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ABSTRACT
While it is recognized that the overall resistance of glioblastoma to treatment may 

be related to intra-tumor patterns of structural heterogeneity, imaging methods to 
assess such patterns remain rudimentary. Methods: We utilized a generalized Q-space 
imaging (GQI) algorithm to analyze magnetic resonance imaging (MRI) derived from 
a rodent model of glioblastoma and 2 clinical datasets to correlate GQI, histology, 
and survival. Results: In a rodent glioblastoma model, GQI demonstrated a poorly 
coherent core region, consisting of diffusion tracts <5 mm, surrounded by a shell of 
highly coherent diffusion tracts, 6-25 mm. Histologically, the core region possessed a 
high degree of necrosis, whereas the shell consisted of organized sheets of anaplastic 
cells with elevated mitotic index. These attributes define tumor architecture as the 
macroscopic organization of variably aligned tumor cells. Applied to MRI data from 
The Cancer Imaging Atlas (TCGA), the core-shell diffusion tract-length ratio (c/s 
ratio) correlated linearly with necrosis, which, in turn, was inversely associated with 
survival (p = 0.00002). We confirmed in an independent cohort of patients (n = 62) 
that the c/s ratio correlated inversely with survival (p = 0.0004). Conclusions: The 
analysis of MR images by GQI affords insight into tumor architectural patterns in 
glioblastoma that correlate with biological heterogeneity and clinical outcome.

INTRODUCTION

Glioblastoma is the most common form of 
adult primary malignant brain tumor [1]. It remains 
one of the deadliest of human cancers, with median 
survival of approximately 14 months [2]. One of the 
most notable features of glioblastoma is the significant 
degree of regional biological heterogeneity apparent on 
pathological inspection [3-6]. The tumor was originally 
termed glioblastoma multiforme because of the 
variegated appearance of white, hyper-cellular regions 

interwoven with regions of yellow necrotic tissues, zones 
of hemorrhagic tissues, and cystic areas [3]. We applied 
herein an image analysis algorithm, termed generalized 
Q-space imaging (GQI), to determine whether regional 
patterns of glioblastoma tissue organization could be 
derived non-invasively, and whether such patterns are 
substantially related to the underlying tumor biology 
and clinical outcome. In so doing, we defined a novel 
macroscopic feature of glioblastoma, that is, intra-tumor 
variability of alignment that appears to correlate with 
regional differences of necrosis and anticipates clinical 
performance. 
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Diffusion-weighted magnetic resonance imaging 
(DW-MRI) has been employed to assess various tumor 
features and predict clinical outcome [7-12]. Current 
methods of DW-MRI analysis are generally based on 
diffusion tensor imaging (DTI) algorithms that depict 
tumor organization through net cellular orientation 
(fractional anisotropy, FA) [13] or regional cellularity 
(apparent diffusion coefficient, ADC) [10, 14]. Enhancing 
the utility of these methods with tractography DTI has 
been used to predict surgical outcome from the patterns 
exhibited by co-aligned neural fibers [15, 16] and to assess 
brain connectivity [17]. GQI is a novel diffusion-weighted 
method that derives complex intra- and inter-voxel fiber 
alignment in tissue, differing from DTI principally in 
that it assumes neither a Gaussian distribution nor intra-
voxel signal uniformity. GQI systematically interrogates 
diffusion space, representing the probability of diffusional 
motion in multiple directions for each voxel as a unique 
probability distribution function (PDF). The directions 
of maximal diffusion per voxel may then be linked by 
tractography [18, 19] to generate maps of distributed 
tracts throughout the tissue. Architectural features that 
are regionally heterogeneous, typified, for example, by 
intravoxel crossing [18] or local edema [20], should be 
optimally visualized by GQI. We hypothesized in the 
current study that regional structural differences of tumor 
architecture in glioblastoma could be depicted with GQI, 
and that such attributes relate to underlying tumor biology 
and clinical outcome. Our results indicate that GQI detects 
unique intra-tumor structural features in rodent and 
human glioblastoma that correlate both with intra-tumor 
biological heterogeneity and overall survival. 

RESULTS

Rodent model of glioblastoma tumor architecture

We generated a brain tumor model through injection 
of F98 glioblastoma cells into rats (Figure 1). Twenty-six 
days after tumor injection, the rats were studied with T2-
weighted (T2W) MRI or DTI derived fractional anisotropy 
(FA) and apparent diffusion coefficient (ADC) (Figure 
1A). When GQI tractography was applied to DW-MRI, 
unique regional differences were visualized (Figure 1B). 
GQI tractography demonstrated millimeter-range tracts (6-
25 mm tracts; green), consisting of aligned glioblastoma 
cells (Figure 1B) in a peripheral zone (shell) encapsulating 
a central region (core) of short-range orientation 
coherence (1-5 mm tracts; red). Secondary quantification 
of tract-length from tractography maps by axial-defined 
radial volumes in tumors (Figure 1C) and independent 
histogram analysis (inset in 1C) validated that the core 
and shell tumor sub-regions were distinguished by short 
or long tract-length. Core-shell tract-length architecture 

