the results can be generalized to larger systems.

However, the data in the second dataset are probably more prone to

‘‘incompatibility effects’’ because they come from a more varied set

of experiments and experimental conditions.

Data Inclusion Criteria
For each of the two datasets, two conditions needed to be

satisfied before the data belonging to a particular brain area could

be included: (1) Both first spike data and connectivity data are

available. For instance, the connectivity data for Ts, Ts1, Ts2, and

Ts3 were available whereas the functional data were only available

for Ts. Therefore only Ts was included in the analysis. (2) Areas

included in the selection should be considered part of the visual

system and should not be too large to be useful in the analysis. For

instance, area PreFr (prefrontal) from Lamme and Roelfsema [12]

was excluded because it contains a very large number of other

areas and because it is arguably not part of the visual system.

Because the exact mapping relation between areas FEF and 8a is

controversial ([3],e.g., compare [54,55] we decided to exclude 8a

to resolve any uncertainties.

Evaluation of Candidate Connectivity Patterns
In order to be able to optimize the connectivity matrix, we need

a numerical measure of the goodness of fit of timing and

connectivity data for any given connectivity pattern. This allows

us to search for the best fitting network and is essential for the used

optimization technique employed. Below, we define measures for

the anatomical fit and temporal fit and combine them into a single

overall fitness measure.

The definition of the anatomical fit is relatively straightforward.

We define the anatomical fit fanat on the unit interval as the

proportion of corresponding connections between a candidate

connection matrix (CMA) and the anatomical connection matrix

retrieved from CoCoMac (CMB), i.e.:

fanat~

number of corresponding connections between CMA and CMB

total number of connections in B

When fanat is 0 there are no corresponding connections between

A and B (worst fit), and when fanat is 1 both are in complete

agreement (best fit). Note that the fit will decrease when a

connection that is established absent in CMB is present in CMA,

but the fit will be unaffected when a connection that is empty CMB

is present in CMA. This implies that violating an established absent

connection constraint is treated identical to violating an estab-

lished existing connection.

The temporal (latency) fit, flat, is defined as a linearly

transformed Pearson product-moment correlation coefficient

(PMCC). It expresses the similarity between (the order and

magnitude of) the timing data and our simulated timing data (see

below). The function flat should provide an indication of the degree

to which the orders of activation of nodes in two networks agree.

Although rank correlation seems more appropriate for the

simulated timing data because they contain ordinals, the use of

rank correlation would mean losing all sensitivity to distances

between latencies and therefore PMCC is used because it

accommodates the continuous values of the real timing data,

which is measured at the ratio level. The minimum value of the

PMCC is 21 (worst fit) and the maximum is 1 (best fit). Because

fanat has a range of 0 to 1 and we want flat to have the same range

we apply a linear transformation so that:

flat~
PMCC

2

� �
z0:5

In order to simulate the timing data for our candidate

connection patterns, we employ a version of the ‘‘shortest path’’

algorithm [56]. We start by determining the node that receives the

initial input (the seed node). This node is defined as being active at

the first time step (t = 1). We then use the following function to

propagate activity through the network for t.1:

ai tð Þ~f
XN

j~1

wijaj t{1ð Þ
 !

f xð Þ~
0 if x~0

1 otherwise

�

where ai(t) represents the activity of node i at time t and wij the

element of the connection matrix, i.e., the connection from node i

to node j representing the presence (wij = 1) or absence (wij = 0) of a
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connection. Nodes connected to an active node will be active the

next time-step and will remain active afterwards (wii = 1, for all i).

If all nodes of the network are active, each node is assigned a level

equal to the number of connection steps from the seed node. In all

simulations, the number of time steps is sufficiently large to allow

activations to propagate through the entire network.

The overall fit function F is defined as the weighted sum of both

fitness measures, i.e.:

F~a:fanatz 1{að Þ:flat where a[ 0,1½ �

The two measures of fit are weighted by factor a.

