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Abstract: The fusion of on-board sensors and transmitted information via inter-vehicle communication
has been proved to be an effective way to increase the perception accuracy and extend the perception range
of connected intelligent vehicles. The current approaches rely heavily on the accurate self-localization of
both host and cooperative vehicles. However, such information is not always available or accurate enough
for effective cooperative sensing. In this paper, we propose a robust cooperative multi-vehicle tracking
framework suitable for the situation where the self-localization information is inaccurate. Our framework
consists of three stages. First, each vehicle perceives its surrounding environment based on the on-board
sensors and exchanges the local tracks through inter-vehicle communication. Then, an algorithm based on
Bayes inference is developed to match the tracks from host and cooperative vehicles and simultaneously
optimize the relative pose. Finally, the tracks associated with the same target are fused by fast covariance
intersection based on information theory. The simulation results based on both synthesized data and
a high-quality physics-based platform show that our approach successfully implements cooperative
tracking without the assistance of accurate self-localization.

Keywords: cooperative perception; multi-vehicle tracking; Bayes inference; track association

1. Introduction

Nowadays, intelligent vehicles equipped with advanced driver assistance systems (ADASs)
can perceive other road participants and obstacles, including vehicles, pedestrians, etc., through
on-board sensors. A variety of on-board sensors have been widely applied to achieve this goal,
such as camera, Lidar, Radar, and so on. The perception system [1,2] of intelligent vehicles captures the
measurements of surrounding targets through these sensors and build an environmental model which
reflects the real states of different targets.

Multi-vehicle tracking (or more generally, multi-object tracking, MOT) is a crucial perception task
since an accurate estimate of surrounding vehicles plays an important role in subsequent collision
avoidance and route planning. The main challenge in MOT is the determination of the association between
measurements and targets. In the literatures, extensive algorithms have been proposed to handle the data
association problem. Multiple hypothesis tracking (MHT) [3] is known as a powerful algorithm to address
the data association problem in MOT. Although MHT is Bayesian optimal in theory, the exact solution
of MHT is computationally intractable, thus, requiring proper approximation. Joint probabilistic data
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association (JPDA) [4] makes a soft association with the assumption that each measurement can originate
from several candidate targets. JPDA can achieve reasonable results with lower computational burden.
Recently, Mahler first used the Bayesian filter to derive a multi-target tracking algorithm based on random
finite set (RFS) theory [5,6]. Under the RFS framework, the Bayes recursion formula for tracking single
targets can be extended to multi-target tracking problems. The resulting probability hypothesis density
(PHD) filter can propagate the PHD or the first-order moment of the multi-target posterior density.
The integral of the PHD over a region in the state space gives the expected number of targets within
this region, while the peaks in the PHD represents the state of the targets. To address the computationally
intractable multiple integrals issue, Gaussian mixture PHD (GMPHD) [7] was further developed which
led to a closed-form solution to the PHD filter recursion.

In reality, due to the physical mechanism, the on-board sensors of intelligent vehicles always suffer
from inherent drawbacks, such as limited perception range or field-of-view (FOV). Moreover, in the crowd
scenarios where frequent occlusion occurs, intelligent vehicles fail to detect the target that is occluded,
thus, increasing the potential risk of traffic conflicts. To address the above issue, cooperative perception
(or collaborative perception) [8–10] based on inter-vehicle communication has attracted much attention
recently. For instance, dedicated short range communication (DSRC) has been introduced as a useful
technique which allows vehicles to communicate with other neighboring vehicles through the on-board
units (OBUs) installed in the vehicles. When the vehicles communicate successfully, they can exchange
their respective local perception results. In fact, inter-vehicle communication (more strictly speaking,
the wireless interface) can be viewed as a type of virtual sensor [11,12] in the sense that a host vehicle
can combine its local estimate and a remote message transmitted from other cooperative vehicles to form
a more accurate and complete environmental model. Due to the significant distance of inter-vehicle
communication and the fusion of information from different viewpoints, cooperative perception not only
increases the accuracy and perceptual range beyond line of sight, but also reduces blind spots caused by
mutual occlusion, weather, and other external factors.

By introducing inter-vehicle communication into multi-object tracking, cooperative tracking has
emerged as a promising technique. In [13], a collaborative sensor fusion algorithm was proposed for MOT
by combing GMPHD filter and covariance intersection. The cooperative tracking algorithm was further
applied to assist the overtaking system [14] and the results confirmed the advantage of cooperative sensing.
In [15], a data association and fusion framework was proposed for multi-vehicle cooperative perception.
An interactive multiple model (IMM) filter [16] was used to estimate the state of vehicles and Bhattacharyya
distance was applied to measure the difference between local tracks from a host vehicle and communicated
tracks from a cooperative vehicle. After association, fast covariance intersection (FCI) [17] which computed
the weights directly without nonlinear optimization was employed to fuse together the tracks associated
with the same target. This work relied on the assumption of on-board measurements available in
global coordinate systems, which required the accurate self-localization of both host and cooperative
vehicles. In [18], the temporal and spatial alignment between the local environment model of host and
cooperative vehicles were reviewed, however, target association and track fusion were not discussed.
Some works [19–21] studied the track-to-track association problem in the case of cooperative sensing under
the assumption of accurate positioning information.

