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2.1. INTRODUCTION

With advances in biotechnology, genomics, and combinatorial chemistry, a wide vari-
ety of new, more potent and specific therapeutics are being created. Because of common
problems such as low solubility, high potency, and/or poor stability of many of these new
drugs, the means of drug delivery can impact efficacy and potential for commercialization as
much as the nature of the drug itself. Thus, there is a corresponding need for safer and more
effective methods and devices for drug delivery. Indeed, drug delivery systems—designed
to provide a therapeutic agent in the needed amount, at the right time, to the proper location
in the body, in a manner that optimizes efficacy, increases compliance and minimizes side
effects—were responsible for $47 billion in sales in 2002, and the drug delivery market is
expected to grow to $67 billion by 2006.

Controlled release drug delivery systems are being developed to address many of the
difficulties associated with traditional methods of administration. Controlled release drug
delivery employs devices—such as polymer-based disks, rods, pellets, or microparticles—
that encapsulate drug and release it at controlled rates for relatively long periods of time.
Such systems offer several potential advantages over traditional methods of administration.
First, drug release rates can be tailored to the needs of a specific application; for example,
providing a constant rate of delivery or pulsatile release. Second, controlled release sys-
tems provide protection of drugs, especially proteins, that are otherwise rapidly destroyed
by the body. Finally, controlled release systems can increase patient comfort and com-
pliance by replacing frequent (e.g., daily) doses with infrequent (once per month or less)
injection.

While a variety of devices have been used for controlled release drug delivery,
biodegradable polymer microspheres are one of the most common types and hold several
advantages. Microspheres can encapsulate many types of drugs including small molecules,
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proteins, and nucleic acids and are easily administered through a syringe needle. They
are generally biocompatible, can provide high bioavailability, and are capable of sus-
tained release for long periods of time. Several commercial products are based on polymer
microspheres including Lupron Depot r© and Nutropin Depot r©. Disadvantages of micro-
spheres include difficulty of large-scale manufacturing, inactivation of drug during fabri-
cation, and poor control of drug release rates. For example, Nutropin Depot, comprising
Genentech’s recombinant human growth hormone (rhGH) encapsulated within poly(d,l-
lactide-co-glycolide) (PLG) microspheres using Alkermes’ proprietary ProLease r© encap-
sulation technology, was recently pulled from the market because manufacturing and pro-
duction costs were too high.

In this chapter, the factors controlling drug release rates are reviewed, followed by sev-
eral examples of controlled-release microsphere applications. More importantly, methods
for microparticle fabrication will be described. In particular, the chapter will focus on a
precision particle fabrication (PPF) method that has been reported recently. PPF provides
unprecedented control of particle size, size distribution and morphology that may translate
into enhanced control of drug release rates and improved understanding of the mechanisms
controlling release.

2.2. BACKGROUND

2.2.1. Factors Affecting Release Rates

The microsphere fabrication method is a governing factor in the encapsulation and
release of therapeutics. In addition, a complicated array of factors including the type of
polymer, the polymer molecular weight, the copolymer composition, the nature of any
excipients added to the microsphere formulation (e.g., for stabilization of the therapeutics),
and the microsphere size can have a strong impact on the delivery rates.

First, the type of polymer used in microsphere fabrication and the way in which the
polymer degrades obviously affect drug release rates. Depending on the rate of hydrolysis
of their functional groups, polymers can be broadly categorized into two types: surface-
eroding and bulk-eroding [29, 91, 169]. Bulk-eroding polymers, such as PLG, readily
allow permeation of water into the polymer matrix and degrade throughout the microsphere
matrix. In contrast, surface-eroding polymers, such as polyanhydrides, are composed of
relatively hydrophobic monomers linked by labile bonds. In this way, they are able to resist
the penetration of water into the polymer bulk, while degrading quickly into oligomers and
monomers at the polymer/water interface via hydrolysis [148].

Bulk-eroding polymer microspheres are often characterized by a “burst” of drug—as
much as 50% of the total drug load [131]—released during the first few hours of incubation,
followed by a slow, diffusion-controlled release and sometimes a third phase in which the
remaining drug is released quickly as a result of severe degradation of the polymer matrix.
In microspheres composed of surface-eroding polymers, drug is released primarily at the
surface as the polymer breaks down around it. Erosion of such polymers usually proceeds
at a constant velocity [66]. If the drug of interest is homogeneously dispersed throughout a
microsphere, the largest rate of release will occur at the beginning. As time proceeds, the
surface area of the sphere and the release rate decrease asymptotically.
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Polymer molecular weight can affect polymer degradation and drug release rates. As
one might expect, an increase in molecular weight decreases diffusivity and therefore drug
release rate [2, 95, 109, 118, 191]. In addition, a major mechanism for release of many drugs
is diffusion through water-filled pores, formed as polymer degradation generates soluble
monomers and oligomers that can diffuse out of the particle. These small products are
formed more quickly upon degradation of lower molecular weight polymers. The decrease in
release rates with increasing polymer molecular weight appears to hold for small molecules,
peptides, and proteins [25, 123]. However, molecular weight typically has little effect on
release rates from surface-eroding polyanhydride microspheres [69, 167].

The co-monomer ratios in many copolymers can also affect release rates. Most often,
increasing the content of the more rapidly degrading monomer increases the release rate
[112, 156, 161]. Similarly, when drug release is controlled by polymer erosion, release rate
typically increases with higher concentration of the smaller and/or more soluble monomer
[167]. However, the effect of the copolymer composition can be complicated by differences
in the polymer phase behavior or the thermodynamics of the encapsulated drug [89].

A variety of excipients may be added to microsphere formulations to stabilize the drug
during fabrication and/or release and may impact drug release through several different
mechanisms. For example, to improve the encapsulation of bovine serum albumin (BSA) in
microspheres of poly(ε-caprolactone) (PCL) and 65:35 PLG, Yang et al. included poly(vinyl
alcohol) (PVA) in the BSA solution to stabilize the primary emulsion resulting in a more
uniform BSA distribution in the microspheres [192]. Increasing concentrations of PVA
decreased the initial burst of protein and the overall release rates. Jain et al. encapsulated
myoglobin in PLG microspheres in the presence of a stabilizer, mannitol [77]. They report
that mannitol increased the release rate and the final amount of drug released by increasing
the initial porosity of the PLG matrix, leading to faster formation of the pore network within
the sphere due to polymer erosion.

