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Psychiatric and neurological disorders are influenced by an undetermined number
of genes and molecular pathways that may differ among afflicted individuals.
Functionally testing and characterizing biological systems is essential to discovering
the interrelationship among candidate genes and understanding the neurobiology of
behavior. Recent advancements in genetic, genomic, and behavioral approaches are
revolutionizing modern neuroscience. Although these tools are often used separately
for independent experiments, combining these areas of research will provide a viable
avenue for multidimensional studies on the brain. Herein we will briefly review some
of the available tools that have been developed for characterizing novel cellular and
animal models of human disease. A major challenge will be openly sharing resources
and datasets to effectively integrate seemingly disparate types of information and how
these systems impact human disorders. However, as these emerging technologies
continue to be developed and adopted by the scientific community, they will bring
about unprecedented opportunities in our understanding of molecular neuroscience
and behavior.
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INTRODUCTION

The study of psychiatric and neurological disorders has presented a problem for researchers trying
to understand the etiology of these conditions. While many of the diseases are uniquely human,
the majority of molecular studies required to understand the biological underpinnings of these
pathologies cannot readily be performed in a clinical setting. In order to make advancements in
understanding disease, most laboratories turn to model systems and organisms, which allow for
greater degree of experimental control and in-depth analysis. Recent developments, such as the
discovery of clustered regularly interspaced short palindromic repeats (CRISPR), have increased
the ease with which individual laboratories can create model systems. To keep up with advances
in gene editing technology, new techniques for studying the genome and behavior of novel animal
models are continually being developed.
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CRISPR/Cas9 was originally discovered in the bacterium
Streptococcus pyogenes (Bhaya et al., 2011). It was quickly
recognized that this system was much less time consuming and
more cost-effective than previous gene editing techniques such
as zinc finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENs) (Gupta and Musunuru, 2014). The
timeline for the creation of genetically engineered animals is
also much shorter, with the average timeline to create knockout
animals being less than a year (Homanics, 2019), although
accelerated methods have produced full experimental cohorts in
a single generation (Plasil et al., 2020). Beyond its ability to create
double stranded breaks in DNA and inactivate genes, CRISPR
genome editing has a number of additional uses, including the
creation of genetic knock-in animals (Yang et al., 2013; Aida et al.,
2015; Renaud et al., 2016), activating or repressing transcription
(Liao et al., 2017; Zheng et al., 2018), and direct targeting of RNA
rather than DNA (Cox et al., 2017). The versatility of CRISPR
also allows for it to be used in a number of model systems
and organisms both in in vitro and in vivo, from genetically
engineering cells in a dish to rodents, non-human primates, and
other species (Kang et al., 2019; Plasil et al., 2020). The ease with
which the CRISPR system can be used in a laboratory has opened
the door for research groups to quickly and easily create model
systems and organisms for specialized study.

With the development of new model systems and organisms,
researchers have also developed a number of new techniques
for characterizing molecular and behavioral adaptations. As
part of this review, we will discuss advancements in high-
throughput genomic approaches and behavioral neuroscience
that allow for closer and more accurate characterization of model
systems. Advancements in genomic technologies have allowed
researchers to move beyond observing changes in overall gene
expression on a tissue level and begin to investigate cell-type and
region-specific changes. Additionally, the integration of machine
learning into the assessment of behavioral phenotypes allows
for the observation of very fine behavioral changes, such as eye
movements or gait, while also reducing the amount of time and
possible bias that is introduced by experimenter observations.
While powerful tools when used separately, the integration
of these two techniques will allow for incredibly in-depth
analysis of model systems and organisms, greatly advancing our
understanding of how the healthy brain functions, as well as the
etiology and treatment of psychiatric and neurological diseases.

ADVANCES IN GENOMIC TECHNOLOGY
FOR TRANSCRIPTOMIC,
TRANSLATOMIC, AND EPIGENOMIC
ANALYSIS

Current High-Throughput Sequencing
Technology
Sequencing technologies were developed in the late 1970s and
revolutionized the study of genetics. Sanger Sequencing was
the first application to automate DNA-sequencing using chain-
terminating and radioactively labeled or fluorescently labeled

dideoxynucleotides to sequence complementary DNA to a
template strand (Sanger et al., 1977). This method, categorized
as ‘first-generation sequencing,’ was continuously modified and
improved to sequence genomes (Hu et al., 2021). Sanger
Sequencing aided in the human genome project, which took
over a decade to complete and an initial investment of $2.7
billion (National Human Genome Research Institute, 2021).
However, this technique had limited throughput for whole-
genome analyses due to sequential sequencing performing one
reaction at a time.

Since the human genome was initially sequenced there
has been substantial improvements that have significantly
reduced the time and cost of sequencing (Marioni et al., 2008;
Wheeler et al., 2008; Li et al., 2014; Seqc/Maqc-Iii Consortium,
2014). Following ‘first-generation sequencing’ the next wave of
sequencing technologies have been referred to as ‘next-generation
sequencing’ (NGS) (Wheeler et al., 2008). NGS increased
throughput by allowing for parallel sequencing of nucleotides
(Li et al., 2014; Seqc/Maqc-Iii Consortium, 2014; Chatterjee
et al., 2018). NGS is capable of generating a high volume
of data, increased efficiencies, and a wide-range of technical
and biological applications. NGS can be divided into two
complementary nucleotide based-techniques, DNA sequencing
and RNA sequencing (DNA-Seq and RNA-Seq). As these names
suggest DNA-Seq techniques are specific to the genome, whereas
RNA-Seq techniques are used to study the transcriptome [for
more detailed reviews: (Stark et al., 2019; Hong et al., 2020; Hu
et al., 2021)].

The general NGS protocol used for both DNA-Seq and RNA-
Seq includes DNA fragmentation, end-repair, adaptor-ligation,
and PCR amplification, to generate a library of diverse cDNA
fragments (Mortazavi et al., 2008; Chatterjee et al., 2018),
although cDNA synthesis is not required for DNA-Seq. DNA-
Seq encompasses a variety of sequencing options dependent
on the template: Whole Genome Sequencing (WGS), Whole
Exome Sequencing (WES), Epigenome Sequencing, and Targeted
Sequencing (Rizzo and Buck, 2012). WGS sequences the entire
genome, whereas WES is restricted to exonic coding regions.
Epigenome Sequencing studies changes in the epigenome,
enriching for changes in chromatin assembly, chromatin
interaction, and histone modifications (e.g., methylation and
acetylation). Targeted Sequencing is restricted to a specific set
of genes or genomic regions (Rizzo and Buck, 2012; Hu et al.,
2021) to increase sequencing depth in order to focus on biological
regions implicated in human disorders. These approaches allow
for identification of genetic mutations and epigenetic regulation
that may underly psychiatric and neurological disorders [for
more detailed reviews: (Rizzo and Buck, 2012; Shin et al., 2014;
Shademan et al., 2021)].

RNA-Seq offers insight into differential gene expression
(DGE), alternative splice variations, and novel transcript
discovery. Subclasses of this technique include Whole
Transcriptome Sequencing (WTS), mRNA Sequencing (e.g.,
poly-A enrichment), and small RNA sequencing (Hu et al.,
2021). WTS involves sequencing the entire transcriptome, while
mRNA and small RNA sequencing are enriched only for their
respective RNA products. The initial workflow for RNA-Seq
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is similar to that of DNA-Seq, although RNA is generally
converted into cDNA before amplification and sequencing
(Chatterjee et al., 2018). Additionally, RNA-Seq analysis can be
more challenging compared to DNA-Seq due to complexities
accompanying the biological function and processing of RNA
(i.e., alternative splicing, gene expression dynamics) (Li et al.,
2014). There are over 100 variations of RNA-Seq being utilized
today, many of which are derivations of two NGS strategies:
short-read and long-read sequencing (Li et al., 2014). Direct
RNA Sequencing (dRNA-Seq) further modifies the technique
by circumventing cDNA synthesis steps and associated biases
by directly sequencing the RNA template (Cartolano et al.,
2016; Byrne et al., 2017; Garalde et al., 2018; Parker et al., 2020;
Zhang et al., 2020).