In summary, current cooperative multi-vehicle tracking methods typically assume the self-localization
information, such as position and orientation, of both host and cooperative vehicles is accurate such that the
local tracks perceived by two vehicles can be readily converted into either a global frame or the local frame of
host vehicle by coordinate system transformation. Then, track association and fusion can be conducted and
the information from cooperative vehicle can be used to enhance the perception performance of host vehicle.
However, accurate self-localization through positioning systems, such as Global Positioning System (GPS),
is not always accurate enough or even available [22]. For example, in dense urban environment where the
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vehicles are surrounded by skyscrapers or tall buildings, the location information provided by GPS would
not be reliable. In such cases, inaccurate or even unavailable self-localization information seriously affects
the performance of cooperative tracking system.

To address the above problem and enhance the robustness of cooperative multi-vehicle tracking,
we propose, in this paper, an integrated framework which can determine the relative pose (including
translation and orientation) of host and cooperative vehicles relying on their respective local tracks, instead
of global positioning information. Moreover, this work concentrates on the dynamic situation where the
relative translation and orientation between host and cooperative vehicles are changing with time. This is
more consistent with real traffic environment where vehicles are usually driving with different intentions.
Consequently, our cooperative multi-vehicle tracking system still works without the assistance of accurate
self-localization information.

It should be emphasized that in the literature of wireless sensor networks (WSNs), some target
tracking algorithms [23–25] have been developed for simultaneous localization and tracking (SLAT). In [24],
a Bayesian filtering framework was proposed to infer the joint posterior distribution of both target and
multiple sensors. Variational method [26] was used to approximate the joint state during the measurements
correction stage. In [25], a dynamic non-parametric belief propagation (DNBP) method was proposed for
cooperative vehicle sensing. However, most works in SLAT tend to track one target by using multiple
static or moving sensors, thus, restricting their application to more complex scenarios where the number of
targets can vary at different times.

The rest of this paper is organized as follows: In Section 2, we briefly review the adaptive GMPHD filter
which is the basic component for target tracking; in Section 3, we present our framework of cooperative
tracking and propose a Bayes model for simultaneous track association and relative pose estimation;
in Section 4 we report some simulation results based on both the synthesized data and PreScan-based system;
and finally, we provide some conclusions and future works in Section 5.

2. Adaptive GMPHD Filter for MOT

2.1. PHD Filter Formulation

In PHD filter, both the multi-target state and the set of measurements at each time step are
represented by RFS. The PHD filter approximates the multi-target Bayes filter through propagating
the first-order moment. The recursive process of PHD filter includes two steps, i.e., prediction and
correction (or update) as follows:

1. PHD prediction

vk|k−1(x) =
∫ [

PS,k(ζ) fk|k−1(x|ζ) + βk|k−1(x|ζ)
]
vk−1|k−1(ζ)dζ+ γk(x) (1)

where vk|k−1(x) and vk−1|k−1(ζ) represent the predicted and posterior intensity of the target at time
k − 1, PS,k(ζ) is the survival probability when the target state is ζ, fk|k−1(

1 
 

transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  |

1 
 

transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  ) is the single-target
state transition density, βk|k−1(
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transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  |

1 
 

transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  ) and γk(x) denote the intensity of spawning target and newborn
target, respectively.

2. PHD correction

vk|k(x) =
[
1− PD,k(x)

]
vk|k−1(x) +

∑
z∈Z(k)

PD,k(x)gk(z|x)vk|k−1(x)

κk(z) +
∫

PD,k(ζ)gk(z|ζ)vk|k−1(ζ)dζ
(2)
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where Z(k) =
{
zk,1, zk,2, . . . , zk,Mk

}
denotes the measurement set at time k, Mk is the total number

of measurements, PD,k(x) is the detection probability when the target state is x, gk(

1 
 

transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  |

1 
 

transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  ) is the
single-target measurement likelihood function, and κk(

1 
 

transition density, 𝛽𝑘|𝑘−1 ∙ | ∙  and 𝛾𝑘 𝑥  denote  ) is the intensity of the clutter RFS.