Clearly, microsphere size will strongly affect the rate of drug release. As size decreases,
the surface area-to-volume ratio of the particle increases. Thus, for a given rate of drug
diffusion through the microsphere, the rate of flux of drug out of the microsphere, per mass
of formulation, will increase with decreasing particle size. In addition, water penetration
into smaller particles may be quicker due to the shorter distance from the surface to the
center of the particle. Also, while the decrease in surface area with particle size may lead to
decreased rate of erosion of poorly water-permeable polymers like polyanhydrides, because
surface area-to-volume ratio increases with decreasing particle size, drug release rates (per
mass of polymer) will be faster for smaller polyanhydride microspheres.

2.2.2. Recent Applications of Controlled Release Microspheres

Controlled-release microspheres are in development for a number of interesting and
important applications, especially for delivery of large, fragile drugs like proteins and nucleic
acids. Several recent examples are described below.

2.2.2.1. Controlled-Release Vaccines Vaccination has been highly successful for
controlling or even eradicating many important types of infectious diseases, and new or
improved vaccines are being heavily investigated for AIDS [196], hepatitis B [170], anthrax
[59], and SARS [197]. A frequent problem is the need for repeated administrations—usually
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injections—to ensure long-lasting immunity. For example, the current anthrax vaccine re-
quires a series of boosters at 2 and 4 weeks, and at 6, 12, and 18 months following the first
inoculation; and the Recombivax HB r© vaccine for hepatitis B—required for most health-
care workers in the U.S.—is administered in three injections at 0, 1, and 6 months. The need
for multiple injections poses a serious problem for patients in developing countries with
limited access to medical care, where awareness is lacking, or for transient populations.
One promising alternative is a single-shot vaccine in which a drug delivery device provides
the necessary boosters at specified times after administration [83]. Further, the ability to
more precisely control the time course of vaccine delivery may lead to more effective vac-
cination with current antigens and may allow utilization of antigens that were previously
ineffective [114].

Single-shot Vaccine delivery systems should provide the antigen(s) and adjuvant on
a prescribed schedule and maintain the bioactivity of the antigen, both during fabrica-
tion of the delivery device and during the often prolonged residence time of the device
in the body. In recent years, much work has focused on developing microsphere-based,
single-administration, vaccine delivery vehicles [44, 45, 149, 158] using a variety of mate-
rials including hydroxypropyl cellulose/PLG [101], poly(ε-caprolactone) [160], PLA [141],
chitosan [31], and collagen [74], though the majority have been fabricated with PLG [7, 44,
47, 158, 162]. Maintenance of antigen bioactivity has been problematic due to contact of the
proteins with organic solvents and the hydrophobic polymer, and the use of strong physical
forces to produce the microspheres [2, 36, 81]. To enhance vaccine stability, researchers
have been focusing on several approaches, including the use of adjuvants to protect the
protein antigens or by choosing different microsphere materials [125, 138, 139].

A major advantage of microspheres for vaccination is that they can be passively targeted
to antigen-presenting cells (APCs) such as macrophages (M�) and dendritic cells. The
ability of APCs to phagocytose particulates is dependent on the particle size. In particular,
1- to 10-µm diameter microspheres are optimally taken up by APCs in a number of tissues
[9] and have been shown to enhance antigen-specific T-helper lymphocyte (Th) responses
[142] (thus leading to an enhancement in antigen-specific antibody responses) and elicit a
cytotoxic T lymphocyte (CTL) response (Nixon et al. 1996). T-cell activation in response to
antigen-encapsulating microspheres has been shown to be 100-1000 fold better than antigen
alone [179].

2.2.2.2. Stabilization of Encapsulated Protein Therapeutics A major problem with
protein encapsulation in polymer particles is loss of protein bioactivity. Damage to proteins
can occur during fabrication of the particles—via shear stresses or other physical forces,
through contact with organic solvents, and by loss of water (e.g., upon lyophilization)
[34, 76]—as well as during incubation and release in the warm, moist, in vivo environment.
Two types of damage occur most often: (i) covalent or non-covalent intermolecular aggre-
gation [34] and (ii) denaturation [51, 60]. Several studies have investigated the mechanisms
of damage [153]. Protein stability can be enhanced by the addition of excipients to prevent
aggregation and stabilize the folded protein structure or through judicious choice of polymer
employed for fabrication of the devices.

Although a number of types of stabilizing excipients have been studied, poly(ethylene
glycol) (PEG) and sugars have been the most common [46, 81, 88, 93, 163, 187]. For exam-
ple, Perez-Rodriguez et al. very recently reported that co-dissolving PEG (Mw 5,000) and
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maltose with α-chymotrypsin in the primary emulsion greatly reduced protein aggregation
and inactivation [163]. In a similar study, Castellanos et al. used PEG to enhance the stabil-
ity of γ-chymotrypsin encapsulated in PLG microspheres formed by a solid-in-oil-in-water
(s/o/w) emulsion process [35]. They reported that normal encapsulation procedures with
protein lyophilized from buffer or a trehalose solution caused 30% protein aggregation and
50% loss in activity. Co-lyophilizing the protein with PEG prior to encapsulation reduced
the activity loss to only 8%, but the protein still aggregated during encapsulation. By using
PEG as an emulsifier in the secondary o/w emulsion, the resulting microspheres were free
of protein aggregation and the enzyme completely maintained its activity upon extraction
from the particles. Similar stabilization of horseradish peroxidase (HRP) [35] and BSA [1]
was achieved with the same technique, suggesting that this may be a general approach for
protein stabilization. Finally, Jiang and Schwendeman reported that upon blending of 20–30
wt% PEG in PLA microspheres encapsulating BSA, protein aggregation was avoided and
in vitro protein release was sustained for 29 days [79].

Other types of excipients also are effective in the stabilization of proteins. Lysozyme
inactivation, precipitation, and aggregation were largely prevented upon formation of
the primary emulsion by the addition of 50 mM potassium phosphate, and the activity
of the protein was largely unaffected [135]. Further, the acidic microclimate resulting from
accumulation of polymer degradation products [63, 157] is a major factor causing protein in-
stability in degrading microspheres [154]. Schwendeman and co-workers [84, 200] showed
that addition of buffering salts can stabilize encapsulated proteins. Zhu et al. demonstrated
that co-encapsulation of magnesium hydroxide (Mg(OH)2), an antacid, increased the mi-
croclimate pH in PLG millicylinders and microspheres containing BSA [200]. The devices
with Mg(OH)2 showed minimal BSA aggregation and exhibited a smaller burst effect of
non-aggregated BSA compared to cylinders without the antacid.