Bioinformatic data analysis and management are essential
for NGS, considering the incredible volume of data produced.
A standard bioinformatics analysis workflow for RNA-Seq
involves quality control assessment of raw data, read mapping
and transcript assembly, quantification of mapped reads, and
differential expression analysis between experimental samples,
such as those related to human disease for RNA-Seq datasets
(Li et al., 2014; Seqc/Maqc-Iii Consortium, 2014; Chatterjee
et al., 2018). This general analysis workflow is typically divided
into primary, secondary, and tertiary analysis. Primary analysis
involves essential quality control measures such as read filtering,
trimming, and quality scores. Secondary analysis encompasses
read alignment to the genome of interest and variant calling
(i.e., SNP and indel identification). Tertiary analysis then includes
annotation and interpretation (e.g., functional annotation of
novel variants) (Chatterjee et al., 2018). DNA-Seq and RNA-
Seq frequently involve similar upfront analyses, however, their
respective downstream bioinformatics pipelines will depend on
the experimental hypothesis being tested [for more detailed
reviews: (Dolled-Filhart et al., 2013; Klasberg et al., 2019;
Pereira et al., 2020)].

The wide-ranging applications of NGS allow for it to be a
useful tool in numerous fields, including molecular neuroscience.
Sequencing technologies can allow insight into the underlying
mechanisms of the healthy human brain and an array of
brain-related disorders [for more detailed reviews: (Jiang et al.,
2014; Shin et al., 2014; Wu et al., 2017a; Shademan et al.,
2021; Sheardown et al., 2022)]. The myriad of applications
for this technology has provided direct evidence of gene
expression similarities between humans and mice demonstrating
the translational value and potential limitations of animal models
(Ray et al., 2018). WTS of allelic expression across healthy human
brain regions has also furthered knowledge for genes harboring
functional variants that can cause influence transcriptional
regulation of RNA expression (Smith et al., 2013). Further,
temporal changes in gene expression in response to specific
events can be quantified, such as following spinal cord injury
(Chen et al., 2013) and ischemic stroke (Bhattarai et al., 2017).
NGS is also valuable for the study of neurodegenerative diseases,
allowing for massive sequencing of DNA and RNA to identify
novel mutations or dysregulation in transcriptomic patterns
relevant to individual diseases (Shademan et al., 2021). NGS has
produced various findings related to neuroscience and psychiatry

(Table 1). Identification of alternative variants or susceptibility
genes include: psychiatric risk gene CACNA1C (Clark et al.,
2020), novel stroke-responsive lncRNAs (Bhattarai et al., 2017),
Alzheimer’s-linked alternative splicing (Twine et al., 2011),
schizophrenia-linked alternative promoter usage and splicing
(Wu et al., 2012), rare immunological and neurodevelopmental
mutations linked to obsessive compulsive disorder (Cappi et al.,
2016), Tourette Disorder risk gene PNKD identification (Sun
et al., 2018), and genes within specific molecular circuits linked
to autism (Parikshak et al., 2013; Cotney et al., 2015). NGS
expression information can then be further coupled with reverse
genetics approaches in cell and animal models to study individual
gene(s) of interest in greater detail (Twine et al., 2011; Wu et al.,
2012; Cotney et al., 2015; Cappi et al., 2016; Bhattarai et al., 2017;
Sun et al., 2018; Clark et al., 2020; Sinnamon et al., 2020).

Next Generation Sequencing Strategies
Short-Read Second Generation Sequencing
Short-read sequencing is the standard method of detection and
quantification of transcriptome-wide gene expression (Marioni
et al., 2008; Mortazavi et al., 2008; Li et al., 2014; Seqc/Maqc-
Iii Consortium, 2014; Chatterjee et al., 2018). It offers robust,
large-scale comparisons of short DNA molecules ranging from
50–250 bp and produces tens of millions of reads in parallel
(Stark et al., 2019; Hu et al., 2021). The two most popular
second-generation sequencing platforms include Ion Torrent,
which utilizes solid-phase amplification and emulsion PCR, and
Illumina (Marioni et al., 2008).

Short-read sequencing is a high-throughput technique
permitting millions of reads to be sequenced in parallel (Hu et al.,
2021). Multiplexed sequencing allows for multiple libraries to be
pooled and simultaneously sequenced, drastically reducing the
price per sample as well as resolving issues associated with Sanger
Sequencing (i.e., phasing issues and haploid versus diploid
fragments) (Clarke et al., 2009; Hu et al., 2021). The reduction
in cost and technological developments has led to a suite of
computational tools and pipelines designed for short-read data
analysis that make it more accessible to researchers from diverse
fields (Li et al., 2014; Chatterjee et al., 2018). An additional
advantage of short-read sequencing is the number of datasets
that have already been produced and are readily available in
public repositories (Iyer et al., 2015). Such independent datasets
have been curated from tumors, healthy and diseased tissue,
and cell lines, which can be used for ab initio assembly of
short-read datasets. For example, the MiTranscriptome Project
established that a large number of unannotated genes exist in the
human transcriptome (i.e., long non-coding RNAs) that were
not previously annotated by more traditional methodologies
(Iyer et al., 2015).

Short-read RNA-seq technology unlocked a valuable toolbox
for psychiatric and neurological research. It allowed for massively
paralleled sequencing of various brain regions and tissues of
control and diseased brains, thus identifying novel genes, and
networks of genes, that are dysregulated in response to CNS
disorders. For example, this method was utilized to compare the
transcriptome profiles of various brain regions across healthy
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TABLE 1 | A selection of studies using NGS to study brain function and pathology.

Study Species Tissue Disease/risk gene Major finding

DeJesus-Hernandez et al., 2021 Human Cerebellum C9orf72 Pathological association discovery of C9orf72 hexanucleotide
expansion length

Clark et al., 2020 Human Brain regions CACNA1C CACNA1C has a highly complex transcript profile

Hjelm et al., 2019 Human Brain and blood Mitochondrial Identification and characterization of putative mitochondrial DNA
deletions

Kim et al., 2016 Human Hippocampus Psychiatric Differential activation of immune and inflammatory responses
across disorders

Ramaker et al., 2017 Human ACC, dlPFC, NAc Psychiatric Comprehensive transcriptome profiling across three disorders

Le et al., 2018 Human Blood Major depressive
disorder

Identification and correlation of intramodular hub genes

Chen et al., 2013 Mouse Spinal cord Spinal cord injury Characterization of temporal changes in gene expression after SCI

Sinnamon et al., 2020 Mouse Hippocampus Rett syndrome Programmable RNA editing can repair mutations in mouse models

Bhattarai et al., 2017 Mouse Cortex Ischemic stroke Ischemia induces distinct, temporal lncRNA expression changes.
Identification of novel stroke-related lncRNAs

Farris et al., 2015 Human Brain regions Alcohol use disorder Alcohol misuse produces alterations in transcriptome organization
and transcripts

Ray et al., 2018 Human and
mouse

Dorsal root ganglia Chronic pain Confirmation of murine model translatability to humans

Twine et al., 2011 Human Brain lobes Alzheimer’s disease AD brain has differential gene expression and spice variants when
compared to control

Wu et al., 2012 Human Superior temporal
gyrus

Schizophrenia Schizophrenia STG has differential gene expression splice variants,
and alternative promoter usage when compared to control

Zhou et al., 2011 Human Hippocampus Addiction Shared and substance-specific changes in histones and gene
expression

Akula et al., 2014 Human dlPFC Bipolar disorder BD dlPFC has widespread transcriptome dysregulation when
compared to control

Cappi et al., 2016 Human Blood Obsessive-compulsive
disorder

Immunological, functional, and developmental gene enrichment
largely in brain

Sun et al., 2018 Human Blood Tic disorders and
Tourette syndrome

PNKD is associated with TD in a multiplex family

Cotney et al., 2015 Human and
mouse

Fetal brain, hNSCs,
embryonic cortex

Autism Chromatin modifier CHD8 regulates autism risk genes during
neurodevelopment

Parikshak et al., 2013 Human Fetal and adult cortex Autism Molecular pathways and circuits found implicated in autism

Lorenzo et al., 2018 Human Blood Familial attention deficit
hyperactivity disorder

Differential ADHD transcriptome expression and various pathway
enrichments identified

Zeng et al., 2019 Human Blood Familial cortical
myoclonic tremor with
epilepsy

Pentanucleotide repeat expansion in SAMD12 is the causative
mutation

ACC, anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; NAc, nucleus accumbens; hNSC, human neural stem cell.

individuals and those who suffer from psychiatric disorders.
Studies compared the anterior cingulate cortex, dorsolateral
prefrontal cortex (dlPFC), nucleus accumbens (Ramaker et al.,
2017) and hippocampus (Kim et al., 2016) of healthy controls and
three psychiatric disorders: major depressive disorder (MDD),
bipolar disorder, and schizophrenia. Transcriptome profiling
for these disorders across multiple brain regions identified
differentially expressed genes between the respective disorders
when compared to control (Ramaker et al., 2017). In another
study it was found that while the three above psychiatric
disorders shared dysregulation of immune and inflammatory
responses, the three presented differential activation when the
profiles were compared to each other (Kim et al., 2016).
RNA-Seq-based research into transcriptome dysregulation of
psychiatric disorders provided insights into dlPFC for bipolar
disorder (Akula et al., 2014), MDD-linked intramodular ‘hub’

genes (Le et al., 2018), superior temporal gyrus dysregulation
in schizophrenia (Wu et al., 2012), and alternate pathway
enrichments in familial attention deficit hyperactivity disorder
(Lorenzo et al., 2018). Considering addiction as well, RNA-Seq
of the hippocampus from individuals who suffered from cocaine-
and alcohol-use disorder (AUD) were found to have extensive
transcriptome dysregulation, both shared and substance-specific
(Zhou et al., 2011). Additional research into specific brain regions
of AUD individuals further cemented that alcohol misuse results
in pronounced alterations in transcriptome expression that can
differ across brain regions (Farris et al., 2015). Taken together,
these studies highlight the differences found across the CNS, as
well as in closely-linked human brain-related disorders.