Optimization Algorithm
The optimization algorithm used in our method is simulated

annealing. Simulated annealing is a stochastic combinatorial

optimization algorithm belonging to the class of methods known as

gradient descent algorithms. What makes it especially suited for

our needs is that it is capable of finding solutions that obey

multiple types of constraints. In addition it is generic in that it does

not require an explicit knowledge description of the problem at

hand [57]. The simulated annealing algorithm was first described

by Kirkpatrick, Gelatt et al. [18] and has been applied before for

optimizing features of cortical networks [28]. In our method, the

algorithm makes changes to individual elements of the connection

matrix by applying the rule that each change should increase the

fitness. The algorithm varies the strictness with which the rule is

applied. Initially, the degree of randomness (or temperature T) is

high, meaning that changes that decrease the fitness are also

allowed, and the values of individual elements are updated at

random. As time progresses, the degree of randomness is lowered

towards full determinism (i.e., zero temperature). At this stage,

connections are updated by applying the rule strictly. The quality

of the final solution (i.e., the agreement with the anatomical and

temporal constraints) depends on the rate of change from

randomness towards determinism. The annealing schedule defines

the rate in terms of the time-dependent temperature T(n):

T nð Þ~t:T n{1ð Þ

where n is the iteration step of the algorithm and t is the annealing

factor.

By allowing changes that reduce fit during early iterations of the

algorithm while later making these changes very improbable, the

use of temperature allows the algorithm to avoid local minima, i.e.,

solutions that fulfill a subset of the constraints but are not the

optimal solution. Other gradient descent algorithms could have

gotten ‘‘stuck’’ in these local minima because multiple connections

need to be flipped to result in an increase of the fitness.

The employed method makes it possible to generate networks

that fit both timing and connectivity data without any need for

assumptions about hierarchy or connectivity.

Figure 3 presents a schematic overview of our method. The

latency data (shown on the left) and the anatomical data (shown on

the right) are transformed into constraints. Starting from a random

connectivity pattern, the simulated annealing algorithm (shown in

the middle) uses both types of constraints to generate candidate

connectivity patterns that obey the constraints. Our method can

be used with any selection of brain areas and can easily be

extended to include newer data as it becomes available. Other

kinds of data can also be added with relative ease as long as a

fitness function can be devised for it.

Parameters
We used the following parameters for the optimization algorithm

in all our simulations. The initial temperature was T(0) = 4 and the

annealing factor was set to t = 0.99, the maximum number of

annealing iterations was set to 1500, and the parameter a was set to

0.5 so the contribution of timing (flat) and connectivity (fanat) fit to the

total fitness was balanced. It should be noted that the two measures

of fit, fanat and flat, are not necessarily equally sensitive to changing

the state of one connection. For every solution we ensured that

when the algorithm terminates, at least hundred iterations of the

simulated annealing algorithm had not lead to new solutions.

We repeated all our simulations to show that the results are

stable over a wide range of values for the above parameters. We

varied the values of a, T(0), t. We also varied the amount of

connections in the randomly generated network that serves as the

starting point for the annealing algorithm (initial edge density). For

a and initial edge density the range could be varied over the entire

possible range. The results of these tests can be seen in Figure 10.

Except for the drop-offs at extreme values of a and a few small

peaks, the results are essentially stable over the entire range of the

parameters. The drop-offs are a result of the fact that at extreme

values of a, the networks are fitted to one fit function only (either

flat or fanat), instead of to two. The small peaks are sub-optimal

solutions that disappear after the averaging of results described in

the next section.

Analysis of the Results
Because the optimization method described above is stochastic,

some form of averaging over multiple solutions is needed. In our

method, multiple solutions are multiple connection matrices. All our

results are based on 1000 computed optimal connection matrices,

each using different initial connection matrices. All the matrices can

be summarized into one matrix by defining each element as a

probability of the presence of a connection. When a number of

solutions are generated by our method, two types of values will be

found in the cells. The first type does not change when increasing

the number of solutions, and these values are always 100 or 0

percent. The values of 100 and 0 percent represent connections that

were present or did not exist, respectively, in all the simulations. The

second type has a value that asymptotically moves closer to an

intermediate percentage. For instance, the value of 50 percent

means that this particular connection is present in half of the

solutions and, presumably, does not matter for the fit of this

network. These connections are connections that were not

constrained by our data; they have not been researched according

to CoCoMac [15] and do not matter for the first spike timing in the

network (e.g., they could represent a feedback connection instead of

a feedforward connection). When we excluded all the solutions that

are not optimal (as expressed by the amount of total fit with the data)

all elements have values of 0, 50, or 100 percent. The resulting

connection matrices therefore only contain the values 0 (0%) 1

(100%) or they will be empty (50%).

The computational tools needed to import the data from the

CoCoMac database (Cocomac Import/Export Tool) and the tools

to perform the optimization and analyze the data (BrainAnnealer)

are custom programs written in Object Pascal with the Borland

Delphi compiler. Tools, source and documentation together with

the data used can be downloaded at http://www.capalbo.nl.
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