The above two formulas are the basic recursive equations for PHD filtering. After correction at
each time, the expected number of targets can be obtained by integrating the updated PHD intensity,
and then taking the nearest integer value. The status of each target can be obtained from the state
corresponding to the updated PHD peak point. It can be seen that the PHD filter can avoid the data
association problem. However, the PHD filter includes multiple integration operations, which cannot obtain
an analytical solution, and suffer from “dimensional disaster” in the calculation of numerical integration.

2.2. Gaussian Mixture Implementation

In order to give a closed-form solution for PHD recursion, Gaussian mixture PHD (GMPHD) filter
uses a set of Gaussian components to approximate the posterior density where the weights, mean values,
and covariances of each Gaussian component are continuously updated over time. Suppose that the
posterior intensity at time k− 1 is expressed as follows:

vk−1|k−1(x) =
Jk−1|k−1∑

i=1

w(i)
k−1N

(
x; m(i)

k−1, P(i)
k−1

)
(3)

where Jk−1|k−1 represents the number of Gaussian components at time k − 1, N(x|a, B) stands for the
multivariate Gaussian distribution with mean a and covariance B. It is assumed that transition probability
density and observed likelihood function also follow Gaussian distribution as follows:

fk|k−1(x|ζ) = N(x; Fk−1ζ, Qk−1) (4)

gk(z|x) = N(z; Hkx, Rk) (5)

where Fk−1 and Hk are linear state transition matrix and linear observation matrix, respectively, and Qk−1
and Rk are the covariance matrices of the process noise and the measurement noise, respectively.

Substituting vk−1|k−1(x) in Equation (3) into the PHD prediction and correction equations, we can
obtain the recursive form of the PHD in the Gaussian mixture form. Specifically, GMPHD performs the
prediction and correction as follows:

1. GMPHD prediction

vk|k−1(x) =
Jk|k−1∑
i=1

w(i)
k|k−1N

(
x; m(i)

k|k−1, P(i)
k|k−1

)
(6)

In this work, the spawning target is ignored and the prediction Formula (6) can be rewritten as

vk|k−1(x) = vS,k|k−1(x) + γk(x) (7)

where

vS,k|k−1(x) = PS,k

Jk|k−1∑
i=1

w(i)
k−1N

(
x; m(i)

S,k|k−1, P(i)
S,k|k−1

)
(8)

m(i)
S,k|k−1 = Fk−1m(i)

k−1 (9)
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P(i)
S,k|k−1 = Fk−1P(i)

k−1FT
k−1 + Qk−1 (10)

2. GMPHD correction

vk|k(x) =
(
1− PD,k

)
vk|k−1(x) +

∑
z∈Zk

Jk|k−1∑
j=1

w( j)
k (z)N

(
x; m( j)

k|k , P( j)
k|k

)
(11)

where

w( j)
k (z) =

PD,kw( j)
k|k−1N

(
x; Hkm( j)

k|k−1, HkP( j)
k|k−1HT

k + Rk

)
κk(z) + PD,k

∑Jk|k−1
l w(l)

k|k−1N
(
x; Hkm(l)

k|k−1, HkP(l)
k|k−1HT

k + Rk

) (12)

m( j)
k|k = m( j)

k|k−1 + K( j)
k

(
z−Hkm( j)

k|k−1

)
(13)

P( j)
k|k =

(
I −K( j)

k HkP( j)
k|k−1

)
(14)

K( j)
k = P( j)

k|k−1HT
k

(
HkP( j)

k|k−1HT
k + Rk

)−1
(15)

After the GMPHD correction is completed, the Gaussian components with small weight are pruned
and the Gaussian components close to each other are merged. Finally, in order to extract tracks, the mean
value of the Gaussian component with the weight greater than a certain threshold is used as the multi-object
state estimation.

For the application of GMPHD, the intensity of newborn target γk(x) should be defined at each time,
indicating the possible state when new targets appear. In our cases, the target vehicles can encounter
the FOV of host and cooperative vehicles at different positions and times. As a result, it is infeasible to
define γk(x) in advance. To address the problem, at each time, we let γk(x) be driven by the observed
measurements adaptively as follows:

γk(x) =
Mk∑
i=1

w(i)N
(
x; zk,i, P0

)
(16)

where P0 denotes the initial covariance matrix and zk,i denotes the state constructed from the measurement
zk,i In such a way, the resulting adaptive GMPHD filter is applicable to the cooperative tracking situations
we concern.