correlated anatomically with two distinct histological 
regions, namely an organized peripheral zone, possessing 
sheets of aligned glioblastoma cells, and a disorganized 
central zone, possessing poorly aligned cells and necrosis 
(Figure 1D). The mitotic index of glioblastoma cells 
was quantified at the tumor shell and core regions using 
antibodies to proliferating cell nuclear antigen (PCNA) 
or Ki67 combined with DAPI (PCNA staining with 
DAPI shown in Figure 1E). Quantification indicated the 
presence of proliferative tissues at the shell region, with a 
significantly greater mitotic index (P value < 0.001) at a 
fold increase of 2.30 and 2.16 compared to the core region 
with PCNA or Ki67, respectively (Figure 1F). 

GQI analysis of clinical glioblastoma MRI derived 
from TCIA dataset

To demonstrate the utility of GQI analysis in 
glioblastoma patients, we identified 24 patients from The 
Cancer Imaging Archive (TCIA), where multi-direction 
DW-MRI employing imaging parameters sufficient for 
GQI analysis were employed (b-value of 1000-1200 s/
mm2 and gradient directions of 25-37). A representative 
78-year-old patient (TCGA-06-5412; patient TCGA #1) 
is shown (Figure 2), in which the tumor is localized in an 
axial view with T1-weighted post-gadolinium MRI (T1-
Gd), FA, and ADC (Figure 2A). In every case analyzed, 
GQI demonstrated regional heterogeneity as determined by 
tractography maps. GQI demonstrated tumor sub-regions 
defined spatially by orientation with either short (1-20 
mm tracts; red) or long (25-55 mm tracts; green) tract-
length, designated as core and shell, respectively (Figure 
2B-2D). Secondary quantification of heterogeneous tumor 
orientation coherence was demonstrated in a histogram of 
tract-length from the group of glioblastoma patients (N = 
24; statistical bi-Gaussian distribution shown in Figure 
2E with histogram inset). Tract-length was independently 
derived within spatially distinct concentric rings (located 
in the axial plain) defined from the tumor center and 
then selected radially towards the tumor edge, whereby 
a significant difference in tract-length was observed over 
the clinical cohort and between each consecutive region 
(Figure 2F; inset is an example of the regions measured 
from patient TCGA #1). As was observed in the rat 
glioblastoma model, regional architecture was not detected 
using conventional DTI analysis (ADC or FA) or by DTI 
with tractography (Supplemental Figure S1).

Association between glioblastoma c/s ratio, 
necrosis, and overall survival

To elucidate the role that macroscopic 
heterogeneous tumor organization plays in patient specific 
tumor properties and outcomes, the core-to-shell tract-
length ratio (c/s ratio) was established (Figure 3). In our 
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analysis of these 24 TCIA patients, we noted significant 
differences of the c/s ratio among the various patients 
(Figure 2A-2D and 2G-I illustrate patients with low vs. 
high c/s ratio, respectively). To determine whether the 
c/s ratio is associated with varying degrees of regional 
tumor necrosis, we examined histological data for 15 
of these 24 patients. Consistent with our rodent model 
dataset, we found that the patients with higher c/s ratios 
were associated with decreased necrosis, whereas those 
with lower c/s ratios exhibited increased necrosis (Figure 
3A). We validated the aforementioned correlation with 
necrosis in 15 selected TCIA patients using the ratio of the 
tumor-enhancing rim and non-enhancing core on T1-Gd 
imaging as an imaging proxy for the extent of necrosis 
[21, 22]. Significantly, within this 15 patient cohort, the 
c/s ratio linearly associated with the extent of tissue T1-Gd 
necrosis for all three glioblastoma subtypes (Figure 3B).

To determine whether the association between 

c/s ratio and necrosis persists after controlling for the 
existence of transcriptional subtypes of glioblastoma 
[23-25], we examined histological and transcriptional 
subtype data for an additional 196 patients from The 
Cancer Genome Atlas glioblastoma dataset (Figure 3C). 
When stratified by subtype, the mesenchymal subtype 
was associated with significantly greater tissue sample 
extent of necrosis compared to all other subtypes. 
Moreover, there is little variation between mesenchymal 
glioblastomas in terms of the extent of necrosis, rendering 
correlative analysis between c/s ratio and extent of 
necrosis not feasible. In contrast, the proneural, neural, 
and classical subtypes exhibit varied extent of tumor 
necrosis, with the classical subtype with the highest level 
of necrosis and the neural subtype with the least amount 
of necrosis (inset in Figure 3A; N  = 196 total patients 
from TCGA; p < 0.001). Moreover, for the remaining 
three subtypes, we observed consistent relationship 