The type of polymer used for microsphere fabrication, its degradation rate, acidity of
the degradation products, hydrophobicity, etc., can also impact stability of encapsulated
proteins. Although PLG is the most common polymer used for polymer microspheres, PEG
can be combined with polyesters to form poly(d,l-lactide)-co-poly(ethylene glycol) (PELA)
diblock copolymers [113, 198], PLA-PEG-PLA triblock copolymers [24, 38, 111], and
PLG-PEG-PLG triblocks [124]. It is thought that the more hydrophilic PEG may improve
the affinity of protein for the matrix polymer and lead to better entrapment efficiency [103,
104, 199].

2.2.2.3. DNA Encapsulation Gene therapy holds tremendous potential for treating
genetic diseases and acquired diseases including cancer, and as vaccines [8, 52, 53, 71, 176].
A major barrier to development of gene-based pharmaceuticals is safe and efficient DNA
delivery. Much research has focused on development of gene delivery vectors including
viruses [177], liposomes [55], and polymers [127]. However, parenteral administration of
naked plasmid DNA (pDNA) leads to gene expression [28, 188], and controlled release of
pDNA from polymeric matrices [26, 54, 116, 130, 155], microparticles [73, 116, 121, 171]
and nanoparticles [48, 75, 119] has been reported recently. In particular, encapsulation and
controlled release of pDNA from biodegradable microspheres may provide a number of
advantages including protection from nuclease degradation, access to alternative routes of
administration (e.g., nasal, pulmonary, oral, and mucosal), passive targeting to professional
antigen-presenting cells [73, 115], and prolonged gene expression [116].
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Problems currently facing the design of new DNA-loaded microparticle formulations
include loss of bioactivity, poor encapsulation efficiency and low loading due to the diffi-
culty of encapsulating such large hydrophilic macromolecules in the hydrophobic polymer
matrix. Plasmid DNA is particularly susceptible to damage by physical forces, especially
the shear forces employed in most microsphere fabrication processes [106]. In addition,
loss of structural integrity can result from exposure to acidic environments [171, 180, 182].
Ando et al. devised a novel emulsion-solvent extraction/evaporation method for DNA-
loaded microsphere encapsulation that prevents shear-induced damage of the plasmid [6].
In this method, the primary w/o emulsion, comprising the aqueous DNA solution and the
polymer/solvent continuous phase, is formed by sonication and then quickly frozen in liquid
nitrogen. The emulsion is allowed to warm slowly until reaching a temperature at which the
organic phase melts, but the aqueous phase remains frozen. The primary emulsion—actually
a suspension of ice particles—is then homogenized in water to form the microspheres. Be-
cause the DNA is entrapped in the frozen droplets, the plasmid does not experience the
shear forces employed in homogenization. In microspheres prepared by the optimal proce-
dure, 89% of the DNA retained its native conformation compared to only 39% using the
conventional process.

2.3. FABRICATION OF POLYMER MICRO- AND NANOPARTICLES

Microsphere drug delivery systems have been fabricated by a variety of techniques in-
cluding combinations of phase separation or precipitation (Young, 1999), emulsion/solvent
evaporation [11, 43, 102, 117, 164, 186, 192], and/or spraying methods [58, 72, 126, 140,
183]. Variations of the fabrication parameters generally allow control of the particle size
and size distribution. Drugs may be incorporated into the particles in several different ways
depending on the properties of the drug. Hydrophobic therapeutics may be co-dissolved
with the polymer in a solvent such as methylene chloride or ethyl acetate. Hydrophilic
therapeutics, including proteins, may be suspended in the organic phase as a finely ground
dry powder. Alternatively, an aqueous solution of a hydrophilic therapeutic may be mixed
with the organic polymer solution to form a water-in-oil emulsion.

The emulsion-solvent extraction/evaporation methods are most commonly used, espe-
cially at the lab scale. In these processes, a solution containing the polymer (and possibly
the drug to be encapsulated) is emulsified in a non-solvent phase (the continuous phase)
containing a stabilizer. The emulsion can be prepared with any of a variety of physical
methods including homogenization and sonication. The components are chosen such that
the solvent is slightly soluble in the non-solvent. For example, to produce microspheres of
PLG or polyanhydrides, common solvents are methylene chloride and ethyl acetate used in
conjunction with an aqueous continuous phase containing poly(vinyl alcohol) (PVA) as a
stabilizer [49]. After emulsification, the solvent is extracted into the continuous phase and
allowed to evaporate. At the same time, the non-solvent may penetrate into the polymer-
rich droplets. Due to loss of solvent, the dispersed phase is enriched in polymer until the
droplets “harden” to become particles. The microspheres may then be filtered, washed, and
lyophilized.

There are several disadvantages of the emulsion solvent-extraction/evaporation tech-
niques that have limited their application. Because these methods are inherently batch
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operations, scale up of the processes is difficult and large-scale production can be costly.
Another critical problem is that size distributions of particles are generally reproducible
but non-uniform. Standard deviations of the distribution equal to 50% of the average size
are not uncommon. Since the size of the spheres directly affects the drug release rate and
syringability, it is important that size distributions be relatively narrow. In addition, as de-
scribed above the presence of organic solvents and aqueous-organic interfaces may have
adverse effects on encapsulated drugs [62, 147]—decreasing or even eliminating bioactiv-
ity. Organic solvents also may be very difficult to remove completely. Since many of the
commonly used organic solvents (e.g., methylene chloride) are toxic, the concentration of
residual solvent in the microsphere must be tightly regulated.

2.3.1. Techniques for Fabricating Uniform Microspheres

As pointed out in the preceding sections, an important limitation in the development
of biodegradable polymer microspheres for controlled-release drug delivery applications
has been the difficulty of specifically designing systems exhibiting precisely controlled
release rates. Because microparticle size is a primary determinant of drug release [15,
17], it is worthwhile to develop a methodology for controlling release kinetics employing
monodisperse microspheres.

There have been several reports of fabrication of uniform biodegradable polymer mi-
crospheres [4–5, 105, 152, 159]. Amsden and Goosen have used electrostatics to form
EVAc spheres with diameters smaller than the nozzle from which they were sprayed [5].
The minimum size obtained, however, was only ∼500 µm, and they concluded that “it is
not possible to obtain small microbeads having a narrow size distribution.” Amsden later
reported production of uniform microspheres by extruding a polymer solution through a
nozzle and into a stabilizing solution flowing perpendicular to the point of injection [3].
The PLG solution droplets exiting the nozzle are drawn into the PVA solution in a periodic
fashion. The rate at which the droplets are removed from the nozzle, and therefore—under
constant polymer flow rate—the size of the microspheres, are determined by properties
of the stabilizing solution (density and viscosity), the diameter of the nozzle, and the in-
terfacial tension between the polymer solution and the needle tip. Amsden reported PLG
microspheres with diameters ranging from 67.7 to 295 µm. However, the size distributions
varied widely, with standard deviations typically 10–30% of the average size (the minimum
standard deviation was 5% of the average for 295-µm microspheres). Furthermore, forma-
tion of small particles may not be possible with this technique, as any further reduction of
the particle size would apparently require smaller nozzles; as the nozzle size is decreased,
shear forces at the orifice and the potential for clogging increase.

