

Chemical composition of essential oil of *Ferulago macrocarpa* (Fenzl) Boiss. fruits

S.E. Sajjadi^{1,*}, Y. Shokoohinia² and M. Jamali¹

¹Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran. ²Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran.

Abstract

Water-distilled essential oil of *Ferulago macrocarpa* (Umbelliferae) fruits was analyzed using GC-MS for the first time. Forty-two components comprising 99.5% of the total oil were identified, of which bornyl acetate (40.8%), 2,3,6-trimethyl benzaldehyde (7.2%), δ -selinene (5.5%), 1,10-di-epi-cubenol (5.1%), germacrene D (3.5%), β -phellandrene (3.5%) and α -pinene (3.4%) were found to be the major components. The oil of *F. macrocarpa* fruits consisted of 15 monoterpene hydrocarbons (21.4%), 6 oxygenated monoterpenes (42.2%), 17 sesquiterpene hydrocarbons (22.4%) and one oxygenated sesquiterpene (5.1%). Three benzenoid derivatives also comprised 8.4% of the oil. Monoterpenes and sesquiterpenes comprised 63.6% and 27.5% of the *F. macrocarpa* fruits essential oil respectively; however, bornyl acetate (40.8%) was identified as the most abundant component of the oil.

Keywords: Ferulago macrocarpa; essential oil composition; GC/MS; bornyl acetate; 2,3,6-trimethyl benzaldehyde

INTRODUCTION

Apiaceae (Umbelliferae) family comprises 300 genera and 2500-3000 species distributed in most parts of the world (1). The genus *Ferulago* (Chavil in Persian) consists of about 40 species which are centered in south-west of Asia (2). Seven *Ferulago* species are also found in the flora of Iran, most of which are endemic (3).

Previous phytochemical studies of *Ferulago* have led to isolation of various coumarins (4-6) and volatile oils (7-9). Some of the isolated coumarins have shown antimicrobial, antioxidant (10), cytotoxic (11) and acetylcholinesterase inhibitor (12) activities. In addition, the essential oils of many other *Ferulago* species have exhibited antimicrobial activities (13-16).

Ferulago macrocarpa (Fenzl) Boiss. is a perennial herb which grows in the west of Iran. The plant popularly referred to as Chavile-Roshanball in Farsi. A literature survey has revealed that the essential oil of the aerial parts of the plant has shown larvicidal activity (17); however, the available information indicates that the essential oil of *F. macrocarpa* fruits has not been the subject of any study, and this paper is the first report in this regard.

MATERIALS AND METHODS

Plant material and isolation of the oil

F. macrocarpa fruits collected from Salehabad in Ilam province in the west of Iran in May 2010 at an altitude of *ca.* 800 m above sea level and the plant identity was confirmed by the Ilam Agricultural and Natural Resource Research Center. Crushed dry fruits of *F. macrocarpa* were subjected to hydro distillation for 3 h, using a Clevenger-type apparatus, according to the method recommended in the British Pharmacopoeia (18), and the resulting oil was subsequently dried over anhydrous sodium sulfate.

^{*}Corresponding author: S.E. Sajjadi, this paper is extracted from the Pharm.D thesis No. 389377

Tel. 0098 311 7922611, Fax. 0098 311 6680011

Email: sajjadi@pharm.mui.ac.ir

GC/MS analysis

Gas chromatography combined with mass spectrometry was used for the identification of the components. The analysis was performed on an Agilent 5975C mass selective detector coupled with a Hewlett-Packard 6890 gas chromatograph equipped with a HP-5MS capillary column (30 m \times 0.25 mm; film thickness 0.25 µm). The oven temperature was programmed from 60 to 280°C at 4°C/min. Helium was used as the carrier gas at a flow rate of 2 ml/min. The injector and detector