Figure 1: Tumor architecture obtained through GQI tractography in rats injected with F98 glioblastoma cells (N = 3). 
Conventional MRI demonstrated tumor location with T2-weighting (T2W; axial view in A.) and diffusion-weighting (DW; inset in coronal 
view) with fractional anisotropy (FA) and apparent diffusion coefficient (ADC). GQI depicted cellular diffusion orientation-coherence 
(coronal view; B.) with core (red; 1-5 mm tracts) and shell (green; 6-25 mm tracts) employing a b-value of 1200 s/mm2 and 512 gradient 
directions. C. Quantification of tract-length in rat tumors (1-25 mm tract-length) using spatially distinct regions demonstrated significantly 
greater cellular alignment at the shell of 8.0316+/- 1.7275 mm versus core of 4.3299+/- 0.555 mm (p < 0.01); inset, statistically distinct 
aligned cellular populations from bi-Gaussian distribution, with short and long tract-lengths at mean values of 1.9922 mm and 7.1214 mm, 
and respective mixing proportions of 0.502814 and 0.497186. D. H&E histology of coronal slices; regions are inset at 1) shell and 2) core. 
The shell-region consisted of sheet-like structures, while the core was disorganized with a large degree of central necrosis. White arrows 
indicate tumor tissue and white asterisks indicate regions of necrosis. E. Differential mitotic activity of cancer cells at the shell and core 
with DAPI (nuclear stain; blue) and PCNA (mitotic activity; green). F. Mitotic index with PCNA and Ki67 demonstrated that glioblastoma 
cells in the shell regions are highly mitotic proliferative tissues compared to the core regions (p < 0.001). Scale bars represented are in A. 
10 mm, B. 1mm, D. 5mm or 1 mm, and in E. 50 μm, consistent across the panel.
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Figure 2: Tumor architecture derived in patients from The Cancer Genome Atlas (TCGA) glioblastoma study (N = 
24). From this dataset, twenty-four patients with pre-treatment scans were identified in The Cancer Imaging Archive (TCIA) as derived 
from Henry Ford Hospital (19 subjects) and Case Western (5 subjects). A representative 78-year-old patient (TCGA-06-5412) is shown, 
demonstrating clear tumor borders when scanned employing conventional MRI including T1W post-gadolinium MRI (T1-Gd; axial view 
in A.) and diffusion-weighting (DW; axial view inset in A) with fractional anisotropy (FA) and apparent diffusion coefficient (ADC). The 
DW pulse sequence in the same patient was analyzed by GQI (axial view in B.; expanded in C.) with background neural tracts displayed 
in silver. A tract-length filter assessed regional cellular diffusion orientation coherence in glioblastoma, as shown in D., with core (red; 
1-20 mm tracts) and shell (green; 25-55 mm tracts) tumor architecture. E. Two statistically distinct aligned cellular populations were 
demonstrated, with a bi-Gaussian distribution of tract-length in 24 patients, mean tract-lengths of 11.6937 mm and 30.6898 mm, and 
with mixing proportions of 0.481503 and 0.518497, respectively. F. The same 24 patients with quantification of tract-length at spatially 
distinct concentric regions grouped radially from the axial-orientation at the tumor center, defined from the average of tract points, to the 
edge of the tumors, consecutively labeled into four regions (P < 0.005 for each compared region). Representative patient (TCGA-06-
2570) with glioblastoma scanned employing conventional MRI (in G.) and analyzed with GQI for tumor architecture (H.; expanded in I.) 
demonstrating high core-shell tract-length ratio (c/s ratio) in contrast to low c/s ratio in TCGA-06-5412 in A-D. Tract-length filters were 
applied, with core in red (1-20 mm tracts) and shell in green (25-55 mm tracts). Substantial overlap of the two regions was observed in this 
patient, and was representative of the difference between the high and low c/s ratio patients. 
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between extent of necrosis and overall survival (Figure 
3C; univariate analysis; p < 0.01; N  = 138 patients). 
When necrosis is controlled for by multivariate analysis 
in classical, pro-neural, and neural subtypes, the survival 
correlation was independent of subtype (p < 0.01 for 
necrosis vs. p>0.05 for each subtype). The majority of 

these TCGA patients were male (61.88%), and age or KPS 
significantly correlated to survival. Necrosis was shown 
to be independent of these clinical features in multivariate 
analysis and remained significantly correlated to TCGA 
patient survival (p < 0.01). 