Despite the advantages and the widespread use of short-
read sequencing, a number of limitations still exist. These
technologies generally have longer running times, short read
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bias, and an inability to identify novel transcript isoforms and
structural variants (Whiteford et al., 2005). Due to the short
reads produced by this technology, sequencing data generally has
to be reassembled using a publicly accessible reference genome,
which can result in structural challenges and the loss of important
information on mRNA isoform frequency and splice variants.
Novel isoforms can also be lost due to the improper realignment
(Stark et al., 2019; Hu et al., 2021).

Long-Read Third Generation Sequencing
The development of long-read sequencing has overcome some
of the challenges associated with second-generation sequencing.
Long-read sequencing, also commonly referred to as third-
generation sequencing, can directly sequence transcripts 10 kb
or larger (Garalde et al., 2018). There are two main long-read
technologies, Pacific Biosciences (PacBio) and Oxford Nanopore
Technology (ONT) (Ip et al., 2015; Li et al., 2016; Byrne
et al., 2017). While PacBio requires the conversion of RNA into
tagged full-length cDNA transcripts, ONT can directly sequence
either RNA or DNA, removing the need for cDNA synthesis
and amplification (Stark et al., 2019). Direct RNA-Sequencing
(dRNA-seq) is a derivative of long-read sequencing and does
not require RNA fragmentation, cDNA synthesis, and PCR
amplification because the RNA template is directly sequenced
(Cartolano et al., 2016; Byrne et al., 2017; Garalde et al., 2018;
Parker et al., 2020; Zhang et al., 2020). This removes biases
associated with cDNA synthesis and amplification (Cartolano
et al., 2016; Parekh et al., 2016; Byrne et al., 2017; Garalde
et al., 2018), and allows for epitranscriptomic information
to be retained, such as m6A modifications (Garalde et al.,
2018; Parker et al., 2020; Zhang et al., 2020). Data analysis
of long-read sequencing requires bioinformatics tools that can
accurately assemble large reads, as ONT can generate up to
1 Mb reads and computationally stitch together >2 Mb reads
(Miga et al., 2020).

One of the earliest studies that used long-read sequencing
was conducted in birds (Korlach et al., 2017). This generated
a more complete picture of the avian genome and provided
further insight into gene structure, function, and evolution
(Korlach et al., 2017). Using zebra finch and Anna’s hummingbird
(two species widely studied in neuroscience) DNA as input
for long-read sequencing via PacBio, produced reads in the
megabase range with no gaps that resulted in a ∼150–200-fold
improvement in their reference genomes, This resolution was
previously unattainable, but was able to correct mis-assemblies,
repeat structure errors, and sequence gaps that can further
improve the use of these model organisms (Korlach et al., 2017).

Third-generation sequencing technology also provides an
opportunity for advancing our understanding of human
disorders. Long-read sequencing has the ability to discern
information from complex genomic regions including repetitive
elements, areas of high GC content, and detect more specific
epitranscriptomic modifications not detectable by short-read
NGS methods (Jain et al., 2018). Further, long-read sequencing
can identify novel splice variants and profiles, which is invaluable
to the study of psychiatric disorders where RNA splicing is
suggested to be a key mechanism. One such example includes

the psychiatric risk gene CACNA1C, which codes for the
voltage-gated calcium channel CaV 1.2 (Clark et al., 2020). Long-
read sequencing of the full-length coding transcripts provided
evidence that the transcript profile is highly complex and
the expression of alternatively spliced isoforms widely varies
across brain regions that may be responsible for differential
calcium channel function (Clark et al., 2020). Amplification-
free long-read sequencing of the C9orf72 gene in the cerebellum
identified hexanucleotide expansion sizes, a frequent genetic
cause of frontotemporal lobar degeneration and motor neuron
disease, and uncovered significant correlation between expansion
sizes and survival (DeJesus-Hernandez et al., 2021). Long-read
NGS has also been used to identify a pentanucleotide repeat
expansions within SAMD12 as the causal mutation resulting in
familial cortical myoclonic tremor with epilepsy (Zeng et al.,
2019). These examples demonstrate the utility of long-read
sequencing as an effective tool for the molecular basis of human
disorders, especially for those diseases that cannot be discerned
with more conventional NGS platforms (Zeng et al., 2019). While
still in the early stages, long-read sequencing has already shown
tremendous promise in unraveling the complexities of psychiatric
and neurological disorders.

Advantages for long-read sequencing over short-read
sequencing include the generation of extended reads for novel
isoform identification, data collection in real-time offering faster
turnaround, and its use for both DNA- and RNA-Seq (Clarke
et al., 2009; Ip et al., 2015). Additionally, DNA amplification
is not always required, avoiding the associated pitfalls (Parekh
et al., 2016). However, long-read sequencing can result in a
high rate of error due to signal-to-noise constraints (∼7–14%)
when compared to short-read sequencing, although this error
rate can decrease over time (Li et al., 2016). Additionally,
long-read sequencing is reliant on high-quality RNA that
contains full-length transcripts (Stark et al., 2019). Any sheering
or degradation of the RNA during extraction may lead to
3′ bias, limiting usage for full-length transcriptomic analysis
(Stark et al., 2019).

While price can be a disadvantage, ONT instruments are
more cost-effective and smaller, allowing for more widespread
use (Clarke et al., 2009; Li et al., 2016). Short-read sequencing
may perform better for studies investigating differential gene
expression due to its greater read depth, but long-read sequencing
provides higher-resolution data for the study of complex
psychiatric and neurological disorders. The decision on which
NGS technique to employ should be based on the respective
application, desired product, and the underlying hypothesis being
tested. Both strategies are invaluable but offer their own set
advantages and disadvantages.

Single-Cell and Single-Nuclei RNA
Sequencing
The brain is an extremely complex organ system with many
unique regions and cell populations that coordinate molecular
and behavioral phenotypes. Single-cell RNA sequencing (scRNA-
Seq) has revolutionized transcriptomics by allowing for the
characterization of individual cell populations that may be
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overlooked by bulk RNA-Seq (Tang et al., 2009), including their
roles and responses in development, homeostasis, and disease
(Darmanis et al., 2015; Zeisel et al., 2015; Tasic et al., 2016;
Keren-Shaul et al., 2017; Jin et al., 2020). While the details vary
with individual methods, scRNA-Seq functions similarly to bulk
RNA sequencing. Cells are lysed and RNA is reverse transcribed
to generate cDNA, which is then amplified and fragmented to
generate NGS libraries that can be quantified (Tang et al., 2009).
Unique oligonucleotide barcodes identify RNA from individual
cells, and combinatorial indexing of barcodes can eliminate
the need for cell-type specific isolation procedures (Rosenberg
et al., 2018). scRNA-Seq methods are commonly either plate- or
droplet-based. Plate-based methods use fluorescent-activated cell
sorting (FACS) or microscope-guided capillary pipettes to place
cells into wells, allowing for full-length transcript sequencing to
distinguish between mRNA isoforms (Tasic et al., 2016; Paul et al.,
2017). Droplet-based methods encase cells in individual lipid
suspension droplets and mRNA is quantified by counting either
the 5′ or 3′ ends (Macosko et al., 2015). These techniques can be
combined with long-read sequencing tools such as ONT and hold
potential for increasing transcript coverage and identifying more
complex mRNA isoforms (Gupta et al., 2018).

scRNA-Seq has also been applied for powerful genetic
screening of disease risk loci. Perturb-Seq is an approach that
combines pooled CRISPR screening with scRNA-Seq and NGS
analysis (Dixit et al., 2016; Schraivogel et al., 2020). This approach
allows for high-throughput genetic screening that can dissect
the results of genetic perturbations on the single-cell scale.
Pooled screens allow for efficiency, while scRNA-Seq and NGS
provide robust data on genetic and transcriptomic interactions
(Dixit et al., 2016; Schraivogel et al., 2020). Combining the
perturbation of multiple targets using CRISPR with scRNA-Seq
has proven particularly useful in the study of complex diseases.
Genome-wide association studies have identified a multitude
of candidate genes for many psychiatric and neurological
disorders, that would be cumbersome to individually screen.
To understand the underlying genetics of autism spectrum
disorder and neurodevelopmental delay (ASD/ND), Jin et al.
(2020) were able to simultaneously introduce mutations in 35
ASD/ND risk genes in the mouse neocortex in utero and perform
scRNA-Seq to assess how these changes impacted postnatal
neuron and glial function. As most psychiatric and neurological
disorders are due to a combination of genetic risk factors,
the combination of CRISPR and RNA-Seq (i.e., Perturb-Seq)
offers a unique capability to quickly screen multiple genetic
perturbations, test physiological and behavioral phenotypes, and
determine the biological activity of multiple candidate genes
in a single study.

