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Enhancer-silencer transitions in the human genome
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Dual-function regulatory elements (REs), acting as enhancers in some cellular contexts and as silencers in others, have been
reported to facilitate the precise gene regulatory response to developmental signals in Drosophila melanogaster. However, with
few isolated examples detected, dual-function REs in mammals have yet to be systematically studied. We herein investigated
this class of REs in the human genome and profiled their activity across multiple cell types. Focusing on enhancer-silencer
transitions specific to the development of T cells, we built an accurate deep learning classifier of REs and identified about
12,000 silencers active in primary peripheral blood T cells that act as enhancers in embryonic stem cells. Compared with
regular silencers, these dual-function REs are evolving under stronger purifying selection and are enriched for mutations
associated with disease phenotypes and altered gene expression. In addition, they are enriched in the loci of transcriptional
regulators, such as transcription factors (TFs) and chromatin remodeling genes. Dual-function REs consist of two intertwined
but largely distinct sets of binding sites bound by either activating or repressing TFs, depending on the type of RE function
in a given cell line. This indicates the recruitment of different TFs for different regulatory modes and a complex DNA se-
quence composition of these REs with dual activating and repressive encoding. With an estimated >6% of cell type-specific
human silencers acting as dual-function REs, this overlooked class of REs requires a specific investigation on how their in-

herent functional plasticity might be a contributing factor to human diseases.

[Supplemental material is available for this article.]

Transcriptional silencers, exerting negative regulatory impact and
counterbalancing positive regulatory elements (REs, such as en-
hancers), have long been recognized to be essential for fine-tuning
gene regulation and precisely responding to cellular signals and
environmental stimuli in metazoans (Jacob and Monod 1961;
Brand et al. 1985; Johnson et al. 2015; Rojano et al. 2019; Halfon
2020). However, because of the inherent difficulty in assaying
and identifying silencers, the research focused on silencers has
been greatly overshadowed by studies targeting enhancers. With
the scarcity of known examples, knowledge about silencers has
lagged behind that of enhancers, promoters, and even that of insu-
lators (Ngan et al. 2020). Recently, the advance of massively paral-
lel reporter assays (MPRAs) has greatly facilitated the large-scale
detection of silencers in human cells and ignited interest in silenc-
ers (Della Rosa and Spivakov 2020; Doni Jayavelu et al. 2020; Pang
and Snyder 2020).

Despite recent progress, large-scale silencer maps are still re-
stricted to very few cell lines in humans, specifically HepG2 liver
carcinoma and K562 chronic myelogenous leukemia cell lines
(Doni Jayavelu et al. 2020; Pang and Snyder 2020). This only offers
a limited characterization of the effects of silencers in various bio-
logical contexts. Furthermore, although histone H3 lysine 27 acet-
ylation (H3K27ac) and histone H3 lysine 4 mono-methylation
(H3K4mel) have been widely used for enhancer identification,
the most promising mark for silencer identification, histone H3 ly-
sine 27 trimethylation (H3K27me3), is not specific enough to ac-
curately separate silencers from enhancers (Della Rosa and
Spivakov 2020; Gisselbrecht et al. 2020). In human embryonic
stem cells (hESCs), almost two-thirds of H3K27me3 chromatin im-
munoprecipitation sequencing (ChIP-seq) peaks carry signals of
the histone marks associated with transcriptional activation. In
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primary T cells, a differentiated cell type, half of the H3K27me3
ChIP-seq peaks show the same property. Furthermore, there is a
lack of consistency among silencer maps reported by different
groups. In the HepG2 cell line, for example, two independent
sets of silencers, which were identified using massively parallel
platforms and contain about 4000 elements each, have only four
silencers in common (Doni Jayavelu et al. 2020; Pang and
Snyder 2020). This small overlap could be partially explained by
different silencer pooling strategies and suggests an abundance
of silencers active in a human cell type. Inspired by the success
of sequence-based deep learning models in the prediction of chro-
matin states, TF binding occupancies, and enhancers (Alipanahi
et al. 2015; Zhou and Troyanskaya 2015; Thibodeau et al. 2018),
as well as our prior work on silencer detection (Huang et al.
2019), we trained a sequence-based deep learning model to identi-
fy silencers and showed that our model greatly outperforms other
methods for silencer detection.

After generating accurate genome-wide maps of cell-specific si-
lencers, we decided to focus on dual-function REs (DFREs), which
act either as silencers or enhancers in different cell lines and thus
represent the versatile component of gene regulatory machinery.
Limited DFREs have been reported in Drosophila melanogaster
(Stathopoulos and Levine 2005) and mice (Bessis et al. 1997;
Kehayova et al. 2011). More recently, DFRE abundance in D. mela-
nogaster has been reported (Erceg et al. 2017; Gisselbrecht et al.
2020). Almost 25% of nearly 1000 Pho Recessive Complex
(PhoRC)-bound silencers in mesodermal cells function as enhanc-
ers at other developmental stages (Erceg et al. 2017), whereas 22
out of 29 (76%) identified mesodermal silencers were shown to
act as DFREs in large enhancer screens (Gallo et al. 2011; Bonn et
al. 2012) and were later augmented by additional six DFREs picked
up by a targeted enhancer analysis (thus, bringing the total to 28/29
[Gisselbrecht et al. 2020]). Although the estimates of the fraction of
silencers acting as DFREs differed between these two studies, likely
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because different silencer subclasses were investigated, both studies
clearly showed that DFREs are widespread, at least in D. melanogaster
embryonic cells. In this study, we focused on human DFREs, inves-
tigating distinct functional characteristics of these elements in com-
parison to regular silencers/enhancers and molecular mechanisms
enabling their functional transition across cellular contexts.

Results

Convolutional neural network model accurately predicts silencers

We built a multiclass convolutional neural network (CNN) model
with three nodes in the output layer representing silencers, enhanc-

A

ers, and regulatory neutral DNA sequences (see Methods) (Fig. 1A).
Our CNN model achieved a respectable prediction performance for
silencer and enhancer identification across multiple human cell
types. The area under the curve of the receiver operating character-
istic (AUC-ROC) ranged from 0.84 to 0.94 for enhancer detection
and from 0.74 to 0.90 for silencer detection across six cell types
(H1 hESCs, hematopoietic progenitor cells [HPCs], HepG2s,
K562s, monocytes, and T cells) (Fig. 1B; Supplemental Fig. S1).