In summary, there have been several reports of the fabrication of biodegradable polymer
microspheres with controlled, uniform size. However, none of these methods was successful
in generating particles in the size range appropriate for drug delivery (∼1–100 µm) while
maintaining narrow size distributions. In addition, these conventional methods appear to be
difficult to scale-up for commercial applications.

To remedy this situation, we have developed a novel microsphere fabrication technology
which combines two techniques for generating monodisperse microspheres with precisely
controlled sizes. This precision particle fabrication (PPF) technology also allows fabrication
of predefined particle size distributions via continuous variation of the process parameters.
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FIGURE 2.1. Schematic of the uniform-droplet generation scheme: (A) Single-nozzle approach and (B) Dual-
nozzle approach with carrier stream.

The fundamental physical processes underlying the PPF technology are schematically de-
scribed in Figure 2.1. The method basically comprises spraying a polymer-containing solu-
tion through a nozzle with (i) acoustic excitation to produce uniform droplets (Figure 2.1A),
and (ii) an annular, non-solvent carrier stream allowing further control of the droplet size
(Figure 2.1B). Using the PPF technology we have fabricated uniform solid micro-
spheres of a variety of polymers including poly(d,l-lactide-co-glycolide) (PLG) [14,
17], polyanhydrides [18], ethylcellulose [39], chitosan [40], hetastarch [41], and gelatin
hydrogel [42].

In general, the PPF apparatus (Figure 2.2) is designed to pass a solution containing the
sphere material, and any drug to be encapsulated, through a small nozzle or other orifice
(20-µm to a few millimeters in diameter) to form a smooth, cylindrical jet. The nozzle is
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FIGURE 2.2. Schematic of the precision particle fabrication (PPF) system.
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FIGURE 2.3. (A) Video micrographs showing PLG microdroplets (i.v. 0.19 dL/g; 50/50 lactide/glycolid) dissolved
in methylene chloride (5% w/v) falling from the PPF nozzle at constant flow rate with increasing acoustic frequency.
Also, scanning electron micrographs of (B) 40-µm PLG, (C) 60-µm ethyl cellulose (45 cp), (D) 20-µm chitosan,
(E) 35-µm gelatin, and (F) 17-µm hetastarch PPF microscpheres.

vibrated by a piezoelectric transducer driven by a wave generator at a frequency tuned to
match the flow rate and the desired drop size. The mechanical excitation launches an acoustic
wave along the liquid jet generating periodic instabilities that, in turn, break the stream into
a train of uniform droplets (Figure 2.3A). With this apparatus alone, the minimum particle
size achievable is approximately twice the nozzle opening. This approach represents an
improvement over conventional ultrasonic nozzles as the acoustic wave intensity is lower
and we can tightly control the match between the frequency and solution flow rate.

We can further control sphere size, and in fact form droplets much smaller than the
nozzle opening, by employing an annular flow of a non-solvent phase around the polymer
jet (Figure 2.1B). The annular stream is pumped at a linear velocity greater than that of the
polymer stream. Thus, frictional contact between the two streams generates an additional
downward force that effectively “pulls” the polymer solution away from the tip of the
nozzle. The polymer stream is accelerated by this force and, therefore, thinned to a degree
depending on the difference in the linear velocities of the two streams. The carrier stream
allows production of microspheres as much as 100-fold smaller than the orifice size. Thus,
addition of the carrier stream accommodates high-viscosity materials and reduces the risk
of clogging by allowing use of large nozzles.
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In order to predict the process parameters (flow rates and acoustic frequency) required
to generate particles of a desired size or size distribution it is necessary to understand the
theory of droplet formation as applied to the PPF system.

2.3.1.1. Theory of the Precision Particle Fabrication Technology Lord Rayleigh first
investigated the instabilities of a cylindrical inviscid jet subject to disturbance [145]. He
found that the most unstable wavelength (λmax) of a disturbance imposed on a jet surface,
which will give rise to maximum growth rate and consequently result in the break-up of the
jet into uniform droplets (Figure 2.1), is

λmax = 9.016rj (2.1)

where rj is the radius of the undisturbed jet (approximately equal to, but typically slightly
larger than, the diameter of the nozzle orifice). The practical range of acoustic wavelengths
that give rise to the breakup of a liquid jet into uniform droplets was experimentally deter-
mined to be [146]

7rj < λ < 36rj. (2.2)

Both upper and lower wavelength limits may vary somewhat depending on the noise level
of the system and the amplitude of the acoustic wave.

The microsphere generator developed by us allows for control of the acoustic wave
frequency and amplitude. The wavelength produced by a set frequency (f) is given by

f = vj/λ (2.3)

where vj is the linear velocity of the liquid jet. Knowing that the volume of the resulting
sphere should be equal to the volume of a cylindrical element of the jet, the length of which
is defined by the acoustic wavelength, we find that the drop radius, rd, is predicted to be

rd = (3r2
j vj/4f)1/3. (2.4)

At the optimum wavelength, rd,max = 1.891 rj. Thus, by imposing a uniform, high-amplitude
oscillation on the nozzle, which will dominate the random, natural instability, we can control
the breakup of the stream into droplets and predict the orifice size (∼rj), solution flow rate
(vj), and acoustic frequency (f) needed to generate a desired sphere size or size distribution.

2.3.1.2. Uniform Polymer Microspheres Produced by PPF Technology Uniform mi-
crospheres of controlled sizes, both solid and hollow, were previously fabricated from a
variety of non-polymeric materials using acoustic excitation [56, 64, 68, 78, 85, 87, 90].
More recently, we have demonstrated the PPF technology for fabricating monodisperse
microspheres of various polymers such as PLG [14, 17], polyanhydrides [18], EC [39], chi-
tosan [40], gelatin hydrogel [41], and hetastarch [42], with average diameters from ∼4 µm
to >500 µm (Figure 2.3B–F). These micrographs clearly demonstrate that the PPF tech-
nology: (a) can produce uniform polymeric microspheres with precisely controlled sizes,
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(b) can be used to produce particles much smaller than the nozzle opening, and (c) is
insensitive to the choice of materials.