Single-nuclei RNA sequencing (snRNA-Seq) has emerged as a
sister technique to scRNA-Seq (Grindberg et al., 2013). It can be
used with samples incompatible with scRNA-seq, such as frozen
samples and dense tissues. This makes snRNA-Seq particularly
useful for neuroscience applications, as in addition to the density
of brain tissue and the use of samples such as those frozen from
postmortem human brains, the ramified processes of neurons
and glial cells and their associated RNA are frequently lost in
dissociated tissue. snRNA-Seq also may overcome some technical

artifacts of scRNA-Seq, such as biases against specific cell types
that are more likely to die during isolation (Tasic et al., 2016).
snRNA-Seq is performed similarly to scRNA-Seq, following the
same workflow and including similar well- and droplet-based
protocols (Macosko et al., 2015; Tasic et al., 2016; Paul et al.,
2017). Nuclear isolation can be performed using fluorescently-
activated nuclei sorting (FANS), sucrose gradients, or other
conventional nuclear extraction methods (Krishnaswami et al.,
2016; Denisenko et al., 2020). snRNA-Seq also captures nuclear
transcripts, including immature RNA molecules, allowing for
unspliced RNA containing to be investigated (Bakken et al.,
2018). It should be noted that the capture of nuclear transcripts
can be both an advantage and a limitation depending on the
experiment, as snRNA-Seq will not capture cytosolic RNA.
However, using snRNA-Seq in conjunction with techniques such
as laser-capture microdissection may allow for the determination
of transcripts from other cellular regions such as dendrites to be
analyzed from the same sample (Middleton et al., 2019).

scRNA-Seq and snRNA-Seq have proven invaluable for
studying complex diseases by uncovering cell-type-specific
vulnerability, protective mechanisms, and insights into
pathogenesis. These approaches have been particularly useful
for investigating complex and heterogenous disorders such
as neurodegenerative diseases. Utilizing a transgenic mouse
model for Alzheimer’s disease (AD) combined with scRNA-Seq
observe glial-specific changes relevant to neuroinflammation
and disease progression. This study identified a unique subset
of microglia, termed disease-associated microglia (DAM), that
has the potential to attenuate damage associated with AD. DAM
were also confirmed in human AD postmortem brain tissue,
as well as a transgenic mouse model of amyotrophic lateral
sclerosis (ALS) (Keren-Shaul et al., 2017). As AD is a uniquely
human disease, utilization of single-cell technologies in AD
patients offers invaluable insight into the etiology of this disorder
that can be further studied in cellular and animal models. One
study performing snRNA-Seq in postmortem prefrontal cortex
(PFC) of AD patients identified highly cell-type specific changes
during various stages of the disorder, including genes that were
perturbed in multiple cell types (Mathys et al., 2019). Combining
single-cell and single-nuclei sequencing datasets across multiple
organisms for the same disorder, such as AD, will allow for the
development of more applicable and reliable animal models
relevant to disease.

In addition to neurodegenerative disorders, snRNA-Seq has
been employed to profile transcriptomic changes in the PFC
of alcohol-dependent individuals. Similar to AD, differential
expression analysis revealed that glial cells, including microglia,
astrocytes, and oligodendrocytes, displayed the greatest change
in gene expression in alcohol-dependent subjects. These cell-type
specific observations corresponded with a significant enrichment
of genes related to neuroinflammation, a phenomenon frequently
associated with chronic alcohol misuse (Brenner et al., 2020).
Multiple databases have been created that contain single-cell
findings for specific diseases across laboratories and tissue sources
(Cao et al., 2017; Jiang et al., 2020; Aging Atlas Consortium.,
2021; Dong et al., 2021; Paisley and Liu, 2021; Zhao et al., 2021;
Zheng et al., 2021). If utilized properly, these hold the promise of
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creating a single-cell molecular atlas of the brain in both healthy
and diseased states.

scRNA-seq has proven invaluable for the identification of
unique RNA expression between various cell types as well
as differing responses to environmental contexts (Table 2),
but it comes with important limitations. Multiple cells can
be detected as a single cell in scRNA-Seq, forming doublets
that can skew data and create false identifications. The use of
FACS sorting as well as some computational methods including
DoubletFinder and Scrublet can identify or reduce doublets
(McGinnis et al., 2019; Wolock et al., 2019). In addition,
many false negatives (commonly known as dropouts) result
from incomplete RNA-recovery during tissue lysis, but other
computational tools can impute or convert dropouts into a
meaningful signal due to specific gene clusters displaying similar
dropout patterns (Feng et al., 2020; Qiu, 2020; Zhang and Zhang,
2021). Non-physiological transcription from tissue dissection
and cell dissociation can confound data, and dissociation
and lysing removes important cellular and spatial context
(Lacar et al., 2016; Wu et al., 2017b). Extra-physiological gene
transcription occurs less in snRNA-Seq in comparison to scRNA-
Seq. Challenges also exist in data analysis, where complex
datasets are generated and computational methods and clustering
procedures can be inconsistent. scRNA-Seq data are currently

noisier than in bulk RNA-Seq, and biological variation between
cell types can complicate analysis, but recently available tools
can merge and more accurately align scRNA-Seq datasets across
conditions, technologies used, and species (Butler et al., 2018).
The single-cell transcriptomic field is still developing, though
it holds tremendous promise to unlock a more comprehensive
understanding of brain functioning as technologies continue to
address these limitations. The standardization and transparency
of single-cell data and computational methods will no doubt be
an important facet of these improvements.

Epigenomic and Translatomic
Techniques
While bulk RNA sequencing can provide a plethora of data
about the transcriptome, more specialized techniques have been
developed to delve into the epigenome and translatome of
the brain. Translating ribosome affinity purification sequencing
(TRAP-Seq) involves cell-type-specific, indirect tagging of
mRNAs through targeted transgene expression of an affinity
tag (such as enhanced green fluorescent protein) associated
with the large ribosomal subunit protein L10a (Heiman et al.,
2014). The affinity tag simultaneously allows for visualization
of the cell type of interest within tissue as well as purification

TABLE 2 | A selection of studies using cell-type-specific transcriptomic methods to study brain pathology.

Study Technique Species Tissue Disease Major finding

Jin et al.,
2020

scRNA-Seq Mouse In utero, Neocortex Autism spectrum
disorders,
neurodevelopmental
delay

Cell type-specific gene modules in ASD risk genes

Keren-Shaul et al., 2017 scRNA-Seq
smFISH

Human and
Mouse

Whole Brain
Hippocampus

Alzheimer’s
disease,
Amyotrophic lateral
sclerosis

Novel microglia cell type associated with AD and ALS

Mathys et al., 2019 snRNA-Seq Human PFC Alzheimer’s disease Cell type-specific expression changes during disorder
progression, consistent changes in myelination-related
genes.