To perform an independent assessment of the accuracy of
silencer predictions, we applied our CNN model to experimentally
identified silencers. On two sets of silencers active in K562 cells
(see Methods), our CNN model achieved the performance of
AUC-ROC >0.78 and AUC-precision recall curve (AUC-PRC)
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Figure 1. Adeep learning model to predict silencers. (A) A schematic of the deep learning model used to predict cell type—specific silencers and enhanc-

ers. The number of kernels or neurons in a layer is listed in parentheses. The input of the model consists of 1-kb genomic sequences, and the output is a set of
three probabilities of the input sequence being a silencer (ys), an enhancer (ye), or a nonfunctional sequence (yn). (B) ROCs and PRCs of the prediction
models in three human cell types. The results in the additional three cell lines are presented in Supplemental Figure S1. (C) ROC and PRC classification
accuracy in prediction of ReSE (Pang and Snyder 2020) and MPRA (Doni Jayavelu et al. 2020) experimentally characterized silencers. (D) Sharpr-MPRA
MaxPos scores in K562 cells. EN and SL are the predicted enhancers and silencers, respectively. NonEN represents the DNase-seq peaks that overlap
with H3K27ac ChIP-seq peaks but have not been predicted as enhancers in this study. NonSL represents the H3K27me3 ChIP-seq peaks not predicted
as silencers, and the DHS column corresponds to all DNase-seq peaks. The count under a group label (x-axis) is the size of the corresponding sequence
set. (£) The density of GWAS SNPs in the predicted silencers (SL), the sequences with H3K27me3 peaks but no H3K27ac peaks (H3K27me3/-H3K27ac),
and the predicted enhancers (EN). The background consists of the genomic sequences having the GC content and repeat density matching to T cell
SLs. (**) P<107'°. White asterisks are the significance enrichments of GWAS SNPs compared with H3K27me3/-H3K27ac, and black asterisks are the sig-

nificant enrichments in enhancers compared with silencers.
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>0.47 (Fig. 1C). It outperforms the linear support vector machine
(SVM) model we developed previously (AUC-ROC >0.66 and AUC-
PRC=0.32) (Huang et al. 2019). The improved accuracy of the
CNN model in comparison to the SVM model can be attributed
to the superiority of CNNs in capturing spatial patterns in se-
quences and retrieving nonlinear connections among these pat-
terns (Alipanahi et al. 2015; Zhou and Troyanskaya 2015; Koo
and Ploenzke 2020). It is important to note that our method accu-
rately predicts experimentally identified ReSE (Pang and Snyder
2020) and MPRA (Doni Jayavelu et al. 2020) silencers (AUC ROC
=0.81 and 0.78 for ReSE and MPRA silencers, respectively) (Fig.
1C). Despite a small overlap between these two data sets (<0.2%
of matching sequences), the silencers from these data sets share
common DNA sequence motifs, such as the enrichment in TFBSs
of the repressive TFs REST and SETDB1 (Supplemental Fig. S2).
Silencers predicted by the CNN model also feature similar TFBS en-
richment (Supplemental Fig. S2), indicative of this model captur-
ing the motifs shared across different silencer sets and showing a
reliable performance on two otherwise distinct silencer sets.
There are also differences in the TFBS enrichment profiles of these
three silencer sets, which could reflect different types of silencers
within them.

To profile human silencers, we applied the trained CNN mod-
el to all DNA sequences carrying open chromatin signals (i.e.,
DNase-ChlIP peaks) or repressive histone marks (i.e., H3K27me3
ChIP-seq peaks) and labeled the sequences having a silencer pre-
diction score large enough to correspond a less-than-0.1 false-pos-
itive rate (FPR) on test samples as silencers (see Methods). We also
applied this scheme to identify enhancers. To this end, we predict-
ed approximately 130,000 silencers and 120,000 enhancers per
cell line (Supplemental Table S1; Supplemental Fig. S3). Among
the false-positive silencer predictions, that is, those that carry no
H3K27me3 signals but are predicted as silencers, 7.7% correspond
to enhancer candidates, that is, the DNase-seq peaks having
H3K27ac but no H3K27me3 signals in the corresponding cell
type. The remaining 92.3% of false-positive silencer predictions
correspond to the background, that is, genomic regions with no
H3K27ac, H3K27me3, or DNase signals in the corresponding cell
type. In comparison to the test sample sets in which 5.6% are en-
hancer candidates (Supplemental Fig. S4), these results suggest a
bias of false-positive silencer predictions to enhancer candidates.
This likely reflects shared sequence motifs of enhancers and silenc-
ers active in a particular cell type that correspond to the binding
sites of multifunctional TFs (Berest et al. 2019). For example, the
NFKB2 complex functions as both activator and repressor in T cells
(Senftleben et al. 2001; Grinberg-Bleyer et al. 2018), and its TFBSs
are enriched in both T cell silencers and enhancers (see the section
“Distinct sequence syntax of the DFREs”).

In a systematic high-resolution activation and repression pro-
filing with MPRA (Sharpr-MPRA), the activating/repressive capa-
bilities of individual nucleotides within REs have been measured
by MaxPos scores (Ernst et al. 2016). A low/high MaxPos score in-
dicates a strong repressive/activating regulatory effect. In K562
cells, predicted silencers show the lowest average MaxPos score
among all elements, which is 4.7 times lower than the average
MaxPos score of H3K27me3 ChIP-seq peaks not predicted as si-
lencers (dubbed nonSLs, Student’s t-test P=4x 107°) (Fig. 1D).
Similarly, predicted enhancers display a higher average MaxPos
score than other elements, including H3K27ac ChlIP-seq
peaks not predicted as enhancers (dubbed nonEN, Student’s
t-test P=1072?) (Fig. 1D). These experimental results provide an in-
dependent support of our silencer and enhancer predictions.