3. Cooperative Tracking with Inaccurate Self-Localization

3.1. Framework of Cooperative Tracking

We assume that many vehicles are moving in the environment according to their maneuvers.
Among these vehicles, some vehicles can independently sense the other vehicles within in certain range by
using on-board sensors and exchange their local information via inter-vehicle communication. The vehicle
transmitting message is called cooperative vehicle, whereas the vehicle receiving message and performing
fusion is called host vehicle. Certainly, a vehicle can send or receive message depending on its role.
The other vehicles not involved in cooperation are called target vehicles. This work concentrates on the
situation where the relation translation and rotation between host and cooperative vehicles are dynamically
changing and inaccurate (or even unknown), thus, preventing the direct application of existing technologies.
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To address the above problem and achieve sensor fusion for cooperative multi-vehicle tracking, we propose
a novel framework depicted in Figure 1.Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 
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As shown in Figure 1, the host and cooperative vehicles first obtain respective local tracks by
conducting the adaptive GMPHD algorithm presented in Section 2. Then, the cooperative vehicle transmits
its local tracks to the host vehicle which attempts to estimate the relative translation and rotation between
two vehicles and simultaneously associate the locals track from two vehicles by using the algorithm
explained next. Finally, the matched tracks are fused following fast covariance intersection based on
information theory (IT-FCI) [27].

3.2. Track Association and Relative Pose Estimation

3.2.1. Formulation

The relative pose estimation and track association problem in dynamic scenarios is shown in Figure 2.
Here, we focus on two-dimensional space for brevity, however, our proposed method can be extended to
higher-dimensional space with slight modification. Given two vehicles S1 and S2, here, S1 is assumed
to be the host vehicle, and S2 is assumed to be the cooperative vehicle, indicating that S2 sends its local

estimates to S1 where the information fusion is performed. At given time k, let X1
k =

{
x1

k,1, x1
k,2, · · · , x1

k,N1
k

}
and X2

k =

{
x2

k,1, x2
k,2, · · · , x2

k,N2
k

}
be the collection of local tracks of S1 and S2 which are obtained through

MOT algorithm, such as adaptive GMPHD in Section 2. N1
k and N2

k denote the total number of tracks
in S1 and S2, respectively. Moreover, the relative location and orientation of S2 with respect to S1 at

time k is characterized by sk =
[
ξk,

.
ξk, ηk,

.
ηk,θk,

.
θk

]T
where ξk and ηk, denote the translation of S2 in the

Cartesian coordinate system of S1. Similarly, θk denotes the orientation angle.
.
ξk,

.
ηk, and

.
θk represent the

corresponding velocities.
Any track x2

k, j in the coordinate of S2 can be exactly transformed to that of S1 as follows:

x2→1
k, j = R(θk)x2

k, j +

[
ξk
ηk

]
(17)

where R(θk) =

[
cosθk − sinθk
sinθk cosθk

]
denotes the rotation matrix. In the situation we consider, a major

difficulty is that (ξk, ηk,θk) is inaccurate (or even totally unknown) and dynamically changing with time.
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In addition, in the case of multiple targets, the association between tracks of different vehicles is
also unknown.

Suppose the track association between two vehicles is denoted by the true but unknown N1
k ×N2

k

association matrix Uk =
{
uk

i j

}
with each entry uk

i j ∈ {0, 1} representing the result of association between

x1
k,i and x2

k, j, 1 ≤ i ≤ N1
k , 1 ≤ j ≤ N2

k . Formally, if uk
i j = 1, it means that local tracks x1

k,i and x2
k, j refer to the

same target; otherwise, it means they belong to different target. Since it is assumed that each local track in
one sensor corresponds to one, and at most one local track in other sensor, we have the constraints applied
to Uk below

N2
k∑

j=1

uk
i j ≤ 1,

N1
k∑

i=1

uk
i j ≤ 1, ∀1 ≤ i ≤ N1

k , 1 ≤ j ≤ N2
k . (18)

In addition, in order to incorporate the prior information about sk, it is supposed that sk follows

P(sk) = N(sk|a, B). (19)

For example, similar to Kalman filter, we let a = Fŝk−1, B = FPk−1FT + Q, ŝk−1, and Pk−1 are the mean
and covariance of sk−1; F is the state transition matrix of cooperative vehicle; and Q is covariance matrix of
the process noise.

Similarly, according to Equation (17), we have the following likelihood function:

P
(
x1

k,i|sk, x2
k, j

)
= N

(
x1

k,i|R(θk)x2
k, j +

[
ξk
ηk

]
, Σ

)
(20)

where Σ is the measurement noise covariance. The above assumption is reasonable, since x2→1
k, j should be

close to x1
k,i when x1

k,i and x2
k, j refer to the same target. We also assume that the local tracks are independent

of each other. On the basis of the above discussion, we propose the following probabilistic model:

P
(
sk, X1

k , X2
k |Uk

)
= P(sk)

∏
j

P
(
x2

k, j

)∏
i, j

P
(
x1

k,i|sk, x2
k, j

)uk
i j

(21)