Figure 3: Association of tumor necrosis relative to genomic subtypes from The Cancer Genome Atlas (TCGA) and 
MRI derived metrics. A. Tissue necrosis, derived from histology, was inversely related to the c/s ratio, with a linear relationship 
observed (R2 value 0.9814 in DTI patients; or 0.9951 with TCGA patients; N = 138) in the classical, pro-neural, and neural subtypes. Inset 
bottom left, the extent of necrosis correlated to tumor subtype, with the mesenchymal subtype (NF1 mutations or loss with mesenchymal 
markers) displaying a significantly higher degree of necrosis compared to all others (p < 0.01 in 24 DTI patients and p < 0.001 in 196 
TCGA patients as derived by Verhaak et al). The neural subtype (neuron-like glioblastoma genotype) was significantly correlated with 
the least amount of necrosis (p < 0.001 from TCGA). Inset bottom right, the relationship between all glioblastoma subtypes and the GQI 
derived c/s ratio, with the classical (EGFR amplification; N = 3) subtype demonstrating the lowest c/s ratio (p < 0.05), compared to all 
other subtypes including mesenchymal (N = 9), pro-neural (alterations of PDGFRA and point mutations in IDH1; N = 9), and neural (N 
= 3). B. Histologically derived extent of tissue necrosis was correlated to T1-Gd derived necrotic core to enhancing rim volume ratio (R2 
value 0.7552 in DTI patients; representative analysis of T1-Gd patient data is inset top right). Inset bottom, the neural subtype had the least 
necrotic core volume (p < 0.01 from DTI patient data), while other subtypes were not distinguished. C. The relationship between survival 
time and tumor necrosis in TCGA patients was inversely correlated (N = 196), with significance achieved in the classical, pro-neural, and 
neural subtypes (univariate analysis; p < 0.01; N = 138). Inset right, Kaplan-Meier survival analysis with the log-rank test demonstrated a 
significant survival relationship with extent of necrosis in classical, pro-neural, and neural subtypes (78 patients versus 60 with extent of 
necrosis 0-7.5% or 10-40%, respectively). Censoring events are indicated with a + tick mark and labeled as living patients.
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Figure 4: Relative glioblastoma tumor architecture determined from GQI tractography in the University of Texas, 
MD Anderson Cancer Center (MDA) patient dataset correlates with survival (N = 62). Representative patient MDA #1 with 
glioblastoma, demonstrating clear tumor borders, as scanned employing conventional MRI including T1W post-gadolinium (T1-Gd; axial 
view; A.) and diffusion-weighting (DW; axial view inset in A) with fractional anisotropy (FA) and apparent diffusion coefficient (ADC). 
The diffusion weighted pulse sequence in the same patient was analyzed by GQI (sagittal view in B.; expanded in C.) with background 
neural tracts displayed in silver, employing a b-value of 1200 s/mm2 and 27 gradient directions. Tract-length filters assessed regional 
cellular diffusion orientation-coherence in glioblastoma, as shown in D., with core (red; 1-20 mm tracts) and shell (green; 25-55 mm tracts) 
tumor architecture. E. Glioblastoma patient survival versus core-shell tract-length ratio (c/s ratio) displaying a linear correlation across 
MDA patients (N = 62). The 50% point of demarcation was established for comparison of high and low c/s ratio population proportions, and 
patients living at the time of analysis are circled (censoring events; 1/31 living for the low c/s ratio and 10/31 living for the high c/s ratio). 
Inset top right, Kaplan-Meier survival analysis demonstrated a significant difference between the high and low c/s ratio populations, at 50% 
threshold, with a p value = 0.00004 by the log-rank test and the hazard ratio between the groups was calculated to be 3.8358. Inset bottom 
left, analysis of the core independently (1 to 20 mm tract-length filter applied) demonstrated significant difference of p value = 0.04519 
by the log-rank test, at 50% threshold, with a hazard ratio of 1.8681. Inset bottom right, analysis of the shell independently (25 to 55 mm 
tract-length filter applied), where a significant difference of p value = 0.01859 by the log-rank test was demonstrated, at 50% threshold, and 
with a hazard ratio of 2.0870. F. Tumor volume was statistically equivalent between the low and high c/s ratio patients, shown by violin 
plots with a p value = 0.45506. Inset bottom, tumor volume as an independent factor did not predict survival difference at 50% threshold, 
with a p value = 0.22176 by the log-rank test. G. Glioblastoma patient survival versus GQI derived c/s ratio displaying a linear correlation 
normalized to the mean across all patients (MDA plus TCGA; N = 86). Inset middle, a significant difference between the high and low c/s 
ratio populations in the combined MDA and TCGA dataset was found, at 50% threshold, with a p value = 0.00004 by the log-rank test and 
the hazard ratio between the groups was calculated to be 3.3117. Inset right, survival in the TCGA and MDA datasets were statistically 
equivalent, with p value = 0.70644 by the log-rank test.
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Validation of the association between c/s ratio and 
overall survival in an independent dataset