Brenner et al., 2020 snRNA-Seq Human PFC Alcohol
dependence

Greatest change in gene expression within glial cells;
significant enrichment of neuroinflammation-related
genes

Zheng et al., 2022 scRNA-seq Mouse Whole brain
hemispheres

Ischemic stroke Cell type-specific transcriptional changes with
neuroinflammation

Liu et al., 2020 scRNA-Seq Mouse Brainstem Amyotrophic lateral
sclerosis

Cell-type specific transcriptional changes in multiple
ALS-related pathways

Nguyen et al., 2020 snRNA-Seq Human Middle frontal
neocortex

Alzheimer’s disease Identified depleted microglia subpopulations in AD
patients with APOE and TREM2 risk variants

Sadick et al., 2022 snRNA-Seq Human PFC Alzheimer’s disease Global and subtype-specific transcriptomic changes in
glia

Wertz et al., 2020 snRNA-Seq Mouse Striatum Huntington’s
disease

Loss of IL-6 augments behavioral phenotypes and
mutant huntingtin dysregulation of genes related to HD
pathology

Zhong et al., 2020 snRNA-Seq Mouse Hippocampus Alzheimer’s disease Neuronal subtype-specific and disease
progression-related transcriptional changes

Schirmer et al., 2019 snRNA-Seq Human Cortical gray matter
and subcortical white
matter; lesions

Multiple sclerosis Cell type-specific changes in gene expression in MS
lesions and surroundings

PFC, prefrontal cortex.
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of translated mRNA. Purified mRNA can then be analyzed
downstream, including with RNA-Seq. A notable advantage of
this technique is that it does not require dissociation of cells
within tissue or mRNA capture from specific cell types (Heiman
et al., 2014). Another method known as ribosome profiling
identifies the exact mRNA fragments currently being translated
by ribosomes (McGlincy and Ingolia, 2017). Nuclease digest
fragments of all sequences not enclosed within ribosomes, and a
cDNA library is generated from the remaining RNA, which then
undergoes high-throughput sequencing (McGlincy and Ingolia,
2017). Ribosome profiling thus provides a snapshot of ribosome
locations on the transcriptome and can provide high-resolution
information on translational perturbations, such as stalling, as
a result of experimental perturbations (McGlincy and Ingolia,
2017). Ribosome profiling is possible at the single cell level
(VanInsberghe et al., 2021), and has been modified to only
isolate active ribosomes, addressing a prior limitation of the
technique (Clamer et al., 2018). Both TRAP-Seq and ribosome
profiling have proven useful in studying neurologic disease.
Several studies have recently employed TRAP-Seq to study
cell-type-specific changes in gene expression and translation in
neurodegenerative diseases such as AD (McKeever et al., 2017;
Hinman et al., 2021), and translational repression in cortical
neurons of Rett syndrome patients (Rodrigues et al., 2020).
Ribosome profiling has revealed changes in ribosomal occupancy
of genes as well as ribosome stalling in Huntington Disease
(HD) models (Sharma et al., 2020; Eshraghi et al., 2021), and
has similarly illuminated cell-type-specific alterations in the
translatome in gliomas, AD, Parkinson’s disease, epilepsy, prion
disease, and X-linked intellectual disability (Gonzalez et al., 2014;
Kim et al., 2019b, 2021a; Scheckel et al., 2020; Nagayoshi et al.,
2021; Eastman et al., 2022).

As epigenetic modifications were recognized to play a critical
role in brain function and behavior, sequencing techniques
to examine epigenetic modifications to the transcriptome
were developed. In 2007 chromatin immunoprecipitation with
massively parallel sequencing (ChIP-Seq) emerged as a method
that permitted the identification of binding sites for DNA-
associated proteins such as transcription factors and histones
(Robertson et al., 2007). While ChIP-Seq opened the door for
numerous epigenetic studies, applying ChIP-Seq to single-cell
studies has been challenging due to limited material recovery.
Recent efforts have combined other methods with ChIP-Seq to
improve yield, including the use of DNA barcoding/indexing
and microfluidics, but data from individual cells remains
sparse, and more sensitive adaptations involve tedious library
preparation processes (Robertson et al., 2007; Mundade et al.,
2014; Rotem et al., 2015; Ai et al., 2019). As an alternative to
ChIP-Seq, Cleavage Under Targets and Release Using Nuclease
(CUT&RUN) was developed to overcome some of the challenges
associated with other epigenomic profiling methods (Skene
and Henikoff, 2017). Based on the chromatin immunocleavage
method (Schmid et al., 2004), an MNase is tethered to the DNA
using transcription factor specific antibodies, allowing for precise
cutting of DNA at transcription factor binding sites. The cut
fragments of DNA are then be used for library preparation and
sequenced, allowing for study of transcriptionally active sites of

the genome (Skene and Henikoff, 2017). Due to a reduction in
background levels, CUT&RUN requires fewer reads, lowering the
cost for sequencing and making it a more accessible technique
(Skene and Henikoff, 2017). Recently, single cell CUT&RUN has
been developed to examine the epitranscriptomic landscape of
individual cells (Hainer et al., 2019; Yu et al., 2021).

In addition, Assay for Transposase-Accessible Chromatin
with high-throughput sequencing (ATAC-Seq) has been used
in multiple contexts to observe the epigenome in both bulk
and single-cell sequencing studies (Buenrostro et al., 2013;
Cusanovich et al., 2015). In ATAC-Seq, chromatin are incubated
with the Tn5 transposase which is complexed with adapter
sequences, taking advantage of this enzyme’s hyperactivity in
fragmenting accessible DNA (Marinov and Shipony, 2021). By
using the Tn5 transposase, ATAC-Seq simultaneously fragments
DNA and inserts oligo sequencing adapters that can be utilized
for both NGS and PCR (Buenrostro et al., 2013). ATAC-Seq has
also been adapted for single-cell CRISPR screening (Perturb-
ATAC) to elucidate gene regulatory networks (Rubin et al., 2019),
which could become a powerful tool for studying the epigenetic
regulation of development and disease.

Along with RNA-Seq methods, ATAC-Seq can help uncover
transcription factor effects on gene expression of particular
transcripts. One study employing ATAC-Seq in addition to
ChIP-Seq identified non-coding regulatory regions (including
promotors and proximal/distal enhancers) that drive the
transcriptomic identity of all major cell types in human brain, as
well as their relative roles in AD and multiple human psychiatric
disorders (Nott et al., 2019). Another study performed single-
cell ATAC-Seq (scATAC-Seq) to uncover epigenetic variation
in AD and Parkinson’s disease (Corces et al., 2020). DNA
methylation assays are also possible in single-cells utilizing
plate-based nuclei sorting, bisulfite conversion, and multiplexed
sequencing, though these must be developed to be more
efficient as they lack extensive coverage (Luo et al., 2017).
Droplet-based methods could assist with this, but whole-genome
sequencing remains cost-prohibitive for assessing the epigenome
of individual cell-types. Technologies are rapidly developing
toward single-cell multiomics, allowing for the characterization
of discrete cell types at virtually all fundamental levels of
cellular identity and functioning (Welch et al., 2019; Zhu et al.,
2021). Table 3 highlights a number of studies that employ
the discussed epigenomic and translatomic techniques. While
still in development, many of these techniques have been
combined with scRNA-seq and will undoubtedly play a valuable
role in understanding the cell-type specific contribution to
human disorders.

Spatially-Resolved Transcriptomics
One of the fundamental limitations of scRNA-Seq is the loss
of spatial/tissue context, which is critical in cell identity and
function. Spatially-resolved transcriptomics overcomes this by
adding spatial resolution to RNA sequencing at the nearly
single-cell level. Spatial information has been added to single-
cell datasets through laser-capture microdissection, such as in
geographical position sequencing (Geo-Seq) (Chen et al., 2017).
Other common spatially-resolved techniques can be classified
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TABLE 3 | A selection of studies using translatomic and epigenomic methods to study brain function and pathology.

Study Technique Species Tissue Disease Major finding

Nott et al., 2019 ChIP-Seq
ATAC-Seq

Human Resected cortical brain
tissue

Alzheimer’s disease,
Psychiatric disorders

Cell type specificity of non-coding regulatory
elements

Corces et al., 2020 scATAC-Seq Human Multiple brain regions Alzheimer’s disease,
Parkinson’s Disease

Characterized inherited non-coding epigenetic
variation in AD and PD

Wang et al., 2021 ATAC-Seq Human Tumor tissue Pediatric high-grade
glioma

Tumor-specific oncogene enhancers/regulatory
networks and potential genomic structural changes

Li et al., 2020 ChIP-Seq
scRNA-Seq

Human Brain, neuronal cells Major depressive
disorder

Binding disruption of 15 transcription factors at 34
MDD risk SNPs

Kouakou et al., 2021 ATAC-Seq Human Fetal PFC Multiple psychiatric
disorders

Significantly enriched heritability for SNPs
associated with psychiatric disorders within open
chromatin regions

Bryois et al., 2018 ATAC-Seq Human PFC Schizophrenia Enrichment of schizophrenia SNP heritability in
accessible chromatin regions

Eshraghi et al., 2021 Ribosome profiling,
RNA-Seq

Human and Mouse Striatal neurons
Fibroblasts

Huntington’s disease Mutant huntingtin results in ribosome stalling in
multiple identified genes