In the five tested cell lines (monocytes were not included in
this analysis owing to the lack of gene expression data for this
cell type), the predicted silencers were enriched in the proximity
of low-expression genes (Supplemental Fig. S5). Additionally, the
density of single-nucleotide polymorphisms (SNPs) detected in
genome-wide association studies (GWASs) is greater in predicted
silencers and enhancers than in the sequences carrying
H3K27me3 but no H3K27ac ChIP-seq peaks for all examined cell
lines but hESCs (binomial test, P<1071°) (Fig. 1E). Furthermore,
we observed that silencers show higher genomic mappability
than H3K27me3 regions overall (Supplemental Fig. $6). To exclude
apotential ascertainment bias arising from mappability differences
between different sequence sets, we restricted the GWAS SNP anal-
ysis to the elements with at least 50% of certainly mappable nucle-
otides (i.e., mappability score=1) (Supplemental Fig. S7). As there
is no qualitative change in the results, this further confirms the
functional importance of the predicted silencers, at least in com-
parison to H3K27me3 regions and randomly selected background
sequences with matching length, GC content, and repeat density.
For simplicity, we refer to these predicted silencers/enhancers as si-
lencers/enhancers for the remainder of the manuscript.

DFREs are associated with TFs and chromatin remodeling genes

In our search for REs capable of alternating between enhancer and
silencer function, we focused on H1 hESC enhancers that transi-
tion to silencers in primary T cells, a type of differentiated lym-
phoid cells. Based on overlap with H1 hESC enhancers, the
silencers in primary T cells have been split into DFRE and non-
DEFRE silencers (see Methods). The latter were termed regular si-
lencers (SLrs). To address the function of DFREs, we compared
DFREs with SLrs and hESC enhancers that do not function as en-
hancers or silencers in T cells (named as ENrs below).

In primary T cells, 11,888 silencers (6% of all silencers) are
DFREs (Fig. 2A). Although DFREs and SLrs show similar
H3K27me3 intensities (Supplemental Fig. S8), 8% of these DFRE
sequences are conserved across placental species (Siepel et al.
2005), which is significantly higher than the 4.1% of SLrs and
3.6% of the background (binomial test P<107'°) but lower than
the 10.6% of ENts (P<107'°) (Fig. 2B). Also, the DFREs harbor
5.06 common SNPs per kilobase, which is significantly lower
than the 5.44 common SNPs per kilobase in SLrs (P<107'°) and
is similar to that of ENrs (Fig. 2B). In addition, 7.96% of DFRE
SNPs have a derived allele frequency (DAF) of greater than
0.9, which is significantly lower than the 9.23% of the SLr SNPs
(P<107'°) (Supplemental Fig. S9). These results suggest that
DFREs have been and are still evolving under strong purifying se-
lection, which is indicative of their functional importance.

Next, we used genes flanking DFREs to assess their potential
function. Compared with all silencers, the DFREs show a strong
preference for the loci of genes participating in transcriptional
regulation (such as mRNA transcription, hypergeometric test P=
2x107%) (Supplemental Fig. S10) and/or genes associated with
binding activity (such as T cell receptor binding, P=3x107°)
(Fig. 2C). Overall, 19.2% of DFREs are located in the loci of genes
encoding TFs and/or chromatin modifiers (CMs), which is signifi-
cantly higher than the 16.7% of SLrs (binomial test P=10"'7; see
Methods) (Fig. 2D). This trend strengthens in the loci of the top
1000 high-expression TFs and/or CMs by 1.3 times (P=6x 107>,
high-expression vs. all TFs/CMs). Furthermore, compared with
ENrs, DFREs show a similar enrichment in the loci of all TFs/
CMs (P=0.03) but a contrasting strong preference to TFs/CMs
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Figure 2. DFREs are consequential. (A) A distribution pie chart of the silencers (SLrs) and DFREs for primary T cells in peripheral blood. (B) Evolutionary
sequence conservation of DFREs (red), SLrs (gray), and ENrs (orange) computed using the overlap with conserved segments and the density of common
SNPs. The asterisks above the bars indicate the significant enrichments compared with the background consisting of a group of the randomly sampled
genomic regions with the GC and repeat contents matching the silencers. (**) P<107'°. (C) Molecular functions significantly associated with the
DFREs. The results are from the web tool GREAT using all silencers as background. (D) Enrichment of DFREs in the loci of the TFs and CM genes. (**) P
<107>. White asterisks in the bars represent significant enrichment compared with the SLrs. The presented P-values are the enrichments compared
with all TF and CMs. (£) Enrichment of GWAS SNPs and eQTLs in DFREs, SLrs, and ENrs. The density of SNPs per kilobase is listed in the bars. The asterisks
(and the values) next to the bars quantify the significance of enrichment compared with the background. (**) P<107>. (F) GWAS traits with which the
associated SNPs are enriched in the DFREs compared with ENrs. Only the GWAS traits significantly enriched in the DFREs are presented. The azure diamonds
highlight immunity-related traits. Red and black dots on the top indicate the significant enrichments (P<0.05) of GWAS SNPs in DFREs and SLrs, respec-
tively. The details about these results are listed in Supplemental Table S2.

highly expressed in T cells (binomial test P=1077) (Fig. 2D), sug- immunity (Dixon et al. 2015; Tartey and Takeuchi 2015; Chen
gesting a distinct association of DFREs with the regulation of the et al. 2020). The strong association of DFREs with these genes sug-

TFs/CMs specific to T cells. The TFs are the core of gene regulation gests a primary contribution of DFREs to governing the activity
networks, and CM enzymes, which reshape the chromatin topol- and identity of T cells.

ogies globally or locally to facilitate or impede the binding of Next, we used RNA-seq gene expression (Roadmap Epigenom-
TFs, are crucial for regulating the responses to cellular and external ics Consortium et al. 2015) and Hi-C contact data in hESCs and