We studied the association between the c/s 
ratio, necrosis, and survival in an independent cohort 
of pre-operative MRI obtained from 62 glioblastoma 
patients (separate from the TCIA dataset). The cohort 
was annotated in terms of key clinical characteristics 
including age, Karnofsky Performance Status (KPS), 
overall survival, and molecular profiling of the tumor 
specimens. A representative 61-year-old patient is shown 
in Figure 4, with glioblastoma location demonstrated by 
T1-Gd, FA, and ADC (Figure 4A). Similar to the rodent 
model and TCGA/TCIA human data, GQI demonstrated 
spatial heterogeneity characterized by distinct core 
and shell tumor sub-regions (Figure 4B-4D). The 
presence of variably aligned cancer-cells was depicted 
through generation of a bi-Gaussian histogram and 
through definition of spatially distinct concentric rings 
(Supplemental Figure S2). Confirming our hypothesis, the 
GQI derived c/s ratio was associated through univariate 
analysis (p = 0.000009) with overall survival in this cohort 
(Figure 4E). This association persisted after controlling for 
clinical variables (through multivariate analysis) known 
to influence survival, include age and KPS. To control 
for potential effects related to tumor volume or treatment 
regimens, we divided the cohort into two groups based 
on median c/s ratio, and observed that tumor volume 
and treatment regimen were indistinguishable between 
these two groups. Survival in the high c/s group was 
significantly better than the low c/s group (Figure 4E). 
Representative patient MDA #1 from the low c/s ratio 
group is shown in Figure 4A-4D and representative 

patient MDA #2 from the high c/s ratio group is shown in 
Figure S2, C-E. To consider the potential contribution of 
surgical resection to the observed survival outcomes, we 
analyzed the eight patients who underwent tumor biopsy 
without resection (Supplemental Figure S3). In these 
patients, the presence of a low c/s ratio corresponded to 
a significantly worse prognosis (N  = 4; hazard ratio of 
14.1182) relative to the high c/s ratio patients, suggesting 
that the association between c/s ratio and overall survival 
is independent of surgical intervention. To consider the 
potential influence of the isocitrate dehydrogenase (IDH) 
on the association between c/s ratio and overall survival, 
we screened 42 patients with sufficient clinical specimen 
for IDH mutation. Of these patients, Six (9.6%) harbored 
IDH mutations. We found that the c/s ratio remained 
closely associated with survival in a statistical model that 
accounted for IDH mutation status (c/s ratio p = 0.0009; 
IDH wild-type glioblastoma). 

DISCUSSION

Given the high mortality associated with 
glioblastoma, there is substantial need for non-invasive 
methods to classify the biological behavior of these 
tumors. We have developed such an approach, based on 
principals of generalized Q-space imaging (GQI) with 
tractography, a method that derives macroscopic features 
of tumor organization from directional variations of 
proton diffusion in vivo [18, 19]. Through this approach 
we demonstrated that the diversity of tumor biological 
features known to exist in glioblastoma [3-6] may be 
represented in patients as variations in tumor architecture 
obtained through MRI. Moreover, we have shown that a 
specific tumor architectural pattern, the tumor core-shell 

Figure 5: GQI defined core-shell architecture is indicative of underlying glioblastoma cancer-cell heterogeneity. The 
outcome of GQI is a probability distribution function (pdf) per voxel that represents the underlying diffusion in terms of orientation and 
magnitude, and is derived from the Fourier transform of diffusion-weighted MRI data. Proliferative glioblastoma tissue in the tumor 
periphery contains organized cancer cells, generating a diffusion pdf that co-aligns across multiple voxels and results in the relatively long 
tracts present in the tumor shell. Highly necrotic glioblastoma tissue in the central region of the tumor is characterized by poorly organized 
cancer cells, generating altered pdf shape and a loss of coherence across multiple voxels, and resulting in relatively short tracts in the tumor 
core.
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tract-length ratio (c/s ratio), correlates with glioblastoma 
patient survival. Such patterns may be characteristic 
of tumor growth and multi-cellular organization of 
the tumor, [26] and reflect the complex interactions of 
tumor cells with their microenvironment [27]. In this 
context, GQI based imaging may provide a non-invasive 
imaging biomarker for agents that selectively target these 
processes.