Kim et al., 2021a Ribosome profiling Mouse Striatum, ventral
midbrain

Parkinson’s disease Preferential mRNA translation with G2019S LRRK2
mutation

McKeever et al., 2017 TRAP-Seq Mouse Anterior forebrain
cholinergic neurons and
their
cortical/hippocampal
projections

Alzheimer’s disease Differential gene expression in cholinergic neurons
of TgCRND8 mice

Hinman et al., 2021 TRAP-Seq Mouse Central Nervous
System

Tauopathy miR-142-3p regulation of gene expression
networks in oligodendrocytes is involved in
neurodegeneration

Jiwaji et al., 2022 TRAP-Seq Human and Mouse Astrocyte culture Alzheimer’s disease Astrocyte Aß and Tau pathology are distinct, but
overlapping in gene expression profiles

Kim et al., 2019b Ribosome profiling Mouse NIH/3T3 cells Cortical neurons Intractable epilepsy Identified translational dysregulation mechanism in
MTOR mutations

Eastman et al., 2022 Ribosome profiling Mouse Cerebral cortex Alzheimer’s disease AD mouse model differences in translatome
regulation

Simard et al., 2018 TRAP-Seq Mouse Cortical astroglia Chronic stress,
depression, anxiety

Decreased expression of astroglial plasticity genes

Sharma et al., 2020 Ribosome profiling Mouse Striatal cells Huntington’s disease Altered LC3A and LC3B ribosomal occupancy

PFC, prefrontal cortex.

into three major categories: fluorescent in situ hybridization
(FISH)-based, in situ sequencing, and in situ capturing (Noel
et al., 2021; Ortiz et al., 2021; Rao et al., 2021).

Two of the leading FISH-based methods include single-
molecule fluorescence in situ hybridization (smFISH) and
its multiplexed form, MERFISH (multiplexed error-robust
fluorescence in situ hybridization) (Femino et al., 1998;
Xia et al., 2019). smFISH uses oligonucleotide probes and
is capable of detecting the distribution of single RNA
molecules with high resolution (Femino et al., 1998; Raj
et al., 2008). This not only allows for the identification of
spatial information within a tissue, but smFISH can also
reveal subcellular localization of RNA. While smFISH is
capable of this subcellular localization, assigning transcripts
to individual cells can be difficult in dense brain tissue with
highly-ramified cell processes, though computational image
analysis tools are improving to mitigate this issue (Maynard
et al., 2020). In addition, FISH-based methods require probes
for predefined targets, and can be complex and time-consuming
to employ, meaning only smaller tissue volumes can be
adequately analyzed. Newer techniques are being developed

to increase smFISH efficiency, particularly in dense tissues
(Sun et al., 2019).

In situ sequencing methods such as FISSEQ accomplish RNA
sequencing on tissue samples; cDNA synthesis is accomplished
via padlock probes or stably cross-linked cDNA amplicons
(Lee et al., 2014, 2015). Rolling-circle amplification is used,
and samples are then sequenced, removing the need for RNA
extraction. One advantage of this approach over FISH-based
methods is the ability to visualize unknown RNA sequences,
though both FISH-based and in situ sequencing methods require
tissue to be imaged and then processed down to the single-cell
level through segmentation (Rao et al., 2021).

In situ capturing methods comprise a diverse range of
spatially-resolved transcriptomic methods in which pre-
patterned slides with oligonucleotide barcodes or barcoded
beads are used to identify the location of origin for a given
RNA, which is then sequenced outside of the tissue using
single-cell transcriptomic methods (Ståhl et al., 2016; Rodriques
et al., 2019). In situ capturing includes the method commonly
referred to as Spatial Transcriptomics (ST or Visium) as well
as Slide-Seq, and many of these methods are NGS-based
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(Rodriques et al., 2019; Stickels et al., 2021). In situ capturing
methods of spatially-resolved sequencing allow for higher
throughput, as greater tissue areas can be covered with less time
and resources than imaging-based methods (Noel et al., 2021).
Tissue is histologically stained (commonly with hematoxylin
and eosin) and imaged to map spot locations relative to known
landmarks (Longo et al., 2021; Noel et al., 2021). cDNA synthesis
is performed in situ and resulting cDNA-RNA hybrids are
cleaved off slides (Rodriques et al., 2019; Stickels et al., 2021).
The barcodes can identify RNA in resulting sequencing libraries.
Newer methods such as Slide-Seq come closer to single-cell
resolution (possessing a spatial resolution of ∼10 µM) but have
reduced detection efficiency (Rodriques et al., 2019; Stickels et al.,
2021).

Spatially-resolved transcriptomics can aid in our
understanding of complex neural circuits underlying behavior in
both the healthy and diseased brain (Table 4). In combination
with scRNA-Seq, MERFISH uncovered distinct divisions of the
mouse hypothalamus responsible for varying social behaviors
(Moffitt et al., 2018; Kim et al., 2019a). smFISH was utilized in
the study identifying DAM to localize these novel microglia near
Aβ plaques (Keren-Shaul et al., 2017). Slide-Seq was originally
used to map cell types in mouse cerebellum and hippocampus,
as well as characterize cortical cell type-specific responses in
a model of traumatic brain injury (Rodriques et al., 2019).
Spatially-resolved transcriptomics has also proven valuable
in studying neurodegenerative diseases, where the roles of
neuropathological hallmarks are still being investigated (Keren-
Shaul et al., 2017; Maniatis et al., 2019; Chen et al., 2020; Gregory
et al., 2020; Navarro et al., 2020). One recent study used spatial
transcriptomics and in situ sequencing methods in an AD mouse
model to assess transcriptional changes in cells surrounding
Aβ plaques and found significant changes in discrete gene
co-expression networks in the early and late stages of the disease
(Chen et al., 2020). Spatially-resolved transcriptomics holds
tremendous promise for revolutionizing our knowledge of
brain region specific functions in both a healthy brain and in
pathological contexts.

Through unbiased exploration of molecular tissue
organization and gene expression, spatially-resolved
transcriptomics has the potential to redefine neuroanatomy
(Close et al., 2021; Ortiz et al., 2021). However, similar to scRNA-
Seq, spatially-resolved transcriptomics generates large datasets,
is prone to technical bias and noise, and assumes a one-to-one
relationship between spots and cells. While an individual spot
may be roughly the size of a single cell, it may overlap multiple
cells, especially with the highly-branched nature of neurons
and glia (Cardona-Alberich et al., 2021; Close et al., 2021). As
technology develops, scalability and resolution will increase (Rao
et al., 2021). The gene expression data captured by spatially-
resolved transcriptomics lacks the transcriptomic breadth of
scRNA-Seq, and thus their combination produces powerful
information on cell identity and interactions (Longo et al.,
2021). While spatially-resolved transcriptomics reveals rough
gene expression “neighborhoods” in tissue regions, scRNA-Seq
provides more detailed information. Especially when combined
with scRNA-Seq, spatially-resolved transcriptomics can be

used to understand tissue- specific dynamics of development,
dysregulation and disorganization in disease, and responses
to the environment and perturbations (Longo et al., 2021;
Rao et al., 2021). Thus, a comprehensive understanding of
molecular identity and functioning can be achieved in model
organisms.

ADVANCES IN THE ANALYSIS OF
BEHAVIORAL NEUROSCIENCE

Translation of Animal Behavior to
Humans
Observing animal behavior in the context of their environment
and biology is fundamental to understanding corresponding
phenotypes (Hogan et al., 2009; Nestler and Hyman, 2010;
Tinbergen, 2010; Stewart and Kalueff, 2015; Gomez-Marin
and Ghazanfar, 2019). The lack of tools to rigorously analyze
organismal behavior has left a disconnect between molecular
neuroscience and behavioral phenotypes. Traditionally,
recordings of animal behavior have been analyzed by trained
researchers’ post-experimentation, but analyses of these videos
suffer from limitations including experimenter bias and
differences in training. Current methods of interpretation
and analysis of animal behavior remain subjective, limiting
translation to human behavior and disease. To circumvent
these issues, researchers have recently begun to integrate
computational and machine learning approaches with
neurobehavioral assessments (Poggio, 1981; Krakauer et al.,
2017). Through this integrative approach, more accurate
animal models can be generated for an array of human
conditions with strong validity and high reproducibility
(van der Staay et al., 2009).

Animal models of psychiatric and neurological disorders are
often regarded as poor predictors for human disorders, limiting
the development and testing of novel treatments. For example,
ALS is a fatal neurodevelopmental condition with few effective
treatment options (Meshalkina et al., 2017). In recent years,
several medications have shown promise in treating mouse
models of this disorder, but have subsequently failed in human
clinical trials (Perrin, 2014). Investigation into this discrepancy
revealed that the progression of motor degeneration exhibited by
mutant mice with a dysfunction in TDP43, the gene encoding
the TDP43 protein responsible for the harmful protein aggregates
associated with ALS (Brettschneider et al., 2013), is subtle and
fast. Successful treatment of ALS in clinical trials relies on how
well experimenters can implement multivariate levels of analysis
to characterize early behavioral changes in an animal model
(Perrin, 2014; Meshalkina et al., 2017).

