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Recent advances in host–microbe interaction studies in

organoid cultures have shown great promise and have laid the

foundation for much more refined future studies using these

systems. Modeling of Zika virus (ZIKV) infection in cerebral

organoids have helped us understand its association with

microcephaly. Similarly, the pathogenesis of bacterial

(Helicobacter pylori, Clostridium difficile) and viral (Norovirus,

Rotaviruses) infections have been precisely dissected in

organoid cultures. Additionally, direct associations between

microbial colonization of tissues and diseases like cancer have

also been deciphered. Here we discuss the most recent and

striking studies on host–microbe interactions in organoid

cultures, highlighting various methods which can be used for

developing microbe-organoid co-culture systems.
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Introduction
The “germ theory of diseases”, which hypothesizes that

diseases are caused due to the action of microorganisms,

was the crowning achievement of a French scientist Louis

Pasteur, who in 1860s refuted the theory of spontaneous

generation [1]. Ever since, various hypothesis on the

microbial pathogenicity have been proposed and estab-

lished [2,3]. Initially believed to primarily be assailants

leading to disease states i.e. pathogenic (pathos is the

Greek word for disease and genes means “born of”),

scientists now recognize that host–microbe crosstalk is

not always detrimental but also beneficial as in the case of

gut symbionts (derived from symbiosis, meaning “state of

living together” in Greek) [4]. More so, disease states are

a result of a two-way interaction that occurs between the

host cells or tissues and the microorganisms. As per the
www.sciencedirect.com 
chain of infection model, host–pathogen interactions can

lead to either host immunity or an aggravated immune

response due to infection, depending on six factors

including the susceptibility of the host, route of entry

and colonization potential of the microbe (Figure 1) [5,6].

Recent years have seen a surge in interest in understand-

ing this complex interplay between the microbes and the

host organism. According to the World Health Organiza-

tion (WHO), at least 12% of all human pathogens are

considered as Emerging Infectious Diseases (EID)

including malaria, Severe acute respiratory syndrome

(SARS), Zika virus disease, HIV/AIDS etc., thus making

it indispensable for us to understand the mechanism of

action of molecular components involved in host–patho-

gen interaction during infection with EIDs [7].

Model organisms and animal models like fruit fly Dro-
sophila melanogaster, zebrafish Danio rerio and mice have

been instrumental in providing valuable insights into

host–microbe interactions; however, their limited trans-

lation potential to humans due to uncontrollable micro-

bial diversity and significant inter-specie variances proves

to be a major disadvantage [8–11]. Recently developed

humanized mice models are more relevant to human

diseases, allowing better understanding of microbe inter-

actions, but are expensive and difficult to maintain

[12,13]. Ex vivo two-dimensional (2D) cell cultures of

immortalized cell lines grown as monolayers and are

functionally closer to the ‘real situation’ in humans, but

lack the three-dimensional (3D) in vivo architectural

details. In recent years, matrix or scaffold based 3D in

vitro culture systems grown as spheroids or aggregates

have gained widespread interest [14]. 3D Organoids or

“mini organs on a dish” are adult stem cell (ASC) or

pluripotent stem cell (hPSC) derived structures that can

be grown from resident stem cells and present all organ

specific cell types on their surface. Organoids from various

tissues have been generated using both adult and plurip-

otent stem cells [15–18,19�]. They recapitulate the com-

position, diversity and organization of cell types much

better than any other existing in vitro system, therefore

providing better opportunities to develop more effica-

cious control measures against emerging pathogens. In

this review, we discuss the past, present and future of the

use of 3D organoid cultures of various tissues as disease

models for host–microbe interaction studies (Table 1).

Modeling infectious diseases in organoids
Intestinal organoids model gastrointestinal diseases

In 2009, in the first of its kind model system, ever

expanding 3D intestinal organoids were grown from
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Illustration of the “chain of infection” model. Infection results from the

interaction between the host, microbe and the environment. Six

elements together constitute the chain of infection starting from

pathogen, reservoir, portal of exit, means of transmission, portal of

entry and ends with the infection of a new host. Organoids can be

used to study the various links of the “chain of infection” model and

help in the prevention and treatment of infectious diseases.
non-transformed mouse adult tissue stem cells [20,21].