To our awareness, our study represents the first 
to apply Q-space MRI methods to the analysis of 
glioblastoma regional organization in rodent and human 
models [7, 8]. As a proof-of-principle, our analysis 
demonstrates the feasibility of applying GQI to clinical 
MRIs derived from glioblastoma patients. We define 
a novel quantitative metric of glioblastoma regional 
heterogeneity based on GQI defined diffusion tracts. We 
specifically observed that glioblastoma are prototypically 
organized into a central core consisting of short-length 
GQI tracts surrounded by a shell of long-length GQI 
tracts. Our rodent study suggest that this core region is 
characterized by a high degree of necrosis while the shell 
region is associated with sheets of organized anaplastic 
cells with elevated mitotic index (this principal is shown 
schematically in Figure 5). Moreover, glioblastoma 
observed in patients exhibit similar variation in the ratio 
of tract-length in the core and shell region. Glioblastoma 
with high c/s ratio are associated with minimal extent 
of necrosis relative to those with low c/s ratio. These 
results suggest utility of GQI based algorithms as a non-
invasive means of assessing regional heterogeneity within 
glioblastoma, particularly as it relates to the extent of 
necrosis within the tumor. Notably, the specific imaging 
parameters required for GQI analysis do not significantly 
increase MR imaging time in patients, thus rendering 
clinical translation plausible. 

The survival association between the c/s ratio, the 
extent of necrosis, and overall survival in two independent 
patient cohorts is important from several perspectives. 
First, our study independently validates a previous 
study suggesting an inverse correlation between extent 
of necrosis and overall survival in glioblastoma patients 
[22]. Second, our analysis indicates that the extent of 
necrosis differ amongst glioblastoma subtypes, with 
mesenchymal subtype harboring the highest extent of 
necrosis and neuronal subtype with minimal necrosis. 
Third, our study suggests that the GQI-defined c/s ratio 
constitutes a potential prognostic indicator, which is 
independent of known clinical and molecular biomarkers, 
including age, KPS, and IDH mutation. Finally, while the 
molecular mechanism resulting in regions of necrosis in 
glioblastoma remain poorly understood, it is known that 
cells in these regions harbor unique metabolic profiles 
[28], hypoxic cellular responses [27, 29, 30], and signal 
transduction [31]. Given the relationship between central 
necrosis and low oxygen tension [27, 29], the magnitude 
of c/s ratio could be indicative of conditions that play a 

role in resistance to therapy [27, 32] through the genesis 
of aberrant tumor vasculature, [33, 34] or the control of 
radiation-induced reactive oxygen species (ROS) [30], 
thus impacting patient survival.

We conclude that multi-direction diffusion-weighted 
MRI analyzed by GQI algorithms detects and quantifies 
regions of intra-tumoral glioblastoma heterogeneity 
on the basis of tumor architecture. Such regions may 
be characterized by patterns of diffusion co-alignment 
that reflect distinct differences of tumor biology. The 
association between intra-tumoral architecture derived 
from local patterns of diffusion and survival was striking. 
These findings suggest the potential utility of GQI-defined 
radiographic features as non-invasive biomarkers of 
clinical outcome. 

MATERIALS AND METHODS

Generalized Q-space MRI (GQI)

GQI is a MRI method that considers the effect 
of pulsed field gradients and diffusion times on the 
characteristics of Q-space, producing a mathematical 
rendering of the 3D diffusion environment. This approach 
provides a method to analyze complex biological tissues 
in terms of microstructure [35]. Employing GQI, multiple 
gradient orientations are applied in order to evaluate signal 
attenuation in 3D space. The outcome is a probability 
distribution function (pdf) that displays diffusion in terms 
of a 3D orientation function multiplied by the quantitative 
spin density, derived from the Fourier transform of 
diffusion-weighted image data [18]. Optimization in GQI 
incorporates a nominal number of gradient directions 
and approximated b-values towards achieving a target 
angular separation, dictated by the underlying anatomy. 
The b-value reflects an aggregate of factors, including 
gradient strength and diffusion time, which contribute to 
diffusional sensitivity and thereby infers the capacity to 
probe sub-voxel diffusional barriers [18, 19].