We have also demonstrated encapsulation and in vitro release of model drug compounds
such as rhodamine B, piroxicam, nifedipine, and felodipine [15, 17, 39–40]. The release
kinetics of these compounds depended strongly on the microsphere size, as expected. Details
of in vitro release profiles and mechanisms will be discussed below.

2.3.2. Techniques for Fabricating Uniform Core-Shell Microparticles

The ability to form microcapsules exhibiting a predefined diameter and shell thickness
may offer several additional advantages in drug delivery. Higher drug loads may be realized
by utilizing core materials offering increased drug solubility. In addition, fragile therapeutics
such as proteins and DNA may be stabilized by generating a favorable environment in the
core. Advanced drug release schedules such as delayed or pulsatile release, with the removal
of drug “burst,” may be possible by selectively varying the shell material or especially
thickness [103–104]. For example, a surface-eroding polymer (e.g. polyanhydride) shell
may be expected to protect a polyester core, and the encapsulated drug, for a prolonged
time, the duration of which is governed by the shell thickness. However, efficient fabrication
of such particles has not been previously reported to our knowledge. Finally, drugs could
be released in tandem by selectively loading them into the core or shell phase thereby
potentially enhancing drug efficacy [193–194].

Core-shell microparticles are significantly more difficult to manufacture than solid mi-
crospheres. A variety of techniques for fabricating microcapsules of varying sizes have
been reported [32, 50, 65, 85, 87, 94, 120, 133, 134, 150, 172]. For example, variations
of the common double-emulsion approach have also been used to prepare microcapsules
by allowing the discontinuous phase of the primary emulsion to coalesce and form the
core of the particle [50, 150, 172]. Such particles have shown an interesting pulsatile re-
lease profile that may be advantageous for vaccine delivery [150]. Important limitations of
these approaches, however, are that the core and shell material must be immiscible and the
microcapsule architecture is difficult to control; the core size and shell thickness depend
strongly on the properties of the primary emulsion and the time over which the emulsion is
allowed to coalesce.

It is also possible to generate microcapsules with solid cores by coating pre-formed
microparticles with a second material. For example, Göpferich et al. [65] developed an
ingenious method for coating microspheres with a second layer of polymer by resuspend-
ing preformed microspheres in a concentrated solution of a second (or the same) polymer
followed by re-emulsifying the suspension in an aqueous continuous phase to form “mi-
croencapsulated microspheres.” Presumably, the shell thickness can be controlled by varying
the polymer concentrations and mass ratios, and the two materials can be miscible with one
another. However, the thinnest shell reported was >50% of the overall particle diameter.

“Double-wall” particles comprising polymer cores and shells can be formed by con-
trolling phase separation of the two sphere-forming materials [133–134]. One of the first
studies consisted of adding two separate polymers dropwise to an aqueous phase and con-
trolling precipitation rates such that one polymer has ample time to spread on the other
[96, 97, 99, 122, 132]. Another technique utilized the phase separation of PLG and PLL
at certain concentrations [103–104]. The radiosensitizer etanidazole was suspended as fine
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filaments (<20 µm) into the PLG phase and the two polymers were emulsified into each
other forming a milky solution. Again, during the relatively prolonged extraction of solvent
from these large, ∼450-µm particles, the two polymers phase-separated, but some of each
polymer still remained in both the core and shell phase. Etanidazole was entrapped primarily
in the PLG core due to a higher affinity to the PLG phase. Most recently, a polyorthoester
(POE) was encapsulated in a PLG shell [193–194]. In these studies, the overall polymer
concentration remained constant at 5% (wt polymer/vol DCM) but the POE:PLG polymer
ratio was adjusted to produce double-wall microspheres. When POE accounted for 50%,
60%, and 70% of the polymer weight, core-shell particles with PLG shells were formed
while microspheres with intermingled polymer phases were formed at all other ratios.

These are simple and scalable processes, but several factors seem to influence the for-
mation of complete microcapsules. First, the interfacial tension between the three phases
(polymer 1, polymer 2, aqueous non-solvent) indicates which polymer will tend to spread
on the other [133–134, 173]. The spreading coefficient in these cases, therefore, is expected
to be a function of the polymer chemistry, solvent type, and polymer concentration [193–
194]. Relying on these thermodynamically driven techniques to form microcapsules may
necessitate extended solvent extraction times to allow the two polymer phases to come
into intimate contact [96–100, 122, 132, 133] or phase separate [103–104] and then form
a core/shell arrangement before the polymer solutions precipitate. An extended solvent
extraction time may have been achieved in the reviewed work by creating large particles,
>100 µm (and thus large nascent polymer droplets), lowering polymer concentration, low-
ering the temperature of the non-solvent bath, or adding solvent to the extraction phase.
Thus, the achievable architectures, types of drugs that can be encapsulated, shell thicknesses
obtainable, and release kinetics achievable may be limited.

2.3.2.1. Precision Core-Shell Microparticle Fabrication Following previous work
reporting production of core/shell particles made from a variety of inorganic materials [68,
85, 87], the uniform solid microsphere fabrication methodology described in the preceding
sections (Figures 2.1 and 2.2) has been further extended to produce uniform double-walled
polymeric microspheres with controllable size and shell thickness. The method, as illus-
trated in Figure 2.4, employs three coaxial nozzles to produce a smooth coaxial jet of
controllable size, comprising a carrier, annular shell and core streams, which is acoustically
excited to break up into uniform core-shell droplets. As before, the non-solvent carrier
stream surrounding the coaxial jet accelerates and makes it thinner before its breakup. The
orientation of the jets, material flow rates, and rate of solvent extraction are controlled to
vary the shell thickness.

Microcapsules have been fabricated with different arrangements of bulk-eroding
poly(d,l-lactide-co-glycolide) (PLG) and surface-eroding poly[(1,6-bis-carboxyphenoxy)
hexane] (PCPH) [20]. Variation of the fabrication parameters allowed complete encapsu-
lation by the shell phase including the efficient formation of a PCPH shell encapsulating
a PLG core. Utilizing this technology, microcapsule shell thickness can be varied from
<2 µm to tens of microns while maintaining complete and well-centered core encapsula-
tion for microcapsules near 50 µm in overall diameter. Scanning electron micrographs of
microcapsules originally containing an oil or aqueous core are shown in Figure 2.5, and
PCPH shell/PLG core and PLG core/PCPH shell microcapsules are shown in Figure 2.6.
These micrographs are proof that the modified PPF technology is an effective single-step
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FIGURE 2.4. Schematic description of the triple-nozzle PPF methodology of producing uniform core-shell
droplets using acoustic and carrier stream schemes.