Other prior knowledge, for example, given noisy measurement of partial entries of sk, can be easily
integrated into Equation (21) by introducing extra likelihood function.
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3.2.2. Expectation-Maximum (EM) Solution Algorithm

We treat sk, X1
k , X2

k , and Uk as complete data; X1
k , X2

k as incomplete data; sk as hidden variable; and Uk
as unknown parameter. Then, we develop an effective solution in the spirit of the expectation-maximum
(EM) solution algorithm, which attempts to jointly estimate the distribution of hidden variable sk and track
association matrix Uk in an iterative fashion. Specifically, the algorithm consists of the following two steps:

1. E-step

Q
(
U, Up−1

)
= E

{
logP

(
sk, X1

k , X2
k |U

)
|Up−1

}
; (22)

2. M-step

Up = argmaxQ
(
U, Up−1

)
. (23)

where p refers to the pth iteration of the algorithm. The E-step and M-step repeat until certain
convergence criteria is satisfied.

E-Step

Given the estimation of Uk at the (p− 1)-th iteration, we need to calculate the expectation of

logP
(
sk, X1

k , X2
k |U

)
. Let Ωp−1

k =
{
(i, j)|uk,p−1

i j = 1
}
, indicating those associated tracks between sensors. Then,

according to Bayes theorem and Equation (21), we can have the posterior distribution of sk as follows:

P
(
sk|X1

k , X2
k , Up−1

)
=

P(sk)
∏

(i, j)∈Ωp−1
k

P
(
x1

k,i|sk, x2
k, j

)
∫

P(sk)
∏

(i, j)∈Ωp−1
k

P
(
x1

k,i|sk, x2
k, j

)
dsk

(24)

Considering that R(θk) in the above distribution is nonlinear with respect to sk, we apply Talyor series
expansion to obtain the first-order linear approximation around current estimate θl−1

k as follows:

R(θk)x2
k, j +

[
ξk
ηk

]
≈ H

(
θl−1

k

)
sk + R

(
θl−1

k

)
x2

k, j − θ
l−1
k R

(
θl−1

k

)
x2

k, j (25)

where R(θk) =

[
− sinθk − cosθk
cosθk − sinθk

]
is the Jacobian matrix of R(θk) evaluated at θk, H

(
θl−1

k

)
is defined as

H
(
θl−1

k

)
=

 1 0 0 0 −x2
k, j(1) sinθl−1

k − x2
k, j(2) cosθl−1

k 0

0 0 1 0 x2
k, j(1) cosθl−1

k − x2
k, j(2) sinθl−1

k 0

 (26)

where x2
k, j =

[
x2

k, j(1), x2
k, j(2)

]T
.

Incorporating Equation (25) into Equation (20), the likelihood can be approximated as

P
(
x1

k,i|sk, x2
k, j

)
≈ N

(
x1

k,i|H
(
θl−1

k

)
sk + R

(
θl−1

k

)
x2

k, j − θ
l−1
k R

(
θl−1

k

)
x2

k, j, Σ
)
. (27)

Noticing the cumulative product in the numerator of Equation (24), we can, thus, iteratively apply

each likelihood function P
(
x1

k,i|sk, x2
k, j

)
to update the distribution of sk. For instance, given any (i, j) ∈ Ωp−1

k ,

we have

N(sk|a, B)N
(
x1

k,i|R(θk)x2
k, j +

[
ξk
ηk

]
, Σ

)
∝ cN(sk|a′, B′) (28)
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where
a′ = a + K

(
x1

k,i −R
(
θl−1

k

)
x2

k, j + θiR
(
θl−1

k

)
x2

k, j −H
(
θl−1

k

)
a
)

(29)

B′ =
(
I −KH

(
θl−1

k

))
B (30)

where I is a identity matrix and K is the Kalman gain defined by

K = BH
(
θl−1

k

)T
(
H
(
θl−1

k

)
BH

(
θl−1

k

)T
+ Σ

)−1
. (31)

Since c is a constant irrelevant to sk, the above correction equations mean that the posterior distribution

of sk after combing with likelihood P
(
x1

k,i|sk, x2
k, j

)
, also follows Gaussian distribution with updated mean a′

and covariance B′. As a result, by replacing the original a and B in Equation (19) with the latest estimates
a′ and B′, the above correction procedure can repeat until all (i, j) ∈ Ωp−1

k have been used to generate the
final posterior distribution of sk.