Rat glioblastoma model and architectural data 
analysis

A rat glioblastoma model was generated through the 
intracranial injection of F98 glioma cells. Studies were 
performed in 3 Fischer rats (Charles River Laboratories; 
~ 250 g). Prior to tumor injection, [36] the animals were 
anesthetized via intraperitoneal injections of Ketamine 
(80 ml/kg/h) and Xylazine (10 ml/kg/h). F98 rat glioma 
cells (ATCC; undifferentiated malignant glioma), were 
grown in Minimum Essential Medium (1x) with Earle’s 
salts, supplemented with 10% fetal bovine serum, 1% 
l-glutamine, 1% MEM non-essential amino acids, and 
0.1% gentamicin in a 5% CO2 chamber held at 37°C. 
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The biological characteristics of tumors generated by this 
cell line closely resemble those of human glioblastoma 
[8]. A 4 μl volume of cell suspension (1 × 105 cells) was 
injected into the right caudate putamen at a depth of 3.5 
mm relative to the dural surface using a 10 μl gas-tight 
syringe (Hamilton). Following a 26+/-4 days period of 
tumor growth, the animal was sacrificed via trans-cardiac 
perfusion with saline followed by 10% phosphate-
buffered formalin while under deep anesthesia, and the 
brain was removed and immersed in 10% phosphate-
buffered formalin [36]. Whole brains underwent diffusion-
weighted MRI at 7T using a Bruker Biospec USR with 
a multi-shot EPI pulse sequence under the following 
imaging parameters: 0.2x0.2x0.4mm, b-value of 1200 s/
mm2, and 512 gradient directions. To obtain microscopic 
correlation, studies were carried out in rat brains that 
were fixed in neutral buffered formalin, removed from 
the skull, embedded in paraffin, sectioned at a 6 μm 
thickness, and stained with hematoxylin and eosin. 
Histological sections of rat brain tumors were also stained 
with Ki67, PCNA, and DAPI, as previously described 
[37]. Briefly, after de-parafinization, antigen retrieval, and 
blocking, the slide was incubated in a moisture chamber 
with primary antibody for PCNA (clone PC10; Thermo 
Scientific), or Anti Ki-67 (rabbit; Novus Biologicals) at 
room temperature for 1 hour or incubated overnight at 
4°C followed by secondary antibody conjugated with 
Alexa Fluor 594 or Alexa Fluor 488 (Life Technologies), 
respectively. The slide was then washed with TBST for 5 
minutes and covered with DAPI mounting medium (Fisher 
Scientific). Confocal imaging was carried out utilizing a 
Zeiss LSM 710 with ZEN 10.0 software.

Human magnetic resonance imaging

The method for determining tumor architecture 
employed patient data from The Cancer Imaging Archive 
(TCIA) derived during The Cancer Genome Atlas (TCGA) 
glioblastoma study. From this dataset, 24 patients with 
pre-treatment diffusion tensor imaging (DTI) scans were 
identified from two institutions Henry Ford Hospital (19 
subjects) on a GE scanner with 25 gradient directions 
and a b-value of 1000 s/mm2 and from Case Western (5 
subjects) on a Siemens scanner with 37 gradient directions 
and a b-value of 1200 s/mm2. For clinical validation, 
and to assess the significance of tumor architecture in 
predicting clinical outcome, magnetic resonance imaging 
was conducted on a 3.0 T GE Signa HDxt MRI scanner 
(GE Healthcare, Waukesha, WI) with an 8-channel high-
resolution brain coil (GE Healthcare) at University of 
Texas, MD Anderson Cancer Center (MDA). Ethical 
approval for this research was obtained for use with 
anonymous and retrospective glioblastoma patient data. 
The pulse sequence incorporated standard single-shot 
echo-planar (EPI) spatial encoding, employing a voxel 

size of 0.86x0.86x3.5mm, 27 gradient directions plus 
b-zero, and a b-value of 1200 s/mm2. 

Tumor architecture data analysis

Tissue diffusional properties were analyzed in 
all instances with GQI as a representation of tumor 
architecture. A streamlining algorithm modified to make 
use of multiple diffusion directions was used to relate 
voxels, thus creating tracts, or visual elements that 
depict inter-voxel coherence. The generation of pdf with 
LΔ = 1.25 was carried out [18] and a tracking angle of 
35° was employed, as previously validated in complex 
organs with microscopic reconstruction [38, 39] using 
diffusion spectrum imaging studio (DSI Studio; http://
dsi-studio.labsolver.org) [18]. MATLAB was used to 
find the tract distributions in tumors (1-55 mm) across 
the patient population, with histogram analysis and a 
Gaussian mixture model fit (a multivariate distribution 
that consists of a mixture of one or more components) 
from the Statistics and Machine Learning toolbox. Spatial 
analysis of tract-length was carried out in the axial plane 
(Supplemental Figure S4), first through determination of 
the mean tumor location in each orientation, identified 
from the averaging of all the points in tumor tracts at a 
step-size of 1 mm in humans or 0.1 mm in rat. Sampling of 
an axial range was carried out (20% from the center in Z 
plane), whereby sorting of each tract at intersection points 
in concentric rings was performed, with radius defined 
to yield four equivalent areas in each slice (equivalent 
only assuming circular rings defined from the max x or 
y range), i.e. ri = R√(i/4), where R is the radius of the 
tumor, and ri is the radius of each concentric element, 
and i is the number of regions. In order to sort for a 
particular intersecting tract location t(xi,yi), and to define 
an elliptical region, the radius was set as, rt = √(xi

2+yi
2). 

See Supplemental MATLAB code or https://github.com/
eriktaylor/ for additional details.