signals, especially during cell differentiation and in the context of T cells (Jung et al. 2019; Yang et al. 2020) to address if a transition
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in DFRE function might result in change of the DFRE target gene.
Among intergenic DFREs that contact only one of their flanking
genes (named A) and not the other flanking gene (named X) in
hESCs, we identified DFREs that also feature an expression level
of A at least fivefold greater than the corresponding X and the aver-
age gene expression level in hESCs. This set of DFRESs thus consti-
tuted the most pronounced DFRE enhancer effects on a specific
target gene in hESCs. We then observed that 84.6% of these A genes
in T cells are expressed at a less than twofold greater level than both
the corresponding X genes and the average gene expression in
T cells, and 100% of these A genes are expressed at a less than five-
fold greater level than the corresponding X genes and the average
gene expression in T cells. This indicates a pronounced drop in
the level of A gene expression upon DFRE transition consistent
with the enhancer-silencer DFRE change with no change in the
target gene. Therefore, these results strongly suggest that the target
gene of DFREs remains largely unchanged upon enhancer-to-
silencer transition. In addition, using the Hi-C data (Jung et al.
2019; Yangetal. 2020), we identified eight intergenic DFREs target-
ing a single flanking gene in both hESCs and T cells. All (8/8) of
these single target gene contacts remain intact upon DFRE transi-
tion from being an enhancer in hESCs to becoming a silencer in
T cells (for two examples, see Supplemental Fig. S11), further sup-
porting preservation of DFRE targets post-transition. These partic-
ular target genes include well-known T cell differentiation
regulators TPD52 (Kang et al. 2021) and CHD7 (Koh et al. 2015).
The lack of change in chromatin contacts to proximal genes further
highlights that the function transition of DFREs is pivotal for pre-
cisely regulating the transcription of these T cell differentiation
genes during the development of T cells.

DFREs are enriched in the T cell-related genetic variants

To evaluate the influence of DFREs, we next explored GWAS SNPs
and their linkage-disequilibrium (LD) counterparts (7*>0.8; see
Methods). The DFREs and SLrs harbor 0.93 and 0.91 GWAS SNP
per kilobase, respectively, which represents a significant enrich-
ment over the 0.74 GWAS SNP per kilobase in the background
sequences (i.e., randomly sampled genomic sequences with the
length, GC content, and repetitive element density matching
T cell silencers; binormal test P<1071°) (Fig. 2E). Furthermore,
10.6% of GWAS SNPs in DFREs are associated with immunity-relat-
ed traits and 9.8% of SLr SNPs are immunity associated. Both per-
centages are higher than the 8.5% of ENr SNPs and 9.4% of
background SNPs (P<10~*) (Fig. 2E), highlighting the contribu-
tion of these silencers, especially DFREs (P=0.0002, DFREs vs.
SLrs), to the regulation of the immune system genes. Analyzing in-
dividual GWAS traits, we observed that T cell DFREs are specifically
enriched in SNPs linked to immune system disorders, such as pol-
yangiitis with granulomatosis, Sjogren syndrome, and type I diabe-
tes mellitus (binormal test P<0.05) (Fig. 2F; Supplemental Table
S2). Eighteen out of the top 50 DFRE-associated GWAS traits
(36%) are immunity related (Fig. 2F, azure diamonds), which is sig-
nificant given that there are ~8% of immunity-related traits
among all GWAS traits (hypergeometric test P=1077).

In addition, T cell DFREs host 0.98 whole-blood expression
quantitative trait loci (eQTLs) per kilobase, which is significantly
higher than the 0.91 in the SLrs, 0.89 in ENrs, and 0.8 in the back-
ground sequences (binormal test P< 107°%) (Fig. 2E). Furthermore,
the density of T cell eQTLs in the DFREs is 0.012 per kilobase,
which is 1.5 times that in SLrs (P=2x 107°) and 1.7 times that in
ENrs (P=2x107%) and the background sequences (P=9 x 1079).

Compared with whole-blood eQTLs, T cell eQTLs show elevated
enrichment in the T cell silencers, especially the DFREs (chi-
squared test P< 107°) (Fig. 2E), suggesting strong tissue specificity
and pronounced regulatory impact of these silencers on target
gene expression in T cells. Also, the DFREs harbor 0.009 eQTL de-
tected in induced pluripotent stem cells (iPSCs) per kilobase,
which is similar to that in ENrs (binomial test P=0.13) but is 1.7
times that in SLrs (P=2x1077) and 1.4 times that in the back-
ground (P=0.002). Combined, the enrichment in immunity-asso-
ciated SNPs and stem-cell-associated SNPs supports the functional
duality of the DRFEs, a distinct feature among all tested elements.

DFRE mutations are more likely to negatively affect silencer
activity than SLr mutations

To further characterize the effects of silencer mutations, we com-
pared the output of our CNN models for wild-type (WT) alleles
to those for mutant alleles, defining the CNN-based silencing alter-
ation score (CNN-SAS; see Methods) (Supplemental Fig. S12). A
large positive value of CNN-SAS suggests that the corresponding
mutation causes a strong decrease in repressive activity. To evalu-
ate CNN-SASs, we first turned to the experimental results in report-
er assay quantitative trait locus (raQTL) studies where the
regulatory effect of a SNP mutation was quantified by the expres-
sion change of the reporter gene (van Arensbergen et al. 2019).
Positive raQTL scores represent mutations causing a decrease in re-
porter gene expression. Using the HepG2 CNN model, we calculat-
ed the CNN-SASs of HepG2 raQTL mutations and observed that
the absolute values of the CNN-SASs of raQTLs were significantly
higher than those of non-raQTLs (Wilcoxon rank-sum test P=4 x
107'%%; see Methods) (Fig. 3A; Supplemental Fig. S13). We also ob-
served a gradual decrease in raQTL scores with an increase in
CNN-SASs (Fig. 3B). Among silencer raQTLs with the 5% highest
CNN-SASs, 94% had negative raQTL scores, which is a significant
enrichment given that 54% of all tested rtaQTLs had negative
raQTL scores (binomial test P=3 x 1072%) (Fig. 3B). The fraction
of negative raQTLs dwindled with the decrease of CNN-SASs, end-
ing at 12% among the raQTLs with the 5% lowest CNN-SASs (P=
1072° compared with the expected on all tested raQTLs). The
strong negative correlation between CNN-SAS and raQTL scores
validates the ability of our method to quantify the strength of
silencer-disrupting mutations.

In T cells, for which raQTL data are not available, we used eQTL
data to evaluate CNN-SASs. T cell CNN-SASs are correlated with
T cell eQTLs (Spearman’s correlation r=0.064, P=0.008) (Fig. 3C),
potentially confirming the ability of CNN-SASs to predict the regu-
latory impact of mutations in T cells. The weak correlation between
CNN-SASs and whole-blood eQTLs (r=0.003, P=0.35) (Supplemen-
tal Fig. S14) could be attributed to the indirect measurement of reg-
ulatory activity using eQTLs, as eQTLs reflect association and not
causality of noncoding mutations with gene expression owing to
(1) LD in loci containing regulatory variants and (2) a cumulative ef-
fect of multiple REs on target gene expression (as opposed to a direct
readout of single mutation effects in raQTL experiments).