In addition to the creation of genetically modified animals
using CRISPR and other strategies, researchers have used
selective breeding to isolate heritable traits relevant to human
disorders. For example, selective breeding of alcohol-preferring
and apomorphine susceptible rats was undertaken to model
AUD and schizophrenia, respectively (Colombo et al., 1995;
Ellenbroek and Cools, 2002). Both phenotypes in these instances
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TABLE 4 | A selection of studies using spatially-resolved transcriptomic methods to study brain function and pathology.

Study Technique Species Tissue Disease Major finding

Keren-Shaul et al., 2017 scRNA-Seq smFISH Human and Mouse Whole brain
Hippocampus

Alzheimer’s
disease,
Amyotrophic lateral
sclerosis

Novel microglia cell type (DAM)
localized near Aβ plaques

Rodriques et al., 2019 Slide-seq (in situ
capturing)

Mouse Cortex Traumatic brain
injury

Cell type-specific effects during stages
of traumatic brain injury

Chen et al., 2020 Spatial transcriptomics
(in situ capturing),
in situ sequencing

Human and Mouse Coronal sections.
Superior frontal
gyrus

Alzheimer’s disease Identified gene co-expression networks
related to Aβ plaque formation

Navarro et al., 2020 Spatial transcriptomics
(in situ capturing)

Mouse Brain Alzheimer’s disease Spatial mapping of
differentially-expressed genes in AD

Willis et al., 2020 Spatial transcriptomics
(in situ capturing)

Mouse Brain Traumatic Brain
Injury

Repopulation of microglia positively
affects injury microenvironment

Hasel et al., 2021 Spatial transcriptomics
(Visium, in situ
capturing)

Mouse Cortical astrocytes Neuroinflammation Localization of reactive astrocyte
substates

Kaufmann et al., 2021 Spatial transcriptomics
(in situ capturing)

Human Brain Multiple sclerosis Identify and localize T cell population in
MS brains

Gregory et al., 2020 Spatial transcriptomics
(Visium, in situ
capturing)

Human Brain Amyotrophic lateral
sclerosis

GRM3 and USP47 transcripts spatially
dysregulated

Kiss et al., 2022 Spatial transcriptomics
(Visium, in situ
capturing)

Mouse Brain Aging Senescent cell microdomains identified
in multiple brain regions based on gene
expression

Maniatis et al., 2019 Spatial Transcriptomics
(in situ capturing)

Human and Mouse Spinal cord Amyotrophic lateral
sclerosis

Established a time course of molecular
mechanisms of disease progression

are predisposed by genetic factors and can benefit from a deeper
level of behavioral analysis. In depth analysis of behavioral traits
using machine learning can assist this approach by identifying
the most behaviorally relevant animals before beginning the
laborious task of breeding multiple generations of animals.

Traditional behavioral analyses are now being augmented
with modern computational approaches to improve our
understanding of behavioral outcomes, advance the field of
molecular neuroscience, and discern causal factors of human
disorders. Deep learning allows the transformation of raw data
into discrete representations of diverse behavioral domains.
Such transformations allow for complex tasks to train machine
learning algorithms and eventually make predictions of behavior.
Deep learning has previously been used across multiple scientific
domains, including screening of drug targets, creating brain
networks, and predicting mutations from noncoding DNA
(Ciodaro et al., 2012; Helmstaedter et al., 2013; LeCun et al.,
2015; Xiong et al., 2015). Herein we will examine the recent
developments in using deep learning to analyze animal behavior
relevant to modeling human conditions.

Deep Learning for Automated Analyses
of Behavior
Computational analysis can aid in understanding dynamic
animal behavior influenced by genetic and environmental factors.
However, not all computational analysis techniques are well
suited to behavioral neuroscience studies. Supervised learning
models must first analyze enormous sets of data for algorithms

to predict future circumstances, which are not readily available
to the majority of neuroscience laboratories (LeCun et al., 2015).
Traditional animal posture tracking relies on physical markers,
skeleton contour models, and training regressors based on
derived features from animals. These methods have multiple
inherent limitations which can hinder research efforts. In
contrast, deep learning leads to the development of multifaceted
and complex neural networks that are robust enough to predict
behavior with limited training data (Mathis and Mathis, 2020).
Multiple platforms such as MoSeq, DeepHL, DeepPoseKit,
SLEAP, and DeepLabCut utilize deep learning approaches for
pose estimation of animal behaviors. DeepLabCut is one of
the most widely used deep learning platforms for behavioral
analysis, overcomes many limitations of animal posture, and
offers reliable tracking of behavior across different environments
(Mathis et al., 2018).

DeepLabCut is an open-source toolbox that provides reliable
and efficient tools for high throughput video analysis (Mathis
et al., 2018; Nath et al., 2019) which incorporates features
from DeeperCut and ImageNet, a pose estimation algorithm
previously used in humans and for object recognition. Video
recordings of animal behavior are obtained then labeled
and dissected within the DeepLabCut toolbox. An automated
learning module extracts frames that best represent the observed
animal behavior and the user individually labels points of interest
on the animals’ bodies in those extracted frames to create a
stable training dataset. After achieving sufficient reliability across
multiple animals and experiments, the network of data (ResNet)
is capable of automating the entire process to predict the desired
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labels in future video recordings (Mathis et al., 2018; Nath et al.,
2019). DeepLabCut is extremely versatile, permitting the user
to continually refine the labeling parameters to make feature
detection more accurate and detect variable behaviors.

DeepLabCut has several advantages and disadvantages over
traditional behavior analyses. Providing a user-friendly interface,
DeepLabCut can achieve human-level accuracy on analyzing
behavior (Nath et al., 2019). Additionally, utilizing the automated
analysis minimizes the cost of manually analyzing video
recordings of behavior. DeepLabCut, however, can require
extensive processing power not universally available. Another
limitation DeepLabCut shares with other tracking software is
that some body features of the subject may be occluded in
the video and will not be tracked. To address this limitation,
DeepLabCut predicts the outcome of occluded body parts and
quickly detects the labeled body part once they reemerge in-frame
(Nath et al., 2019). DeepLabCut can also be used to track multiple
different animals at once, including in their home environments
(Lauer et al., 2021). The majority of model organisms used in
neuroscience research, such as rodents and non-human primates,
are inherently social animals. Group housing permits more
naturalistic expressions of behavior, as well as the observation of
social and hierarchical dynamics.

DeepLabCut has been used to characterize an array of
phenotypes across a number of different species. For example,
to understand the role of CYP20A1 in development and
neurological function, a recent study generated a mutant
cyp20a1-/- zebrafish (Brun et al., 2021). Utilizing DeepLabCut

for the automated analysis of swimming behavior in a novel tank
assay demonstrated that the CYP20AI locus plays a critical role in
regulating cortisol and anxiety-like behavior (Brun et al., 2021).
In a separate example, Chen et al. (2021) generated a knockout
mouse of the transcriptional factor MYT1L to study its role in
neurodevelopment and behavior. Humans with a mutation in
MYT1L display a hyperactive phenotype. Postural analysis of
mice using DeepLabCut during an open field paradigm found sex
dependent effects on activity which, along with other findings,
validated this mouse as an appropriate model for the human
disorder (Chen et al., 2021). DeepLabCut, as well as other similar
tools, is thus a powerful tool to analyze multiple the for specific
phenotypes related to the development of human disease.

While DeepLabCut is mentioned extensively in this review,
the existence of similar but separate algorithms exists, such
as DeepHL, DeepPoseKit, and LEAP. DeepHL is similar to
DeepLabCut in that it uses deep neural networks for automated
analysis of behavior. Maekawa et al. (2020) developed a
matrix capable of classifying trajectories across multiple species.
However, data obtained from a deep neural network is frequently
considered a black box due to the difficulty in the interpretation
of high–level features. DeepHL can illuminate characteristic
segments in the trajectories of a gross deep learning data set to
detect group differences, one example being flight patterns of
male and female seabirds (Maekawa et al., 2020). DeepPoseKit
offers an advanced pose estimation kit which utilizes an enhanced
deep learning neural network called Stacked DenseNet to provide
pixel – accurate tracking of body parts of an animal as opposed

TABLE 5 | A selection of studies using deep learning to integrate genomic sequencing and behavioral phenotyping.