FIGURE 2.5. Scanning electron micrographs showing fractured (A) canola oil core/PLG shell microcapsule, and
(b) microcapsule with an aqueous core containing 100 mg/mL dextran, 10 mg/mL BSA and a PLG shell.
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FIGURE 2.6. Scanning electron micrographs of double-wall microspheres with PLG shells encapsulating PCPH
cores and PCPH shells encapsulating PLG cores, fabricated by the PPF method. Images show the effect of
selectively dissolving PLG using tetrahydrofuran, which a poor solvent for PCPH. Scale bar = 25 µm.

method for producing uniform polymeric microcapsules of controllable size and shell thick-
ness. Monodisperse or precisely defined particle size distributions can be achieved while
maintaining the desired polymeric shell thickness.

2.3.2.2. Further Discussion of Microcapsule Fabrication Technique In comparison
with the conventional core-shell particle methods described above, precision particle fabri-
cation (PPF) technology sprays polymer solutions that are immediately brought into intimate
contact as distinct and separate phases specifically arranged in the desired orientation. Utiliz-
ing this method for creating uniform microcapsules of controllable shell thickness provides
a mechanical driving force to aid this thermodynamically driven process. Additionally, the
present method is not limited to using concentrations where polymers are immiscible or
specific conditions that slow the extraction of solvent but rather allows the exact control of
polymer concentrations and flow rates thus controlling the mass ratios of the two polymers
in each nascent droplet, resulting in precision control of microcapsule diameter and shell
thickness. This flexibility can also be utilized to create conditions in the nascent droplet
that facilitate spreading of PCPH on a PLG core until subsequent precipitation of the poly-
mers kinetically traps the microcapsule arrangement that otherwise would be difficult to
achieve.

In summary, the modified PPF technology is a single-step method for producing uni-
form polymeric microcapsules of controllable size and shell thickness. Monodisperse or
precisely defined particle size distributions can be achieved while maintaining the desired
polymeric shell thickness. Exact control of the volumetric flow-rates of the core and shell
materials also allows the formation of particle populations exhibiting discretely or incre-
mentally increasing shell thickness. In addition to advancing control of particle architecture,
methods have been developed for modulating the locale of materials and compounds of in-
terest. Specifically, polymer, oil, and aqueous cores have been encapsulated within uniform
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FIGURE 2.7. Schematic diagram describing the flow-limited field-injection electrostatic spraying (FFESS) tech-
nology. Shown for comparison is the conventional electrospraying (CES).

polymeric shells potentially enabling advancements in the areas of drug delivery, photon-
ics, cell encapsulation, and catalysis to name a few. Monodisperse microcapsule advantages
in reproducibility, control of transport phenomena, and consistency of physically derived
properties may provide valuable assistance in a variety of research areas.

2.3.3. Use of Electrohydrodynamic Spraying for Fabrication
of Uniform Micro and Nanospheres

A process known as electrohydrodynamic (EHD) or electrostatic (ESS) spraying can
be used to fabricate both micro- and nanospheres of polymeric materials. In this method
charge is injected at a controlled rate (i.e., at a controlled current) into a polymer solution
contained in a nozzle such that the surface of the solution meniscus at the nozzle opening
becomes highly charged. The charged meniscus surface is thus under the electrical tension
forces that push the meniscus surface away from the nozzle, opposing the surface tension
force that tries to minimize the meniscus surface area (Figure 2.7). The electrical forces
increase with increasing charge injection, finally overcoming the surface tension force and
ejecting the charged solution from the meniscus surface. The net result is that with an
increase in the charge injection, there will be gradual reduction in the size of the drops
that leave the nozzle. This so-called “drip mode” develops into a “single-jet mode” with
further increase in the charge injection. The jet mode is invoked when the electrical tension
forces at the charged meniscus surface are such that the charged solution is literally pulled
away from the nozzle orifice as a thin jet, which in turn naturally breaks up into charged
droplets due to the jet instability. As the charge injection is further increased, the “single-jet
mode” develops into a “multijet mode” where more than one jet emanates from the charged
meniscus surface at the nozzle opening. Since the electrical tension forces acting on the
meniscus surface are a function of the surface charge density, the effect of increasing flow
rate is similar to that of decreasing charge injection. Figure 2.8 shows this sequence of



34 KYEKYOON “KEVIN” KIM AND DANIEL W. PACK

FIGURE 2.8. FFESS sequence with increasing voltage: (A–D) Jet formation using 5% w/v solution of PLG
(0.20 dL/g) in methylene chloride flowing at 1 mL/h as voltage increases from 0 to 7 kV. (E–H) Multi-jet mode
spryaing of 5% w/v PLG (0.20 dL/g) in acetonitrile flowing at 1 mL/h as voltage increases from 4 to 9 kV. Charge
injection was achieved using a sharpened tungsten needle encased by a glass capillary having a 300-µm orifice
positioned ∼1–2 cm above a ground plate.

events that take place as the charging voltage (i.e., the charge injection) is increased, for
a PLG solution. In the phenomena just described, generally known as EHD spraying, the
typical flow rates used are necessarily very small. When fibers are produced as the final
product, which is possible with polymeric solutions or material in molten state, the process
is often referred to as electrospinning.

An alternative electrohydrodynamic method called flow-limited field-injection elec-
trostatic spraying (FFESS) [86, 190] (Kim et al. 1994; Kim et al. 1995; Berkland et al.
2004) has been developed. FFESS can be used by itself alone or in tandem with the acoustic
methods described in the preceding sections. In FFESS, charge injection is achieved by
using a nano-sharpened tungsten needle connected to a high voltage in a process called
field injection that is field emission or ionization depending on whether the polarity of the
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FIGURE 2.9. (A) Uniform 2.5-µm particles produced by spraying 5% w/v (0.24 dL/g) PLG in acetone flowing
a 1 mL/h while applying 8 kV to a 26-guage needle positioned ∼5 cm above a ground plate. Scale bar = 25 µm
(B) Uniform ∼300-nm particles produced by spraying 5% w/v (0.24 dL/g) PLG in methylene chloride flowing
at 1 mL/h using FFESS at 15 kV appplied to a sharpened tungsten needle encased by a glass capillary having
a 300-µm orifice positioned ∼5 cm above a ground plate. Scale bar = 5 µm. (C) Uniform ∼300-nm particles
produced under same conditions as (B) except solvent was acetonitrile and applied voltage was 10 kV. Scale
bar = 5 µm.