Finally, the conditional expectation of logP
(
sk, X1

k , X2
k |U

)
can be calculated as

Q
(
U, Up−1

)
∝

∑
i, j

ui jE
{
logP

(
x1

k,i|sk, x2
k, j

)
|Up−1

}
. (32)

From Equation (20), we can see that the conditional expectation in Equation (32) is difficult to evaluate

because P
(
x1

k,i|sk, x2
k, j

)
is nonlinear with respect to θk. Considering that sk follows Gaussian distribution,

a special case of Monte Carlo (MC) approximation method [28] which uses the mean of sk is applied.
Therefore, we obtain

Q
(
U, Up−1

)
∝

∑
i, j

ui jrT
ijΣ
−1ri j (33)

where ri j = x1
k,i −

[
cos θ̂k − sin θ̂k
sin θ̂k cos θ̂k

]
x2

k, j −

[
ξ̂k
η̂k

]
, θ̂k, ξ̂k, and η̂k denote the estimated entries of sk.

M-Step

In the M-step, the association matrix U needs to be updated by solving the following constrained
optimization problem:

Up = argmaxQ
(
U, Up−1

)
∝

∑
i, j

ui jd2
i j

s.t. ui j ∈ {0, 1},
∑N2

k
j=1 ui j ≤ 1,

∑N1
k

i=1 ui j ≤ 1
(34)

where d2
i j = rT

ijΣ
−1ri j is the Mahalanobis distance between local tracks x1

k,i and x2→1
k, j . We notice that

Equation (34) is a linear sum assignment problem (LSAP) which can be readily solved by the Hungarian
algorithm in polynomial time [29]. In addition, for local tracks corresponding to the same target, d2

i j should

be small, otherwise d2
i j should be large. Taking these into account, an extra thresholding step is applied to

d2
i j such that local tracks with large distance are removed from association.

3.3. Track Fusion

The last stage of our proposed framework is to combine different estimates (generated by host and
cooperative vehicles, respectively) of the same target vehicle into one solution. Since it is difficult to
calculate the cross-correlation among multiple estimates, especially for our distributed fusion architecture,
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direct application of optimal Bayes fusion can lead to overconfidence [30]. To address this problem,
we apply a special version of covariance intersection (CI), termed as information theory based fast CI
(IT-FCI) [27] which is given as:

x̂FCI = PFCI
(
ωP−1

1 x̂1 + (1−ω)P−1
2 x̂2

)
(35)

P−1
FCI = ωP−1

1 + (1−ω)P−1
2 (36)

where (x̂1, P1) and (x̂2, P2) denote two estimates of state corresponding to the same target, ω is the weight.
Let l denote the dimension of state, then ω is determined by

ω =
D(p1, p2)

D(p1, p2) + D(p2, p1)
(37)

D
(
pi, p j

)
=

1
2

ln |P j|

|Pi|
+

√(
x̂i − x̂ j

)T
P−1

j

(
x̂i − x̂ j

)
+ tr

(
PiP−1

j

)
− l

. (38)

4. Performance Evaluation and Results

Currently, it is not easy to test cooperative perceptions system using real vehicles due to the high cost
and potential risk [31]. Therefore, following previous studies [12], in this section, we carry out two types
of computer simulation to evaluate the performance of the proposed cooperative multi-vehicle tracking.

4.1. Simulation Based on Synthesized Data

A total of seven target vehicles are moving on the region (−800 m, 800 m)× (−800 m, 800 m). In addition,
there are two intelligent vehicles (Car-1 and Car-2) which are equipped with sensor, and thus can sense
the target vehicles in the environment. Car-1 and Car-2 is treated as the host and cooperative vehicle,
respectively. Therefore, the local tracks from Car-2 are sent and fused with local tracks from Car-1 to
enhance the perception performance. The perception range for each sensor is 500 m, indicating that the
target vehicles with distance larger than 500 from Car-1 and Car-2 cannot be tracked. The coordinate
system of Car-1 is viewed as reference system and the relative motion between the target vehicles and
Car-1 is assumed to follow the near constant velocity (NCV) [32] motion model

xk = diag[F, F]xk−1 + diag[G, G]vk (39)