Table. Composition of the essential oil of the fruits of Ferulago macrocarpa

No	Compound	RT	KI	Percentage
1	α-thujene	3.66	929	t
2	α-pinene	3.80	937	3.4
3	camphene	4.07	952	0.9
4	sabinene	4.54	975	2.6
5	β-pinene	4.61	978	0.1
6	myrcene	4.88	991	2.0
7	mesitylene	4.95	994	0.3
8	α-phellandrene	5.19	1004	2.3
9	δ-3-carene	5.32	1011	0.8
10	α-terpinene	5.46	1017	t
11	p-cymene	5.65	1025	1.8
12	β-phellandrene	5.76	1030	3.5
13	<i>cis</i> -β-ocimene	5.96	1038	0.1
14	$trans-\beta$ -ocimene	6.22	1049	t
15	γ-terpinene	6.50	1060	0.4
16	α-terpinolene	7.29	1087	2.9
17	borneol	9.50	1167	0.6
18	terpinene-4-ol	9.86	1176	t
19	p-cymene-8-ol	10.10	1183	t
20	carvacrol methyl ether	11.93	1243	t
21	<i>cis</i> -chrysanthenyl acetate	12.48	1245	1.4
22	bornyl acetate	13.35	1202	40.8
23	2,3,4-trimethyl benzaldehyde	14.15	1312	0.9
24	δ-elemene	14.83	1312	0.6
24 25	2,3,6-trimethyl benzaldehyde	15.39	1353	7.2
23 26		16.00	1352	
20 27	α-ylangene β-elemene	16.52	1371 1387	t 1.5
		17.31		
28	β-caryophyllene		1415	1.6
29	α-guaiene	17.91	1436	t 2 1
30	α-humulene	18.34	1450	2.1
31	β-acoradiene	18.75	1466	t
32	germacrene D	19.18	1481	3.5
33	β-selinene	19.31	1485	1.3
34	δ-selinene	19.51	1489	5.5
35	bicyclogermacrene	19.65	1496	1.9
36	germacrene A	19.89	1505	0.8
37	γ-cadinene	20.16	1511	1.5
38	δ-cadinene	20.53	1521	0.5
39	α-cadinene	20.85	1535	t
40	germacrene B	21.36	1556	0.4
41	selin-4,7(11)-diene	21.77	1571	1.2
42	1,10-di-epi-cubenol	23.06	1612	5.1
	Total			99.5
	monoterpene hydrocarbons			21.4
	oxygenated monoterpenes			42.2
	sesquiterpene hydrocarbons			22.4
	oxygenated sesquiterpenes			5.1
	benzenoid derivatives			8.4

RI = Retention indices on HP-5MS capillary column, calculated by using retention times of *n*-alkanes (C₈-C₂₄). Percentages calculated from TIC data.

t = trace (<0.05%).

temperature was 280°C. The MS operating parameters were: ionization voltage 70 eV, ion source temperature 200°C.

Identification of the oil components was based on the retention indices relative to *n*-alkanes (C_8 - C_{24}) and computer matching with NIST and Wiley 275 libraries, as well as by the comparison of fragmentation patterns of the mass spectra with those reported in the literature (19,20).

RESULTS

The air-dried fruits of F. macrocarpa yielded 0.8% of a yellowish essential oil. Forty-two components, comprising 99.5% of the total oil, were identified in the macrocarpa fruits essential oil. F. The compounds identified in the oil sample are presented in Table. As it is evident, bornyl acetate (40.8%), 2,3,6-trimethyl benzaldehyde (7.2%), δ-selinene (5.5%), 1,10-di-epi-cubenol (5.1%), germacrene D (3.5%), β -phellandrene (3.5%) and α -pinene (3.4%) were found to be the major components.

The oil of F. macrocarpa fruits consisted of monoterpene hydrocarbons 15 (21.4%),oxygenated monoterpenes 6 (42.2%),17 sesquiterpene hydrocarbons (22.4%) and one oxygenated sesquiterpene (5.1%). Three benzenoid derivatives also comprised 8.4% of the oil. Monoterpenes and sesquiterpenes 27.5% comprised 63.6% and of the F. macrocarpa fruits essential oil respectively.