needle is negative or positive. Thus, the FFESS process allows one to produce sprays that
are finer and more precisely controlled than those produced by conventional EHD tech-
niques, which employ conducting hypodermic needles as the spray nozzle (Figure 2.7).
The main reason is that the sharp charge-injection electrode used in FFESS renders more
control and stability, and higher charge injection (Kim, 1994 & 1995). For applications
involving advanced drug delivery, the effects of the key parameters controlling the FFESS
process, such as applied voltage, polymer solution flow-rate, and solvent properties (sur-
face tension, viscosity, vapor pressure) have been qualitatively evaluated [19]. For example,
using the FFESS system a wide variety of uniform micro- and nanoparticles of PLG have
been created. (Figure 2.9). By discretely varying production parameters, subtle changes in
deposited polymer morphology are realized potentially resulting in enhanced performance
of a medical or biological device. FFESS technology thus provides a simple and robust tech-
nique for fabricating devices with a precisely defined nano-structure from a broad range of
biocompatible polymeric materials.

2.4. CONTROLLED RELEASE FROM PRECISION MICROSPHERES

Presented in this section are a brief review of the controlled-release literature and
the results from several controlled release studies that have been carried out with PPF-
produced microspheres. The data clearly show that release of model small-molecule drugs
can be varied from typical diffusion-controlled profiles to slower, sigmoidal profiles as
microsphere diameter is increased in the range of 10–100 µm. The data also show that drug
release from mixtures of uniform microspheres corresponds to a weighted average of the
release from individual uniform microspheres. As a result, it has been possible to choose
appropriate mixtures to generate desired release rate profiles, in particular constant (i.e.,
zero-order) release. It is, therefore, concluded that microsphere mixtures with well-defined
size distributions may provide a general methodology for controlling drug release rates [15,
17–18].
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FIGURE 2.10. Effect of microsphere size on release of (A) rhodamine and (B) piroxicam from uniform PLG
microspheres of various sizes.

2.4.1. In-vitro Release from Uniform Microspheres

Long-term zero-order release of small-molecule therapeutics from biodegradable
microspheres has been difficult to achieve. Release of small compounds is often rapid
and diffusion controlled [23, 82]. Often, release of small molecules encapsulated in poly-
meric particles typically is dominated by a large initial rate of release (or “burst”) in the
first 24 h, offering little advantage over conventional oral dosage forms [27, 67, 92, 137,
175, 178].

To examine the effect of microsphere size and size uniformity on drug release kinet-
ics, we measured release profiles for two model drugs, rhodamine and piroxicam, from
PLG spheres. Rhodamine release profiles are shown in Figure 2.10A. As expected, 20-µm
microspheres exhibited a faster initial release than 65-µm microspheres, likely due to the in-
creased surface-to-volume ratio of the smaller particles. Further, as drug loading increased,
the initial rate of drug release increased. An interesting concave-upward (i.e., sigmoidal)
profile was observed with the 65-µm particles and to a lesser extent with the 45-µm parti-
cles, wherein drug release was initially slow, then progressed to a more rapid release phase
before leveling off [37, 165].
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Piroxicam release profiles show similar trends (Figure 2.10B). Samples of 10-, 50-
and 100-µm microspheres were studied. The microspheres span a broader size range than
the rhodamine-loaded particles, resulting in a more pronounced difference in drug release
profiles. The smallest microspheres (10-µm diameter) exhibited a rapid initial rate of re-
lease, with 40–60% of encapsulated piroxicam released within the first 24 hours. Initial re-
lease rates decreased with increasing microsphere diameter for all drug loadings examined.
Further, the initial release rate decreased with increasing drug loading. Interestingly, the
50- and 100-µm particles exhibited sigmoidal release profiles similar to rhodamine release
from 65-µm microspheres.

Modeling of release has elucidated the mechanisms controlling the varying shapes of
the release profiles [16, 143]. The model assumes a simple diffusion-controlled release but
incorporates initially non-uniform drug distribution in the microsphere and a time-dependent
diffusivity. We showed that the effective drug diffusivity increased with decreasing polymer
molecular weight caused by degradation. In this way, we are able to accurately predict the
shapes and kinetics of the small-molecule release profiles. This model will facilitate design
of microsphere systems to provide desired release rates.

2.4.2. In-vitro Release from Mixtures of Uniform Microspheres

Constant release is highly desirable for many drug delivery applications. Because
there is a transition from the concave downward to sigmoidal release profiles as sphere
size increases, it appears that nearly linear release may be achieved at a certain size. For
example, between 10- and 50-µm, a microsphere size may exist that would provide zero-
order piroxicam release over a 4- to 8-day duration (c.f. Figure 2.10). Others have reported
linear or near-linear release profiles achieved with microspheres of similar size, ∼30–50 µm
in diameter [21, 110, 189]. For example, Woo et al. formulated a leuprolide delivery system
using PLA microspheres with an average diameter of 51.7 µm achieving near-linear peptide
release for 135 days following a 15-day period of “diffusion-controlled release” [189]. This
early phase of release may result from the portion of the microspheres in this formulation
under ∼35-µm, which would be expected to release drug more rapidly. Further, Bezemer et
al. used a poly(ethylene glycol)-poly(butylene terephthalate) (PEG-PBT) block copolymer
to test the effects of microsphere size on drug release [21]. They also discovered that
decreasing the average microsphere size from 108 µm to 29 µm causes the release kinetics
to change gradually from zero-order release to release controlled by Fickian diffusion.

Other researchers have suggested that drug delivery rates may be controlled by mixing
microspheres of varying sizes or characteristics. For example, Ravivarapu et al. mixed mi-
crospheres comprising 8.6-kD or 28.3-kD PLG encapsulating leuprolide acetate [144]. The
low-molecular-weight polymer resulted in porous, quickly releasing microspheres while
the high-molecular-weight formulation resulted in dense microspheres and produced a sig-
moidal release profile. By mixing microspheres comprising the two polymers, release rates
could be tailored, and the resulting profiles were linear combinations of those resulting
from individual microspheres. Bezemer et al. produced linear lysozyme release over 25
days from PEG-PBT microspheres having a bimodal size distribution dominated by 50-µm
and 110-µm particles (in essence a combination of two sizes) [21]. Finally, Narayani et
al. combined gelatin microspheres of various size ranges producing zero-order release of
methotrexate [128]. In general, however, zero-order release has been difficult to achieve
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FIGURE 2.11. (A) In vitro release of rhodamine from mixtures of 20-µm and 65-µm diameter PLG microspheres
in the ratios 1:4, 1:9 and 1:25 w:w. Filled symbos are experimental data points for individual microspheres and open
symbols are experimental data points for the mixtures. The dotted lines are the weighted average of individual
microsphere experimental release data. (B) In vitro release of piroxicam from mixtures of 10-µm and 50-µm
diameter PLG microspheres.

with simple microsphere systems. Further, there is little generality, and unique systems are
designed empirically for each drug.