Subsequently, conditions for growing organoids from adult

human colon, small intestine and adenocarcinoma were

also developed [22]. Intestinal organoids can be main-

tained in culture for long-term without procuring genetic

aberrations or alterations and they retain their apico-basal

polarity. Intestinal organoids are Wnt activity dependent,

consisting mostly of resident proliferating stem cells which

can be directed towards a differentiated cell state by

withdrawl of niche factors. They have also been generated

from human pluripotent stem cells or hPSCs (including

embryonal stem cells — ESCs and induced pluripotent

stem cells or iPSCs) [23]. In both these systems, organoids

are grown in scaffolds with extracellular matrix like

Matrigel1 (Corning) or Basement membrane extract

(BME) supplemented with a cocktail of growth factors

essential for stem cells proliferation. Designer matrices or

synthetic hydrogel networks with a well-defined compo-

sition have recently been tested to support organoid

growth. These will further improve the reproducibility

and applicability of organoid culture systems [24��].

Intestinal organoids have been used to model diseases

such as colorectal carcinoma (CRC) and Cystic fibrosis
Current Opinion in Immunology 2017, 48:15–22 
(CF) [25–27]. Another compelling application of intesti-

nal organoids has been their use in studying the patho-

genesis of various infectious diseases and in understand-

ing host–microbe dynamics [28,29]. Organoids can be

used to study the various links of the “chain of infection”

model (Figure 1). For example, the epithelial cells of the

intestinal organoids can be modeled as a reservoir and

portal of exit for intracellular parasites like Cryptosporid-
ium etc. Organoids can also be used to study the mecha-

nism of transmission e.g. if a pathogen is airborne and can

spread from an infected to an uninfected organoid. The

study of portal of entry of pathogens and the role of

specific cell types for e.g. modeling the penetration of

intestinal epithelium by Shigella via the M-cells is also

possible using organoid cultures. Studies using mouse

small intestinal organoids with terminally differentiated

secretory Paneth cells co-cultured with Escherichia coli or

its antigens have given insights into the effects of micro-

bial antigens on the function and changing facets of

Paneth cells, identifying IFN-g as a potent immune

component which facilitates release of antimicrobial fac-

tors into the gut lumen [30�]. Clostridium difficile (C.
difficile) and Salmonella typhi (S. typhi) are the two-major

bacterial intestinal pathogens causing diarrhea and gas-

trointestinal failures in humans. These pathogens have

affinity towards the apical side of the epithelium, thus to

mimic that interaction in 3D organoids, groups now use

two different methods — 1) microinjection, 2) mechani-

cal disruption of organoids and subsequent introduction

of the microbe [31�,32�]. Alternatively, 3D organoids can

be dissociated into single cells and grown as a monolayer

with the apical side facing upwards. These monolayers

can then be exposed to pathogens via their addition to the

media (Figure 2). However, in this case, assessment of

effects on the basolateral surface is not possible. In proof

of principle studies, live Salmonella typhimurium was

microinjected into the closed iPSC derived intestinal

organoid lumen [33��,34]. Gene expression profiling

and biochemical analysis of these organoids revealed

massive NF-kB activation and upregulation of cyto-

kine-mediated signaling. Factors like Interleukin (IL)-

6, 8 and TNFa were also found to be secreted, consistent

with previous findings in animal studies. Likewise, in a

model for obligate anaerobe C. difficile infection (CDI),

the Spence lab used pluripotent stem cell derived intes-

tinal organoids and microinjected C. difficile toxin A

(TcdA) and Toxin B (TcdB) purified from strain VPI

10463 into the lumen. While TcdA had previously been

shown to be more potent in mice models, TcdB had a

stronger effect in cell lines [35��]. Interestingly, infection

in the 3D organoid model was closer to the in vivo

situation. Within a few hours of infection, the distribution

of tight junctional marker zonula occludens (ZO-1) was

altered. Furthermore, cell–cell adhesion marker E-Cad-

herin and actin cytoskeletal rearrangements were seen in

organoids injected with C. difficile toxin A but not C.
difficile toxin B. In another study, the Worrell laboratory
www.sciencedirect.com
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Table 1

Studying host–microbe interactions in organoid cultures Table shows organoids of different organs being used for studying microbe–host interactions. List shows microbes tested in

intestinal, gastric, brain and gall bladder organoids and other organisms which can be potentially studied in the future in organoid cultures

Intestine/colon Stomach Brain Gall

bladder

Liver Lung

Organoid

Microbe/infection modeled - C. difficle - H. pylori - Zika virus - S. typhi - P. vivaxa - Rous sarcoma virusa