We next used the T cell CNN-SASs to assess the impact
of silencer mutations. A CNN-SAS was considered significant
when its absolute value was larger than 1% of those of all possible
single-nucleotide mutations in the silencers (Methods) (Supple-
mental Fig. S15). Compared with the ENrs and background se-
quences, DFREs and SLrs host more significant CNN-SASs among
GWAS SNPs and eQTLs (binomial test P <0.002), reflecting the
functional importance of the DFREs and SLrs to the regulation of
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cance in negative raQTL scores compared with all tested mutations. (C) Correlation between CNN-SASs and eQTL scores in T cells. (D) Fraction of signifi-
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T cell phenotypes and gene expression. In addition, compared
with SLrs, the DFREs are enriched for significant CNN-SASs (i.e.,
potential damaging mutations) across a panel of mutation sets
(binomial test P<107%) (Fig. 3D). For example, in DFREs, 3.5% of
T cell eQTLs SNPs correspond to a significant CNN-SAS (that is
3.5-fold greater than expected by chance; P< 107'°). These results
validate the utility of significant CNN-SASs in detecting most like-
ly silencer-damaging mutations.

An example DFRE mutation having a significant CNN-SAS is
1512631656. Its T-to-C (i.e., major to minor allele) mutation corre-
sponds to a CNN-SAS of 0.0816 (P=0.003) (Fig. 3E). This SNP is lo-
cated within a tight LD block (r*>0.96) of rs6445975 and
154681851, the two SNPs that have been reported to be signifi-
cantly associated with systemic lupus erythematosus and systemic
sclerosis (Harley et al. 2008; Mayes et al. 2014). This LD block hosts
five DFRE SNPs, four SLr SNPs, and one enhancer SNP in T cells.
Among these SNPs, 1512631656 is the only one with a significant
CNN-SAS (Fig. 3E). The TF motif mapping shows that the mutation
at1s12631656 potentially weakens the binding affinity of ARIDSB
and SOX13, two known repressors in T cells (Lefebvre 2010; Wang
et al. 2020).

Distinct sequence syntax of the DFREs

To address function encryption in DFRE sequences, we considered
two primary hypotheses: (1) there is a single set of TF binding sites
(TFBSs) within each DFRE bound by a stable set of TFs with alter-
nating repressor and activator functions, and (2) there are two dis-

tinct sets of TFBSs within DFREs—one encoding silencer function
and another encoding enhancer function. To test these hypothe-
ses, we mapped the TFBSs in TF ChIP-seq peaks (see “TFBS predic-
tion in TF ChIP-seq peaks” in the Supplemental Notes). With these
TFBSs, we first characterized TFBS signatures of the DFREs for their
activating and repressive functions. In T cells, although inactive
ENrs are depleted of ChIP-seq TFBSs of all TFs, silencers (DFREs
and SLrs) are depleted of ChIP-seq TFBSs of activators (such as
JUND, IRF3, and IRF4) but are enriched in ChIP-seq TFBSs of ubiq-
uitous repressors, including REST and repressors acting predomi-
nantly in blood cells, such as EBF1 (Fig. 4A; Gyory et al. 2012),
which is in line with their repressive function. Functioning as en-
hancers in hESCs, DFREs and ENrs show a similar TFBS profile.
They are depleted of ChIP-seq TFBSs of REST (P <0.02) but are en-
riched in ChIP-seq TFBSs of hESC-specific TFs, such as POUSF1 and
NANOG (Fig. 4B). These results suggest that DFREs recruit a dis-
tinct set of TFs for activating and repressive functions. Further-
more, 70% of silencer TFBSs are silencer specific, and 45% of
enhancer TFBSs are enhancer specific (Fig. 4C), indicating a pres-
ence of distinct DFRE fragments that establish activating and re-
pressive functions.

The enrichment of CTCF ChIP-seq TFBSs in DFREs prompted
us to compare DFREs and insulators. In hESCs, where the topolog-
ically associated domains (TADs) have been reported (Liu et al.
2019), 0.84% of the DFREs are located at the TAD boundaries,
which are known to be enriched for insulators (Ong and Corces
2014). This fraction is comparable to 0.94% of all DNase-seq peaks
(P=0.25) and is significantly lower than the 1.12% of CTCF ChIP-
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seq TFBSs (P=10""") (Supplemental Fig. S16A). These trends were
also observed in T cells, where 0.95% of DFREs, 0.93% of all DNase-
seq peaks (P=0.34 vs. DFREs), and 1.31% of CTCF ChlIP-seq TFBSs
(P=10""" vs. DFREs) (Supplemental Fig. S16B) are located within
the T cell TAD boundaries detected in Yang's study (Yang et al.
2020). Also, in T cells, DFREs are enriched in the loci of the 1000
lowest expressed genes (9.1% of DFREs vs. 6.3% of the whole ge-
nome, binomial test P=5x 1072°) (Supplemental Fig. S16C) and
are depleted in the loci of the 1000 highest expressed genes (P=
2x107%). A reverse trend was observed for DFREs in hESCs (P <
0.001) (Supplemental Fig. S16D). Similarly, the DFREs frequently
target the lowly expressed genes in T cells (P=107°) (Supplemental
Fig. S16E) but highly expressed genes in hESCs (P=4 x 107'%) (Sup-
plemental Fig. S16F). These results are consistent with the silencer
function of DFREs in T cells and the enhancer function of DFREs in
hESCs. On the other hand, CTCF ChIP-seq TFBSs show no consis-
tent correlation with either highly or lowly expressed genes in
both cell types (Supplemental Fig. S16), supporting a functional
distinction between DFREs and CTCF-defined insulators.

We also observed that the majority of DFRE TFBSs, specifically
60% of enhancer TFBSs and 62% of silencer TFBSs, are located
within the central component (200 bp from the midpoint) of
the DFREs, which is significantly >43% of randomly scattered
TFBSs (binomial test P<107'%) (Fig. 4D). Furthermore, 37% of
the silencer TFBSs are located within 50 bp to their nearest enhanc-
er TFBSs, which is much higher than 24% of randomly scattered
TFBSs in DFREs (binomial test P=107'%°) (Fig. 4E). Combined,
these results advocate for intertwined and spatially proximal distri-
bution of distinct activating and repressive TFBSs within DFREs.