DISCUSSION

Essential oil compositions of the aerial parts of some *Ferulago* species have been reported earlier (8,9,14,15, 21-23). There have also been reports on their fruit oil composition. The main constituents of the fruit oils of *F.angulata*, *F. campestris* and *F. confusa* are reported as *cis*-ocimene (64.8%), myrcene (33.4%) and *cis*-chrysanthenyl acetate (37.7%), respectively (24-26).

Chemical constituents of the essential oil of the aerial parts of *F. macrocarpa* have been previously reported. Bornyl acetate (45.7%), borneol (17.2%) and β -gurjunene (9.2%) are the main components of the aerial parts oil (17) which is in accordance with our findings. According to the results of our study, bornyl acetate (40.8%) was found to be the major components of the essential oil of the fruits of *F. macrocarpa*. 2,3,6-Trimethylbenaldehyde comprising 7.2% of the *F. macrocarpa* fruits essential oil is not present in the aerial parts essential oil of this herb. 2,3,6-Trimethyl benzaldehyde, the other main volatile oil constituent of the fruits of *F. macrocarpa*, has been also identified as the major component of the *F. asparagifolia* (38.9%) and *F. longistylis* (29.0%) fruit oils (27,28).

CONCLUSION

In summary, the present study, for the first time, showed that the essential oil of *F. macrocarpa* fruits is mainly composed of terpenoids and benzenoid derivatives were also detected.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support of the Research Council of Isfahan University of Medical Sciences

REFERENCES

- 1. Heywood VH. Flowering plants of the world. Sydney: Croom Helm; 2001. p. 219.
- 2. Rechinger KH. Flora Iranica, No. 162. Graz: Akademische Druck-u. Verlagsanstalt; 1987. p. 428.
- 3. Mozaffarian V. A dictionary of Iranian plant names. Tehran: Farhang Moaser; 1996. p. 230.
- Jimenez B, Grande MC, Anaya J, Torres P, Grande M. Coumarins from *Ferulago capillaris* and *F. brachyloba*. Phytochemistry. 2000;53:1025-1031.
- Khalighi-Sigaroodi F, Hadjiakhoondi A, Shafiee A, Mozaffarian VA, Shahverdi AR, Alavi SHR. Phytochemical analysis of *Ferulogo Bernardii* Tomk and M. Pimen. Daru. 2006;14:214-221.
- Sklyar YE, Andrianova VB, Pimenov MG. Coumarins of the roots of *Ferulago sylvatica*. Chem Nat Comp. 1982;18:488-489.
- Erdurak CS, Coskun M, Demirci B, Baser KHC. Composition of the essential oil of fruits and roots of *Ferulago isaurica* Pesmen and *F. syriaca* Boiss. (Umbelliferae) from Turkey. Flavour Fragr J. 2006; 21:118-121.
- Kilic CS, Ozkan AMG, Demirci B, Coskun M, Baser KHC. Essential oil composition of four endemic *Ferulago species* growing in Turkey. Nat Prod Commun. 2010;5:1951-1954.