- S. typhi - Epstein Barr Virusa - Chikungunya virusa (Malaria) - Influenza virusa

- Norovirus - Japanese encephalitis virusa - Hepatitis virus A, B, C, Ea - Rhinovirusa

- Rotavirus - Venezuelan equine

encephalitis virusa
- Corornavirusa

- Shigellaa

- Enteric adenovirusa

- Cryptosporidiuma

Source Human ASCs, iPSCs Human ASCs, PSCs Human iPSCs Mouse ASCs Human ASCs, PSCsa Human ASCs, PSCsa

Reference [28,33��,34,35��,36�,
37,38��,39�,40]

[32�,33��,34,35��,36�,37,
3,39�,40,41,42��,43,44��]

[45�,46,47��,48�,49�,
50,51��,52�,53��]

[55��] – –

a Not yet published/potential future studies.
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Figure 2
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Methods of studying host–microbe interactions. Organoids can be microinjected with the microbe using a fine capillary microinjector. In this case

the microbe is in direct contact with the apical side of epithelial cells. Organoids can also be sheared into smaller pieces, mixed with pathogen

and re-plated with Matrigel/BME. Alternatively, 3D organoids can be dissociated into single cells by enzymatic treatment and grown as 2D

monolayer cultures. Microbes are then introduced into the media.
observed a reduction in NHE3 and MUC2 protein levels

in C. difficile infected organoids as compared to normal

organoids. This could be a way the microbe creates a

favorable environment for its colonization [36�].

Viral pathogen Human Norovirus (HuNoV) infection leads

to a self-limiting stomach flu or viral gastroenteritis and is

one of the most common causes of acute gastroenteritis in

the world [37]. Following close behind is Rotavirus, which

is the second most common cause of gastric diarrhea in

humans. Despite the rampant nature of both these

viruses, no proper vaccine has yet been developed against

them due to the lack of a good model organism or in vitro
Current Opinion in Immunology 2017, 48:15–22 
system supporting their growth. In striking studies,

Ettayebi and group modeled HuNoV infection in an

organoid — virus co-culture system, successfully showing

that the virus can infect and faithfully replicate inside the

absorptive enterocytic cells of the epithelium, with only a

specific GII.3 HuNov strain displaying bile requirement

[38��]. Furthermore, a differential response of patients

with histo-blood group antigen (HBGA) variability was

observed towards different HuNoV strains, a fact which

was also seen previously in cultured gastrointestinal epi-

thelial cells (Caco-2) upon Norovirus infection. Similarly,

researchers have shown that Rotavirus strain (simian SA11)
from clinical samples can replicate in iPSC-derived
www.sciencedirect.com
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intestinal organoids [39�,40]. Future research on gastro-

intestinal viruses, parasites and bacterial pathogens using

organoid cultures should help identify therapeutic targets

and in developing novel diagnostics and vaccines.

Understanding the pathophysiology of Helicobacter

pylori infection in gastric organoids

The occurrence of bacterium Helicobacter pylori (H. pylori)
is so common that at any given point, more than 50% of

the world’s population harbors H. pylori in the upper

gastrointestinal tract. [41]. Acute H. pylori infection is

associated as a major risk factor for peptic ulcers, gastric

adenocarcinoma and gastritis. To study this association

further, researchers microinjected H. pylori into the

lumen of gastric organoids derived from human gastric

mucosa. Schlaermann and group developed a monolayer

culture from similar 3D gastric organoids [42��,43]. Colo-

nization of the bacteria led to an increase in proliferation

of Lgr5+ stem cells which was in turn found to be induced

by bacterial virulence factor CagA expression [44��]. Fur-

thermore, an inflammatory response was induced and

promoted by the differentiated cells of the bacteria

infected organoids. It would not be far-fetched to hypoth-

esize that such an inflammatory response could be the

bridging factor connecting excessive microbial coloniza-

tion of H. pylori in the stomach to the occurrence of gastric

cancer in humans. In another study, scientists used gastric

organoids to determine that a potent chemoattractant —

urea which emanates from the epithelial cell wall is

essential for H. pylori colonization in the gastric mucosa

[45�]. Gastric organoid models would thus not only be

beneficial to study H. pylori pathogenesis but also to

dissect the implications of such microbial colonizations

in the organ and in understanding their role in the

causation of diseases like cancer and inflammatory bowel

disease (IBD) in humans.