Next, to account for TFs not yet profiled in ChIP-seq experi-
ments, we used CNN-SASs to predict TFBSs as short segments over-
represented in high CNN-SASs (see “TFBS prediction using a CNN
model” in the Supplemental Notes). More than 43% of the CNN-
predicted TFBSs overlap the reported TF ChIP-seq peaks in both T
cells and hESCs, which is more than 1.4 times that of randomly scat-
tered TFBSs (Supplemental Fig. S17A) and, therefore, justifies the use
of this predictive approach for additional TFBS discovery. Predicted
TFBSs in T cell (silencer) DFREs are enriched with the binding motifs
of repressors, such as SNAI1/2, REST, and LMO2 (Supplemental Fig.
S17B). Predicted TFBSs in hESC (enhancer) DFREs host binding mo-
tifs of developmental activators, including POU5F1, NANOG, and
SOX4 (Supplemental Fig. S17C). The CNN-predicted TFBSs confirm
and further strengthen the trends observed using ChIP-seq TF data.
Fifty-nine percent of these predicted TFBSs reside within the central
region (200 bp from the midpoint) of DFREs, which is significantly
more than the expected 45% of randomly scattered TFBSs (binomial
test P=1073%3). Also, 43% of silencer TFBSs are located within 50 bp
of enhancer TFBSs, which is significantly more than the expected
32% of randomly scattered TFBSs (P=10732%) (Supplemental Fig.
S17). Again, these results suggest a tight intertwining between
TFBSs active for opposite functions within DFREs as well as a “coen-
cryption” within the central regions of DFREs.

Developmental dynamics of DFRE formation

To understand the progression in DFRE formation during develop-
ment, we applied our analysis pipelines for identifying DFREs in
primary HPCs, which represent an intermediate step in
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differentiation from embryonic stem cells to T cells. Twenty-seven
percent of HPC silencers are DFREs, acting as enhancers in hESCs
(Fig. 5A). Compared with HPC SLrs, these DFREs are more con-
served across placental species (10.2% of DFREs vs. 7.4% of SLrs, bi-
nomial test P < 107'°) and feature a lower density of common SNPs
(4.93 SNPs/kb in DFREs vs. 5.45 SNPs/kb in the SLrs, P< 10~'9) (Fig.
5B). HPC DFREs also harbor 0.98 GWAS SNPs and 1.3 whole-blood
eQTLs per kilobase, which is significantly higher than the 0.87
GWAS SNPs and 0.94 whole-blood eQTLs in the SLrs, 0.91
GWAS SNPs and 0.96 whole-blood eQTLs in the ENrs (i.e., the
hESC enhancers acting neither as silencers nor as enhancers in
HPCs), and 0.74 GWAS SNPs and 0.8 whole-blood eQTLs in the
background sequences (P< 1075) (Fig. 5C). HPC DFREs are more
highly enriched in GWAS and eQTL SNPs than the SLrs, ENrs,
and background in both tested cell lines, suggesting their function-
al importance across cellular contexts. Overall, HPC DFREs feature
functional characteristics very similar to T cell DFREs, with the
main exception of approximately four times as many HPC silenc-
ers being DFREs compared with T cell silencers (binomial test P<
107%). Furthermore, among 18,965 HPC DFREs, 11.6% (2201) are
the DFREs in T cells, which is significantly lower than the 18.6%
of HPC SLrs and 46.5% of HPC enhancers shared by T cells (bino-
mial test P< 10~°) (Fig. 5D). The shrinking fraction of DFREs during
differentiation and the strong cell specificity of DFREs in a mature
cell suggest the loss of functional plasticity in REs upon differenti-
ation and a relatively small fraction of REs preserving multifunc-
tional activity after the differentiation.

Discussion

Advances in high-throughput sequencing and MPRAs vastly in-
crease the knowledge of gene regulation in human cells.
However, the detection and functional characterization of active
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silencers remain challenging (Della Rosa and Spivakov 2020;
Halfon 2020). In this study, we developed a deep learning silencer
model that accurately detects experimentally identified silencers
and quantifies the impact of silencer mutations. Identified silenc-
ers predominantly populate the loci of low-expression genes and
are enriched in GWAS SNPs associated with the cell type matching
disease etiology. In principle, silencers exert the repressive impact
mainly through reducing the activity of basal promoters or smoth-
ering the activity of proximal enhancers (Gisselbrecht et al. 2020).
H3K27me3 modification has been evidenced to take part in both
repressive mechanisms (Ogiyama et al. 2018; Cai et al. 2021). As
such, the CNN models, which were built with H3K27me3 ChIP-
seq peaks as training silencer samples, predict both types of silenc-
ers. These predicted silencers can be further categorized by using
chromatin interaction maps with the knowledge that the silencers
that reduce promoter activity interact with promoters more fre-
quently than the other silencers. Also, our models, centered on
the H3K27me3-associated silencers, might be less accurate in iden-
tifying silencers not marked by H3K27me3. Further studies are
needed for investigate the differences and similarities between
H3K27me-based and H3K27me3-independent silencers.

By combining silencer detection with enhancer detection, we
observed enhancer-silencer transitions and found that 6% of the
T cell silencers and 28% of HPC silencers are DFREs, functioning
as enhancers in hESCs and changing their regulatory function
during differentiation. Compared with regular silencers, DFREs
feature greater evolutionary sequence conservation and are
enriched in GWAS SNPs and eQTLs. Moreover, DFREs are preferen-
tially distributed in the proximity of genes governing transcrip-
tional regulation. DFRE mutations are more than 1.5 times as
likely to significantly damage silencer activity (as measured using
CNN-SASs) as regular silencer mutations. These results support
the essentiality and a rather overlooked important role of DFREs
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Figure 5. Characterization of DFREs detected in HPCs. (A) Fraction of HPC silencers working as DFREs. (B) Evolutionary sequence conservation measured
using the overlap with the conserved segments (left) and common SNP density (right) of HPC DFREs, SLrs, and ENrs. The background in Figure 2 is also
included here (represented by “background”) for consistency. (C) Enrichment of GWAS SNPs and eQTLs in the HPC. The number of SNPs per kilobase
is listed in the bars. (B,C) The asterisks above the bars represent the significance levels compared with the background. (D) Developmental specificity of
DFREs, SLrs, and enhancers in HPCs. The numbers in bars are the numbers of REs. (shared) REs shared in HPCs and T cells, (specific) REs acting in HPCs

but not in T cells. (**) P<107>.
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in regulating the development and maintaining the fate of blood
cell types (and, likely, other differentiated cell types not included
in this study). Earlier studies in D. melanogaster embryonic cells,
coupled with the scope of our study targeting a single differentia-
tion path, suggest that a large fraction of developmental enhancers
might be wired to act as silencers upon and after differentiation
(Erceg et al. 2017; Gisselbrecht et al. 2020).