where diag represents a diagonal matrix, target state xk =
[
ξk,

.
ξk, ηk,

.
ηk

]T
, F =

[
1 T
0 1

]
,

G =

[
T4/4 T3/2
T3/2 T2

]
, and vk ∼ N

(
0, σ2

)
with σ = 0.5. For each target vehicle, the position ξk and ηk can

be observed with measurement noise following Gaussian distribution with zero mean and covariance
matrix diag[1, 1]. For Car-2, besides the above relative motion in position, the relative rotation angle (in
radian) between Car-2 and Car-1 also changes according to nonlinear model θk = 0.3 + 0.1 sin(0.1k) in
order to simulate the dynamic variation of vehicle heading. False alarms at any scan time are generated
by Poisson distribution with mean λ = 3. The probability of detection PD = 0.98. Adaptive GMPHD
filtering algorithm, presented in Section 2, is conducted on Car-1 and Car-2 independently so that the local
tracks can be obtained. The simulation was performed for 50 Monte Carlo runs with randomly generated
process noise and measurements, thus, changing the trajectory and measurement of each target at each
run. The simulation length is set to 100 s. Figure 3 show one simulation run. Figure 3a shows the relative
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trajectories of seven target vehicles and Car-2 in the coordinate system of Car-1. Figure 3b,c show the
measurements from both the target vehicles and false alarms in the coordinate system of Car-1 and Car-2,
respectively. As can be seen from Figure 3, at different times, Car-1 and Car-2 can track a different number
of target vehicles because of vehicle appearance, disappearance, or out of perception range. The uncertain
miss detection, i.e., false alarm, will influence the measurements observed by Car-1 and Car-2.
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Figure 4 shows the estimate of relative translation and orientation angle in a simulation run. As can
be seen, the estimated results are rather close to the true state of Car-2 with respect to Car-1. The association
between local tracks from Car-1 and Car-2 at time k = 57 is shown in Figure 5. To quantitatively measure
the accuracy of state estimation of cooperative vehicle, we calculate the absolute error (AE) for the
state estimation. For example, the AE for ξ is defined as follows:

Eξ =
1
K

∑
k

|ξk − ξ̂k| (40)

where K = 100 is the simulation length, ξk and ξ̂k represent the estimated and true position of Car-2 at
time k. Finally, we calculate the average, maximum, and minimum AE across all Monte Carlo runs. The
overall results are shown in Table 1 showing that state estimation is rather accurate.
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Figure 4. Estimate of (a) relative translation in x-axis; (b) relative translation in y-axis; (c) relative orientation.
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Figure 5. Illustration of local tracks from Car-1 and Car-2 at time step k = 57. (a) Before association; (b)
After association.

Table 1. Absolute error (AE) of state estimation.

State Average AE Maximum AE Minimum AE

ξ 2.8330 3.4499 2.2454
η 3.4710 4.2924 2.9480
θ 0.0071 0.0090 0.0059
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To evaluate the effect of cooperative tracking, we use the criterion known as optimal subpattern
assignment (OSPA) distance because it captures the difference in cardinality and individual elements
between to finite sets [33,34]. The OSPA distance with order p and cut-off c is given by:

dc
p

[
Xk, X̂k

]
=

 1
N̂k

 min
π(n)∈Π

Nk∑
n=1

min
(
c, ‖xn

k − x̂π(n)k ‖2

)p
+ cp
|N̂k −Nk|




1/p

(41)

where Xk =
{
x1

k , x2
k , · · · , xNk

k

}
,X̂k =

{
x̂1

k , x̂2
k , · · · , x̂N̂k

k

}
, Π denotes all possible permutation of set

{
1, 2, · · · , N̂k

}
.

The above definition is suitable when Nk ≤ N̂k, otherwise we should use dc
p

[
X̂k, Xk

]
.

In the simulation, we let p = 1 and c = 50. The Monte Carlo average of the OSPA distance obtained
by Car-1, Car-2, and the fusion are shown in Table 2. In addition, we also show in Table 2 the optimal
fusion result (fusion-opt), assuming the relative translation and orientation is accurately given. As can
be seen, compared with independent perception, the average OSPA obtained by sensor fusion (cooperative
tracking) has reduced by 27% and 43% with respect to Car-1 and Car-2, respectively. The variation of
OSPA distance and the number of objects versus time in a simulation run is shown in Figure 6. As we
can observe, the local tracks from Car-1 and Car-2 can be fused, thus, reducing the OSPA distance and
improving the performance of MOT.

Table 2. Optimal subpattern assignment (OSPA) distance for multi-object tracking (MOT).

Method Average OSPA Maximum OSPA Minimum OSPA

Car-1 3.992 5.926 2.641
Car-2 5.086 7.130 2.763

Fusion 2.896 3.937 1.930
Fusion-opt 2.063 2.662 1.583
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Figure 6. Results in a simulation run (a) variation of OSPA distance and (b) variation of the number
of objects.

In order to compare the CPU time when dealing with an oncoming set of measurements, we show in
Table 3 the average execution time (millisecond) required by Car-1, Car-2, and the fusion stage. Notice that
the execution time of Car-1 and Car-2 is mainly consumed by adaptive GMPHD filtering, while fusion stage
concentrates on local tracks association and covariance intersection fusion. We can see from Table 3 that the
execution time consumed by sensor fusion is less than 10% of the adaptive GMPHD filtering. It indicates
that the introduction of sensor fusion does not influence the efficiency, however, significantly improves the
tracking performance of the whole tracking system.
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Table 3. Execution time (ms) for MOT.