Patient molecular screening and analysis

Clinical, histological, and genomic data was derived 
from The Cancer Genome Atlas (TCGA) glioblastoma 
study [24, 40]. Clinical data and extent of histological 
tumor necrosis was obtained (196 patients) from data 
available in the TCGA data portal, and correlated 
through previous analysis of tumor subtypes, including 
either classical, neural, proneural, or mesenchymal [24]. 
Diffusion MRI data was derived from datasets available on 
The Cancer Imaging Archive (TCIA), employing patients 
that matched with existing subtype analysis (24 newly 
diagnosed GBM patients were identified). Regression-
based correlations were assessed in addition to Kaplan-
Meier survival and multivariate analysis for necrotic 
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features, tumor-subtypes, patient gender, and GQI derived 
metrics (specifics of these methods are further described 
below in Statistical methods and survival correlation). 
Tumor necrosis was determined by the Biospecimen 
core resource, a centralized laboratory that reviews and 
processes blood and tissue samples and their associated 
data for The Cancer Genome Atlas (TCGA) Research 
Network. In brief, frozen tumor sections were examined 
at the top and bottom, with histology microscopically 
assessed at multiple fields of view. For inclusion, tumors 
were required to possess ≥80 percent tumor nuclei, but < 
50% necrosis (to ensure the viability of tissues), and were 
otherwise trimmed or sliced to meet these specifications.

In 35 patient samples analyzed at MDA, a PCR-
based primer extension assay was used to screen for 
mutations in frequently reported hot spots. This was 
performed using PCR, detecting up to 11 genes, or a next 
generation sequencing (NGS)-based analysis, for the 
detection of a total of 46 genes, as performed on the DNA 
extracted from the sample in a CLIA-certified molecular 
diagnostics laboratory. Details of the mutations detected 
in individual genes were reported. A minimum of 250x 
coverage is required at a given base for the interpretation 
of a wild-type or variant call. Although the NGS 
platform is capable of achieving a much higher analytical 
sensitivity, for clinical purposes, we determined the 
effective lower limit of detection of this assay (analytical 
sensitivity) to be in the range of 5% (one mutant allele in 
the background of nineteen wild-type alleles) to 10% (one 
mutant allele in the background of nine wild-type alleles) 
by taking into consideration the depth of coverage at a 
given base and the ability to confirm low level mutations 
using independent conventional platforms. We required 
that the tumor nuclei represent 20% of the nuclei in the 
tested sample to avoid false negative results. Alternatively, 
in seven patient samples, immunohistochemistry markers 
were examined microscopically in tissue sections to 
determine the presence of mutant genes, including IDH1. 

Statistical methods and survival correlation

Patient condition was correlated to a variety of 
tumor metrics derived from diffusion imaging or clinical 
parameters employing scatter plots with linear regression 
lines, univariate, and/or multivariate analysis methods 
(selected results are shown). Metrics tested include tract-
length or volume of the tumor, derived from the whole 
tumor, tumor-core, tumor-shell, or normal brain. The 
most effective method for the analysis of tumor sub-
regions was the application of tract-length filters (1-20 
mm for core and 25-55 mm for shell). Other methods (e.g. 
Gaussian mixture model) were limited by inherent bias 
for short tracts in the whole tumor (1-55 mm) during tract 
generation. The average tract-lengths, and the composite 
volumes of tracts, were determined in DSI Studio under 
the specified length constraints. A cut-off of 50% was 

applied, and the Students T-test was used to evaluate 
high-versus-low values in these various metrics, with p 
value < 0.05 demonstrating significance. In addition to 
those listed above, additional metrics tested for high and 
low cut-off statistical differences were patient age, KPS, 
treatment applied (number of times a surgery or radiation 
was applied), and tumor genotype (number of patients 
with or without mutation). A common mutation was IDH, 
detected in six patients (MDA dataset), thus relevant 
IDH mutations were ruled out as a possible co-variable 
for tumor architecture. Further tumor genotype statistical 
comparisons were also examined. For further analysis, 
c/s ratio was chosen, given the greatest correlation (R2 
value and slope of the regression line from low survival 
to high) compared to all other metrics identified. Co-
variable analysis used the c/s ratio and the students 
T-test, with high or low c/s ratio as the ranking method 
for statistical comparisons. Kaplan-Meier estimation, the 
Log-rank test, and determination of hazard ratio were 
achieved using MATLAB software and KMPLOT (G. 
Cardillo, 2008) with confidence intervals (CI) and median 
survival times (Supplemental Figure S5), verified with 
manual estimation in Microsoft Excel software and with 
the students T-test. For comparison of TCGA/TCIA with 
MDA data, the former c/s ratio was normalized to the 
mean value of the later, and patients with less than 1-week 
survival time were excluded. Analysis completed using 
the statistical package R included univariate analysis to 
determine whether c/s ratio, age, and KPS (as continuous 
variables), or IDH mutation (as dichotomous variable 
of + or -) associate with survival. Multivariate analysis 
incorporating age and c/s ratio, or KPS and c/s ratio (both 
as continuous variables without arbitrary dichotomization) 
was conducted to determine if the variables independently 
associate with survival. Correlations between age and c/s 
ratio, or KPS and c/s ratio (as continuous variables) were 
determined.
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