To gain insights into the mechanisms of DFRE functional
duality, we compared the distribution of active TFBSs correspond-
ing to silencer and enhancer functions of DFRE sequences. We ob-
served largely distinct but proximal DFRE regions occupied by
binding sites of opposing functions. Our findings suggest a “dou-
ble” genomic regulatory encryption within DFRE sequences with
independent active regulatory binding sites, reflective of the use
of different TFs for establishing activating and repressive functions
after effectively rejecting an alternative hypothesis of the same
pool of TFs bound to DFREs and switching their function based
on cellular context.

Silencers are an integral part of the regulatory machinery in
metazoans shaping and fine-tuning gene regulatory programs.
The difference in the function of DFREs reported in D. melanogaster
was primarily attributed to different cell types. In our study, we fo-
cus on the functional switch from enhancer to silencer activity,
which is associated with the development and maturation of
T cells. Therefore, it is logical to assume that the presented
DFREs are more likely to be associated with developmental abnor-
malities and carcinogenesis. It is also possible that a subset of re-
ported DFREs might underlie the environmental response, and
their mutations are more likely to have a phenotypic effect owing
to their role in development. Here we report thousands of DFREs
during development of T cells and uncover unique features and
profound phenotypic/pathogenic contributions of these ele-
ments. These findings together suggest the wide spread of DFREs
in various biological processes across species. Follow-up studies ex-
tending to other biological contexts and additional chromatin
data will further characterize human DFREs and help understand-
ing how the same parts of the genome are reused for multiple reg-
ulatory functions at different developmental time points and in
different cellular contexts. This is a crucial step toward revealing
how gene regulation swiftly and precisely adapts to changing of
cellular contexts in various biological processes.

Methods

Building CNN models to predict silencers

We designed a deep learning model composed sequentially of five
convolutional layers and two fully connected network layers (Fig.
1A). Each CNN layer is followed by a max-pooling and a dropout
layer. The input of this model is 1000-bp-long DNA sequences,
whereas the output layer contains three nodes, each representing
one of the sequence classes: silencer, enhancer, and background.
Each output node predicts the probability of a given sequence be-
longing to the corresponding sequence classes. We used the
Python library Keras version 2.4.0 (https://github.com/keras-
team/keras) to implement our model. To deal with this multiclass
classification task, categorical cross-entropy was used as the cost
function. By minimizing this cost function, the parameters of
the models were adjusted by using the gradient-based algorithm
Adam and then Adagrad as implemented in Keras (see “CNN mod-
el” in the Supplemental Notes; Supplemental Fig. S18).

We built a CNN model for each of six cell types, including H1
hESCs, the K562 cell line, the HepG2 cell line, primary HPCs, pri-

mary monocytes, and primary T cells from peripheral blood.
During training, we set aside Chromosome 6 for validation and
Chromosomes 7 and 8 for testing. All other autosomes and
Chromosome X were used for training.

To identify silencers, we calculated the cutoff in the silencer
prediction scores (silencer scores) generated by the CNN model,
which corresponds to the FPR of 0.1 in test samples, among
which background samples were randomly selected so that the
ratio of background samples to enhancers/silencers was 9:1 in
each tested cell type. Sequences that carry a DNase-seq peak or
a H3K27me3 ChIP-seq peak and have a silencer score greater
than this cutoff were labeled as silencers. A similar approach
with the FPR of 0.1 in CNN model enhancer prediction scores
(enhancer scores) was used for enhancer identification. DNase-
seq peaks that carry a H3K27ac signal and have an enhancer
score greater than this cutoff established the set of predicted en-
hancers. After applying this scheme to all tested cell types, we
identified approximately 130,000 silencers and 120,000 enhanc-
ers per cell type (Supplemental Table S1). The size of these en-
hancer sets is comparable to those identified by ChromHMM
(Ernst and Kellis 2017) as well as those collected in the Benton
and Gao databases (Benton et al. 2019; Gao and Qian 2020).

Data for training and validating CNN models

We trained a CNN enhancer/silencer model independently for each
cell type. Cell type-specific DNase-seq and histone modification
ChIP-seq data sets have been used for training (all ChIP-seq data
used in this study were downloaded from the NIH Roadmap Epige-
nomics Project) (Roadmap Epigenomics Consortium et al. 2015).
H3K27me3 ChIP-seq peaks with neither H3K27ac nor H3K4mel/
3 ChlIP-seq peaks overlapping their 400-bp central region constitut-
ed the set of training silencers. DNase-seq peaks with an overlapping
H3K27ac peak but no overlapping H3K27me3 ChIP-seq peaks with-
in their 400-bp central region constituted the set of training en-
hancers. Background sequences were randomly selected from
DNase-seq peaks and H3K4mel, H3K4me3, H3K27ac, and
H3K27me3 histone modification ChIP-seq peaks detected in any
cell line other than the tested cell line. CNN models were trained
on 1-kb regions centered on enhancer, silencer, and background se-
quences. For T cells, we collected 416,773 DNase-seq peaks and
392,442 H3K27me3 and 129,500 H3K27ac “broad” peaks from
the NIH Roadmap Epigenomics Project (Roadmap Epigenomics
Consortium et al. 2015). This translated into 239,925 and 158,887
nonredundant putative silencer and enhancer sequences, respec-
tively. The CNN models identified 219,971 T cell silencers and
156,451 T cell enhancers from these sequences.