Study Deep learning method Subject Trait/pathology
analyzed

Major finding

Gurovich et al., 2019 DeepGestalt Human morphology Angelmen’s, Noonan,
Cornelia de Lange
Syndrome

Achieved over 90% accuracy in detecting the
prevalence of a syndrome based facial features

van Hilten et al., 2021 GenNet Human genomics Schizophrenia Identified and predicted the phenotypic outcome at a
rate of 0.685 (AUC)

Wang et al., 2019 WheatNet Wheat morphology Flowering time Determined accurate predictions of morphology
controlled by genetics

Cheng et al., 2021 XGBoost Arabidopsis and
maize genomics

Nitrogen use efficiency
(NUE)

Predicted important genes in both species that aid in
maximal NUE

Sheehan and Korstanje, 2018 Llastik Kidney glomeruli
morphology

Renal function Provided fast and accurate glomerular identification and
features

Jones et al., 2020 PAWS Mouse behavior Affective pain Detects mechanical hypersensitivity that otherwise
would not be determined using von Frey

Wu et al., 2019 FLLIT Drosophila behavior Neurodegeneration Recapitulated gait characteristics of human
neurodegenerative diseases using models of
Parkinson’s and mutant SCA3 flies

Bala et al., 2020 OpenMonkey Studio Monkey behavior Pose estimation in a
social setting

Describes a deep learning approach for tracking freely
moving macaques in an unconstrained environment

Kim et al., 2021b YOLO Weanling pig
behavior

Feeding Detects feeding locations from non – feeding locations
and detects feeding behavior with precise accuracy to
classify pig age

Abdollahi-Arpanahi et al., 2020 MLP and CNN’s Holstein bull
genomics

Sire conception rate
(SCR)

Correlated SCR traits in bulls based on non – additive
loci

Althagafi et al., 2021 DeepSVP Human and mouse
genomics

Dravet Syndrome Assess genotype in humans using genomic and
phenomic data in loss – of – function mouse studies
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to DeepLabCut’s convolutional neural network (Graving et al.,
2019). LEAP combines a graphical user interface for the labeling
of images with a simple network architecture that allows the
algorithm to generate predictive animal behavior with as little as
ten frames of data, and can now be used to track multiple animals
at once (Pereira et al., 2019, 2022). These types of advancements
in computer science have opened the door for a wide variety
of deep learning algorithms to be implemented in the field of
behavioral analysis.

Additional Computational Advances in
Behavioral and Genomic Analysis
The progression of behavioral analysis technology has not
kept pace with the remarkable development of neurocircuit
manipulations (Anderson and Perona, 2014; Datta et al., 2019)
and high-throughput sequencing. DeepLabCut is just one of
many examples that utilizes deep learning algorithms for
the analysis of behavior. Research in the pain field utilizing
computational techniques has demonstrated that meaningful
data can be obtained from small changes in temporal resolution
of stimulus evoked behavior (Fried et al., 2020). Using deep
learning algorithms, an automated pain assessment platform
(Pain Assessment at Withdrawal Speeds; PAWS) was developed
which automatically scores behavioral features seen in the
withdrawal reflex (Jones et al., 2020). PAWS uses distinct
behavioral features to create a single pain score that is capable
of identifying a unique paw withdrawal reflexes between different
genetic strains of mice (Jones et al., 2020).

Drosophila exhibit a tremendous diversity of behavior and
can serve as an animal model of human neurodegenerative
diseases. Motor movement of flies has been extensively studied
using optical touch sensors that track movement as the fly
comes into contact with the sensor (Mendes et al., 2013).
However, using this method only utilizes one variable of
fly locomotion and leaves out microscale leg movements.
Wu et al. (2019) developed a machine learning algorithm
to automatically track leg movements of freely moving flies
called Feature Learning-based Limb segmentation and Tracking
(FLLIT). FLLIT automatically tracks drosophila leg movement
and generates a series of gait parameters with minimal training
input. FLLIT accurately tracks disrupted gait in Parkinson’s
Disease and Spinocerebellar ataxia 3 mutant flies, indicating that
these genetic models captured motor deficits frequently observed
in patients (Wu et al., 2019).

Non-human primates are one of the most important model
organisms for understanding human disorders. Unfortunately,
only a fraction of the available data generated by these complex
organisms are typically used. DeepLabCut and other similar
tools may have trouble tracking non-human primates due to
their large range of movements and the lack of a database
of systematically defined behaviors. OpenMonkeyStudio was
developed to specifically track non-human primate motion using
their own database of annotated macaque images and pose
detection software (Bala et al., 2020). OpenMonkeyStudio can
provide laboratories with the necessary toolbox to track and
analyze complex behaviors exhibited by rhesus macaques, and

potentially other non-human primates. The authors note that
their system is not a simple plug and play solution to understand
non-human primate behaviors, and OpenMonkeyStudio will
need to be replicated in each individual laboratory before data
collection can occur (Bala et al., 2020). Nevertheless, this is the
first instance of deep learning technology specifically optimized
for tracking rhesus macaque monkeys.

Behavioral data is most reliable when collected in the animal’s
natural environment with minimized human intervention. The
deep learning algorithm You Only Look Once (YOLO) accurately
and reliably captures feeding behavior in farm raised pigs.
Experimenters captured recordings of group housed, farm-
raised pigs using YOLO to determine differences in food and
water intake (Kim et al., 2021b). YOLO may assisted in real-
time monitoring of changes in feeding and drinking behavior
that are a result of physiological differences between animals
or subtle changes in the environment. By adding multiple
different detection layers to the YOLO algorithm, the system can
accurately track multiple overlapping pigs within a designated
housing area (Kim et al., 2021b). Pigs are increasingly being used
as models of psychiatric disorders and other human diseases
(Gieling et al., 2011), suggesting that YOLO may be a valuable
deep learning tool for understanding human behavior.

Using deep learning to analyze genotype and behavior
concurrently can derive an accurate organismal phenotype.
Geneticists can trace quantitative trait loci to specific phenotypes
to establish a causal genotype-to–phenotype relationships (Jansen
and Nap, 2001). Geneticists are now using deep learning
approaches to efficiently identify quantitative trait loci and
single nucleotide polymorphisms for thousands of emergent
phenotypes, both physiological and behavioral. For example,
DeepSVP is a deep learning algorithm that leverages genomic
information obtained in ontologies and phenotypes obtained
in mouse loss-of-function studies to accurately predict whether
a structural variant in the human genome will be pathogenic
(Althagafi et al., 2021). Table 5 summarizes different, novel deep
learning methods that are being used to characterize phenotypes
based on genetics and morphology, in addition to behavior.
As the integration of genomics and phenotype characterization
using deep learning is very new, studies outside of the field of
neuroscience have also been highlighted.

CONCLUSION

The development of novel techniques to study a diverse array
of model organisms using multiple species has been at the
forefront of neurobiological research. With the advent of CRISPR
genome editing, it is now easier than ever for independent
laboratories to design and create their own experimental animals.
Genomic and behavioral neuroscience technologies have also
advanced in parallel to genome engineering. To circumvent
some of the issues present in second-generation short-read
sequencing, third-generation long-read sequencing allows for the
production of longer transcripts necessary for novel isoform
discovery. scRNA-Seq and snRNA-Seq now allow researchers
to understand changes in gene expression on the single cell
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level, which is particularly important when studying an organ
with such cellular heterogeneity as the brain. Combined with
spatial transcriptomics, studies can now investigate brain region
and cell type changes in model organisms. Beyond genomics,
the integration of deep learning algorithms into behavioral
analysis software allows for quicker and more in-depth analysis
of behavioral phenotypes.

The exponential rise in genetic, genomic, and behavioral
neuroscience approaches has created an unprecedented
opportunity for studying and understanding human psychiatric
and neurological disorders. Each of these approaches offer a
complementary set of tools to determine the causal relationship
amongst multiple cellular and molecular pathways that
govern intricate behavioral repertoires. Strategic initiatives,
such as the Brain Research Through Advancing Innovative
Neurotechnologies (BRAIN) Initiative (Ngai, 2022) and
the Somatic Cell Genome Editing (SCGE) program (Saha
et al., 2021), are creating even more opportunities to
merge genetic, genomic, and behavioral approaches for
basic science discovery and therapeutic opportunities. The
combination of these techniques can now be successfully

used to conduct large-scale in vitro and in vivo screens
for multiple candidate genes (Kuhn et al., 2021). Together
these advances not only make characterization of model
organisms more thorough, but will help advance the field
of molecular neuroscience toward discovery of the causes of
and treatments for disorders that affect millions of individuals
around the world.
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