Cerebral organoids as a model of ZIKV infection

A breakthrough in the field of neuroscience came with the

development of brain organoids from human iPSCs by the

Knoblich group in 2013 [46,47��]. Around the same time,

Zika virus (ZIKV), a mosquito-borne flavivirus came into

prominence into the modern world after a public outbreak

of the virus in Brazil. ZIKV was first identified in

1947 from the blood of a rhesus monkey found in Uganda

and in humans in 1952. By Feb 2016 World Health

Organization (WHO) had declared Zika virus infection

as a public health emergency. The virus spreads mainly

by the Aedes aegypti mosquito and its occurrence is strongly

associated with microcephaly. However, the pathogenesis

of the viral infection and how it effects the brain neurons

was not fully understood until recently. Employing plu-

ripotent stem cell (ESCs and iPSCs) derived cerebral

organoids multiple recent studies have now deciphered

the sequence of disease progression in Zika virus infection

[46,47��,48�]. Multiple groups demonstrated that ZIKV

infection causes disruption of cerebral organoid cortical
www.sciencedirect.com 
layers, abrogating growth and thus halting the process of

neurogenesis. Researchers found that the Toll-like recep-

tor 3 (TLR3) activation, which occurs upon ZIKV infec-

tion, leads to deregulated neurogenesis and thus decrease

in the pool of functional neurons [49�]. Gabriel and group

further showed that the pattern of pathogenicity was

different when two new ZIKV isolates were used instead

of the highly passaged MR766 strain. The new strains

infected apical proliferating progenitors, interfering with

centrosomal protein assembly, which in turn led to their

premature differentiation and apoptosis, giving rise to

features of microcephaly [50,51��,52�]. In a drug repur-

posing screen of �6000 compounds, caspase-3 activity

inhibitors Emricasan and Niclosamide, a category B

anthelmintic, were found to be effective in limiting ZIKV

induced neural cortical progenitor death and ZIKV repli-

cation [53��]. Scientists have now developed innovative

cost-effective miniature spinning bioreactors to generate

cerebral organoids from human iPSCs [54�]. In light of

these recent studies, the United States Centers for Dis-

ease Control Prevention (CDC) in April 2016 concluded

that ZIKV infection causes microcephaly (CDC, 2016).

Dissecting associations between microbes and

cancer — gall bladder organoids

Neefjes and colleagues recently exploited gallbladder

organoids derived from Ink4a/Arf (Cdkn2a) tumor sup-

pressor deficient mice for to draw a direct association

between chronic Salmonella enterica serovar typhimurium
infection and gallbladder carcinoma (GBC). WT Salmo-
nella infection leads to colorectal adenocarcinoma forma-

tion in mice. When mouse gallbladder organoids were

infected with WT Salmonella, they presented features of

loss of polarity, like those seen in the GBC mouse model.

Additionally, WT Salmonella pre-exposed organoids were

found to have neoplastic transformations via activation of

AKT and MAPK signaling and could grow in a growth-

factor deficient media [55��]. Organoid and microbe co-

cultures would be instrumental in further dissecting the

molecular basis of such associations.

Future of organoid — microbe studies
Given that organoid cultures of various other tissues

including liver, lung, kidney and ovary have already been

established (unpublished data from Clevers lab), it would

be exciting to mimic other infectious diseases such as

malaria (P. vivax and P. falciparum) and hepatitis (HBV) in

liver organoids, Rous sarcoma virus (RSV) in lung organoids

and Epstein Barr Virus (EBV) infection in gastric orga-

noids. Hepatitis C (HCV) and Human Immunodeficiency

virus (HIV) co-infection studies have been a subject of

immense interest [56�]. While HIV is known to enhance

HCV infection, the direct alteration of the course of HIV

infection and AIDS upon HCV infection remains

debated. It would be interesting to study HCV–HIV

co-infection in organoid cultures. While most commensal

microbes (microbiome) are anaerobic and the organoid
Current Opinion in Immunology 2017, 48:15–22
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lumen is about 5% aerobic, it would be interesting to

tweak the current organoid culture systems to understand

the host-microbiome interplay that exists in our body.

Another important addition would be the inclusion of

immune and endothelial cells to fully access how micro-

bial fluctuations modulate immune cell responses, lead-

ing to disease states. Future research using organoid

models to dissect the pathogenesis of various diseases

is bound to open exciting new avenues to tread and lead

us towards novel drug discoveries and improved world-

wide healthcare.
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22 Host pathogens
In a one of its kind screen, the study used brain organoids to identify
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