In the K562 cell line, experimentally validated silencers were
used to evaluate the accuracy of the silencer prediction model.
Those silencers were acquired from two resources: 3796 K562 si-
lencers identified with self-transcribing active regulatory region
sequencing platform (STARR-seq) (Doni Jayavelu et al. 2020)
and 3909 K562 silencers reported using the repressive ability of
silencer element assay (ReSE) (Pang and Snyder 2020). After re-
dundancy exclusion, we assembled 7701 distinct silencers exper-
imentally validated in K562 cells. To apply the CNN model in
which the input is 1000-bp sequences on these silencers, we ex-
tended these silencers into 1000-bp genomic sequences centered
at the midpoint of tested segments. To prevent a bias from prior
knowledge on the estimate of the model accuracy, we excluded
all 1406 experimentally validated silencers that overlap training
or validation sequences (either for building the SVM or the
CNN model) from the computational model evaluation.

In addition, the results of Sharpr-MPRA were used to evaluate
silencer/enhancer predictions (Ernst et al. 2016). A low Sharpr-
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MPRA MaxPos score represents a negative RE. In this study, a geno-
mic sequence was assigned with a MaxPos score only when this se-
quence hosted the whole corresponding Sharpr-MPRA sequence.

Enhancer-silencer transitions during development

To identify enhancer—silencer transitions during development, we
compared silencer profiles in mature cell types with the enhancer
map in H1 hESCs. A T cell silencer overlapping an H1 hESC en-
hancer by >600 bp was considered a DFRE. During embryonic de-
velopment, the differentiation of T cells is a stepwise process from
ESCs to mesodermal cells, HPCs, common lymphoid progenitors,
and finally T cells (Kumar et al. 2018). In adulthood, T cells are dif-
ferentiated from HPCs.

Evaluating the repressive effect of mutations

To evaluate the impact of silencer mutations, we focused on ys and
ye in a built CNN model (Fig. 1A) as they predict the capability of
genomic sequences being silencers and activators, respectively.
Given the WT and mutant allele (MU) of a mutation, the differ-
ence of ys and ye between these alleles directly measures the alter-
nation of activating and repressing power of the host sequence.
That is, the CNN-SAS of a given mutation is defined as

CNN — SAS = (yswr — ysmu) — (Yewr — yemu), (1

where ysyrand ysy are the probabilities of silencer activity in the
WT and the MU sequences, respectively. yeyr and yey are the
probabilities of enhancer activities of the corresponding sequenc-
es. In addition, we measured the silencing alteration caused by a
mutation with the odd ratios of (yswr— yewr) to (yspu— yemu) after
deriving the probability function of (ys — ye) and noticed the sim-
ilar performance between CNN — SAS scores and odd-ratio scores
(see “CNN-based silencing odds ratio of mutations” in the
Supplemental Notes; Supplemental Fig. $12).

The CNN — SAS distribution of all possible single-nucleotide
silencer mutations forms a T distribution with 69% of mutations
having an absolute CNN —SAS value smaller than 0.01
(Supplemental Fig. S15). Using this distribution as a background,
we evaluated the significance of observed CNN — SAS scores. A
low value of the probability represents a mutation having a strong
impact on the activity of the host silencer. A CNN — SAS score was
considered significant if this probability was <1%.

Data and tools used for analysis

We downloaded the GWAS SNPs curated in the National Human
Genome Research Institute (NHGRI) catalog as of January 2019
(Buniello et al. 2019). There were 70,578 unique SNPs in the cata-
log at that time. To account for the fact that GWAS SNPs might not
be directly responsible for phenotypic alterations but might be in
LD with untested causal genetic variants (Cantor et al. 2010), we
further expanded the SNP set by adding SNPs in a strong LD (%>
0.8) block with GWAS SNPs in at least one population from the
1000 Genomes Project Consortium. To that end, we acquired
1,409,462 GWAS SNPs associated with 2722 traits. SNPs showing
a strong phenotypic influence are likely to be associated with mul-
tiple traits according to independent studies (Zhou et al. 2018). To
account for this, GWAS SNPs were linearly weighted by the num-
ber of the traits linked to them when we evaluated the GWAS SNP
density. The GWAS traits were identified as immunity related
when they contain keywords such as allergy, arthritis, asthma,
Graves disease, infection, inflammation, lupus, multiple sclerosis,
Sjogren syndrome, type I diabetes mellitus, etc.

Whole-blood eQTLs used in this study were downloaded from
the Genotype-Tissue Expression Project, GTEx database version 8

(The GTEx Consortium 2015). To further evaluate the tissue specif-
icity of the predicted DFREs, we collected eQTLs detected in T cells
from the Blueprint epigenome project (Chen et al. 2016). EQTLs in
iPSC were downloaded from the study of DeBoever et al. (2017).

We downloaded 14,183 HepG2 raQTLs from the study (van
Arensbergen et al. 2019). These SNPs are associated with a signifi-
cant change in reporter gene activity in HepG2 cells. We also
downloaded additional 14,183 SNPs that correspond to an insig-
nificant change in the expression of reporter genes (i.e., non-
raQTL mutations) as analysis background.

We used the Genomic Regions Enrichment of Annotation
Tool (GREAT) (McLean et al. 2010) to evaluate Gene Ontology
(GO) biological processes and molecular functions associated
with different RE groups. The element-gene association setting
was selected as “two nearest genes.”

We explored conserved elements predicted using the 46-way
placental phastCons scores (Siepel et al. 2005). A notable overlap
of a genome sequence with conserved elements is indicative of
an evolutionary constraint imposed on that sequence. The density
of SNPs in genomic sequences was used to assess the evolutionary
pressure acting on genomic segments in the human lineage. A low
SNP density corresponds to strong selective pressure. The SNPs re-
ported by The 1000 Genomes Project Consortium et al. (2015)
were used for this analysis.

HESC TAD boundaries were downloaded from the Topologi-
cally Associating Domain Knowledge Base (TADKB) database in
which the boundaries, in the resolution of 10 kb, were detected
by using the Gaussian mixture model and proportion test (Liu
et al. 2019). The chromatin contacts in hESCs were downloaded
from the database assembled in the study of Jung et al. (2019).
The TADs and genomic contacts in T cells were downloaded
from the report of Yang et al. (2020). We used the detections for
unstimulated T cells. The TAD boundaries were defined as the
10-kb-long genomic regions centering at all the ends of TADs.

Software availability

Custom Python scripts (training CNN models and predicting en-
hancers/silencers with a built CNN model) are available on
GitHub (https://github.com/ncbi/SilencerEnhancerPredict) and
as Supplemental Code.
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