Method Average Time Maximum Time Minimum Time

Car-1 32.86 35.01 31.43
Car-2 34.69 42.37 30.91

Fusion 2.64 3.19 2.39

4.2. Simulation Based on PreScan Platform

PreScan is a physics-based simulation platform which can be used to construct various driving
environments for the design and verification of autonomous vehicles. In PreScan, a lot of elements,
such as road, vehicles, sensors, vehicle-to-vehicle communication, weather etc., can be configured according
to specific requirements. In order to evaluate our proposed cooperative multi-vehicle tracking system,
we have built a driving scenario where 11 vehicles are deployed. Among these vehicles, two vehicles
(called Car-1 and Car-2) are equipped with Radar sensor to percept surrounding vehicles. Table 4 shows
the parameter of Radar. We can see from this table that for Car-1 and Car-2, only the leading vehicles with
distance less than 150 m and azimuth in the range of −120◦ and 120◦ can be detected. The simulation
length is 100. The simulation scenario at starting time and ending time is shown in Figure 7a,b, respectively.
Car-1 and Car-2 are also marked in Figure 7 for clarity. Similar to the previous simulation, Car-1 is treated
as the host vehicle, while Car-2 is treated as the cooperative vehicle. From Figure 7, we notice that both the
relative translation and rotation between Car-1 and Car-2 are changing with time, especially when the two
vehicles pass through the junction. In Figure 8, we illustrate the measurements observed by Car-1 and
Car-2 in their respective coordinate system. For Car-1, we also show the true relative trajectories of the
other vehicles. It can be observed that due to the limitation of perception range and possible occlusion
between vehicles, some vehicles cannot always be detected during the simulation. Consequently, the
measurements of certain vehicle cannot cover the corresponding trajectory completely.

Table 4. Radar sensor parameter configuration.

Parameter Value

Scan pattern Left to Right/Top to Bottom
Sweep rate 20 Hz
Beam range 150 m

Beam 120 deg
Beam 120 deg
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The relative translation and orientation estimated based on our proposed approach are shown in
Figure 9. We can see that in most cases, the estimated relative translation and orientation is rather
close to the true value. Figure 10 shows the local tracks from two vehicles before and after association
at time step k = 50. In this case, Car-1 and Car-2 can detect nine and seven vehicles, respectively.
After association, local tracks from Car-1 and Car-2 can be correctly matched, thus, leading to a total of 10
vehicles being detected. The variation of OSPA distance and the number of targets versus the simulation
time is shown in Figure 11. The mean OSPA distance for Car-1, Car-2, and Fusion is 12.13, 22.10, and 9.80,
respectively. A comparison with the case where Car-1 and Car-2 perform tracking alone shows that the
fusion of their perception results not only reduces OSPA distance but also leads to better estimation of
the number of vehicles. In summary, we conclude that the cooperative tracking successfully extends the
perception field of view, thus, achieving superior MOT performance.
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Figure 10. Illustration of local tracks from Car-1 and Car-2 at time step k = 50. (a) Before association;
(b) After association.
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5. Concluding Remarks and Future Work

In this paper, we present a novel framework for cooperative multi-vehicle tracking when the
self-localization information is not available. The adaptive GMPHD filter is applied to implement effective
vehicle tracking when the intensity of newborn target is infeasible to define in advance. A Bayes formulation
for joint track association and relative pose estimation is developed and the solution is derived by following
the EM algorithm. Finally, the tracks associated successfully are fused by fast covariance intersection based
on theory information. The simulation results demonstrate the relative pose between host and cooperative
vehicles can be inferred accurately in most cases. In addition, with slightly increased computational costs,
the cooperative multi-vehicle tracking demonstrates clear advantage over the non-cooperative tracking
algorithm in terms of perception performance.

In reality, communication delay is another important factor that affects the performance of cooperative
perception [35], especially when the bandwidth of the wireless channel is limited. Therefore, suitable
temporal alignment is necessary to account for the time bias caused by the communication delay and
algorithm execution. The simplest approach is based on the prediction model for the compensation of
communication delay. This work assumes the tracks from different vehicles have been synchronized to the
same time instant before track association and relative pose estimation. In addition, loss of communication
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links also hinders the application of our proposed algorithm. Actually, when the communication
links interrupt, the host vehicle cannot receive the message from the cooperative vehicle, and thus fail to
enhance the perception ability by fusion. After the communication links recover, the proposed algorithm
can be performed by the host vehicle once the message from cooperative vehicle arrives. In future work,
we plan to investigate the integration of temporal alignment into our framework to further enhance the
performance of multi-vehicle tracking. Moreover, the extension of our approach to explicitly consider the
effect of communication delays and failure is an interesting direction. One possible solution is to integrate
these factors into our probabilistic model by introducing new variables. We would discuss these problems
in future work.
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