- Akhlaghi H. The essential oils from flowers, stems and leaves of *Ferulago angulata* from Iran. Chem Nat Comp. 2008;44:396-397.
- Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S. Antimicrobial and antioxidant activities of coumarins from the roots of *Ferulago campestris* (Apiaceae). Molecules. 2009;14:939-952.
- Rosselli S, Maggio AM, Faraone N, Spadaro V, Morris-Natschke SL, Bastow KF, et al. The cytotoxic properties of natural coumarins isolated from roots of *Ferulago campestris* (Apiaceae) and of synthetic ester derivatives of aegelinol. Nat Prod Commun. 2009;4:1701-6.
- 12. Dall'Acqua S, Maggi F, Minesso P, Salvagno M, Papa F, Vittori S, Innocenti G. Identification of nonalkaloid acetylcholinesterase inhibitors from *Ferulago campestris* (Besser) Grecescu (Apiaceae). Fitoterapia. 2010;81:1208-1212.
- Demircia F, Iscan G, Guven K, Kirimer N, Demircia B, Baser KHC. Antimicrobial activities of *Ferulago* essential oils. Z. Naturforsch. 2000;55c:886-889.
- 14. Maggi F, Tirillini B, Papa F, Sagratini G, Vittori S, Cresci A, et al. Chemical composition and antimicrobial activity of the essential oil of *Ferulago campestris* (Besser) Greeescu growing in central Italy. Flavour Fragr J. 2009;24:309-315.
- Demetzos C, Perdetzoglou D, Gazouli M, Tan K, Economakis C. Chemical analysis and antimicrobial studies on three species of *Ferulago* from Greece. Planta Med. 2000;66:560-3.
- Taran M, Ghasempour HR, Shirinpour E. Antimicrobial activity of essential oil of *Ferulago* angulata subsp. carduchorum. Jundishapur J Microbiol. 2010;3:10-14.
- 17. Hadjiakhoondi A, Aghel N, Etemadi R. Chemical and biological study of essential oil of *Ferulago macrocarpa* (Fenzl) Boiss. Hamdard Med. 2002;45:35-38.
- British pharmacopoeia. Vol. 2. London: HMSO Publication; 1988. p. A137-A138.
- Adams RP. Identification of essential oil components by gas chromatography / mass spectroscopy. Illinois: Allured Publishing Corporation; 1995.
- 20 Swigar AA, Silverstein RM. Monoterpenes, infrared, mass, ¹H-NMR, ¹³C-NMR spectra and Kovats indices. Wisconsin: Aldrich Chemical Company Inc.; 1981.
- 21. Khalighi-Sigaroodi F, Hadjiakhoondi A, Shahverdi AR, Mozaffarian V, Shafiee A. Chemical composition and antimicrobial activity of the essential oil of *Ferulogo Bernardii* Tomk. and M. Pimen. Daru. 2005;13:100-104.
- 22. Samiee K, Akhgar MR, Rustaiyan A, Masoudi S. Composition of the volatiles of *Ferulago carduchorum* Boiss. et Hausskn. and *Levisticum officinale* Koch. obtained by hydrodistillation and extraction. J Essent Oil Res. 2006;18:19-21.
- 23. Ruberto G, Biondi D, Renda A. The composition of the volatile oil of *Ferulago nodosa* obtained by

steam distillation and supercritical carbon dioxide extraction. Phytochem Anal. 1999;10:241-246.

- 24. Ghasempour HR, Shirinpour E, Heidari H. Analysis by gas chromatography-mass spectrometry of essential oil from seeds and aerial parts of *Ferulago angulata* (Schlecht.) Boiss. gathered in Nevakoh and Shahoo, Zagross mountain, west of Iran. Pakistan J Biol Sci. 2007;10:814-817.
- 25. Cecchini C, Coman MM, Cresci A, Tirillini B, Cristalli G, Papa F, et al. Essential oil from fruits and roots of *Ferulago campestris* (Besser) Grecescu (Apiaceae), composition and antioxidant and anti-Candida activity. Flavour Fragr. J. 2010;25:493-502.
- 26. Kurkcuoglu M, Iscan G, Demirci F, Baser KHC, Mayer H, Erdogan E. Composition and antibacterial activity of the essential oil of *Ferulago confusa* Velen. J Essent Oil Res. 2010;22:490-492.
- Baser KHC, Demirci B, Duman H. Composition of the essential oil of *Ferulago asparagifolia* Boiss. from Turkey. J Essent Oil Res. 2001;13:134-135.
- Ozkan AMG, Demirci B, Demirci F, Baser KHC. Composition and antimicrobial activity of essential oil of *Ferulago longistylis* Boiss. fruits. J Essent Oil Res. 2008;20:569-573.