Based on the different shapes of the uniform PPF microsphere release profiles, and
given the reproducibility of the PPF methodology for uniform microsphere fabrication,
it was reasoned that it may be possible to modulate release kinetics in a desired fash-
ion by mixing appropriate proportions of two or more uniform microsphere preparations
(Figure 2.11) [21–22, 128]. To investigate the generality of this hypothesis, we mixed uni-
form microspheres of different sizes to generate zero-order release of rhodamine and the
clinically relevant NSAID, piroxicam. For example, multiple linear combinations of 10-, 50-
and 100-µm piroxicam-containing microspheres at various drug loadings were examined
computationally to identify a combination resulting in linear drug release. Two possible
formulations were found. The first formulation combined 10-µm/15% and 50-µm/15% mi-
crospheres in ratios of 3:1, 1:1, and 1:3 wt:wt. This formulation resulted in slightly concave
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downward release profiles for the 3:1 and 1:1 ratios and a linear drug release profile for the
1:3 wt:wt mixture (Figure 2.11B).

In summary, because release kinetics from uniform spheres are very predictable and re-
producible, our ability to fabricate uniform microspheres enhances this technique. We found
that upon mixing uniform microsphere preparations, the resulting release profile is a mass-
weighted average of the release profiles of the individual microspheres. This demonstrates
that the microspheres release their payload independently; there is no interaction between
the particles. In these experiments, the shapes of the rhodamine and piroxicam release
profiles were such that it was possible to choose appropriate microsphere mixtures that
provided zero-order release kinetics (Figure 2.11). However, it may not always be possible
to generate a desired release profile from mixtures of only two microsphere sizes. Depend-
ing on the desired profile and the shape of the individual release curves, one may need to
mix multiple microsphere samples or to fabricate complex microsphere size distributions.
Because the PPF method provides a unique ability to generate predefined microsphere sizes
[147], this technology may lead to enhanced control of release rates.

2.4.3. In vitro Release with Double-Wall Microspheres

Double-walled microspheres represent an increasingly important class of drug delivery
devices that provide enhanced control of drug delivery schedules. Clearly, the overall particle
size and shell thickness are important parameters in modulating the drug release rates. In
one study, PPF was used to fabricate double-walled microspheres of predefined uniform
diameters of 40–60 µm exhibiting a PLG core and poly(l-lactide) (PL) shell of controllable
thickness from approximately 2 to 10 µm [13]. In vitro release of piroxicam from uniform
microspheres of pure PLG and PL is compared to release from double-walled microspheres
exhibiting different PL shell thicknesses in Figure 2.12. The benefit of utilizing a PL shell
around the PLG core is threefold. First, the presence of the PL shell minimizes the initial drug
“burst” so often associated with microparticle-based drug delivery systems. Secondly, by

FIGURE 2.12. In vitro release of piroxicam from PPF particles with drug-free PLL shells and PLG cores containing
piroxicam. The legend shows the weight ratios of PLL:PLG.
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specifically controlling the mass ratio of PL:PLG and thus the resulting PL shell thickness,
the release of piroxicam can be progressively modulated from biphasic (no shell) to zero-
order (thickest shell in Figure 2.12). Lastly, the duration of piroxicam release was extended
from one month to three months utilizing the same molecular weight PLG. The ability to
specifically control double-walled microsphere shell thickness may provide a novel and
precise approach to modulate drug release profiles.

2.4.4. Release of Macromolecules from Monodisperse Microspheres

Macromolecular therapeutics such as peptides, proteins and DNA are advancing rapidly
toward the clinic. Because of typically low oral bioavailability, invasive delivery methods
such as frequently repeated injections are required. Parenteral depots including biodegrad-
able polymer microspheres offer the possibility of reduced dosing frequency but are limited
by the inability to adequately control delivery rates.

The release of macromolecules typically exhibits an initial “burst” of drug, which can
be as much as 10–50% of the drug load, followed by a “lag” phase exhibiting slow release
and finally a period of steady release [10, 151, 184]. The initial burst of protein therapeutics
has been attributed to their tendency to partition to the microsphere surface during the
encapsulation process [61]. Multiple approaches have attempted to alleviate the burst by
adding excipients to the polymer phase [80, 185], utilizing novel polymers [70, 166, 168,
181, 195], encapsulating particulate forms of the drugs [33], or exchanging the non-solvent
aqueous phase used in the fabrication process with non-polar oils or alcohols to reduce the
affinity of the encapsulated drugs for the bulk phase [57, 174]. The burst is usually followed
by a lag period where diffusion is limited and little release of the macromolecule occurs.
The duration and flatness of this phase is determined by the polymer degradation kinetics,
particle size, and microsphere porosity [10]. In addition, the drug size, charge, and any
potential interactions of the drug with the polymer can influence the lag phase [30]. Finally,
the lag phase is followed by a period of steady release typically controlled by the polymer
degradation rate.

To control release and investigate release mechanisms, model macromolecules were
encapsulated in uniform poly(d,l-lactide-co-glycolide) (PLG) microspheres using PPF in
combination with a double-emulsion method. The precision particle fabrication (PPF) tech-
nology described in Section 3 allowed the production of these monodisperse microspheres
[12, 14]. Fluorescein-dextran (F-Dex) and sulforhodamine-labeled bovine serum albumin
(R-BSA) were encapsulated in PLG microspheres of three different sizes; 31, 44 and 80 µm
and 34, 47 and 85 µm diameter for F-Dex and R-BSA, respectively (Figure 2.13). No-
tably, the initial burst of drug often observed for release of hydrophilic macromolecules
was not observed. At 28 hours, F-Dex-loaded microspheres had only released 1.2% of the
total encapsulated drug for all three microsphere sizes while R-BSA-loaded microspheres
released 1.9–4.8% depending on microsphere diameter. With the uniform microspheres,
the duration of the slow release or “lag” phase varied with the microsphere diameter. In
addition, the slow release phase for these formulations appears to be a diffusion-controlled
process with rates that decrease with increasing sphere diameter. Plots of amount released
versus the square root of time show that the diffusion-controlled phase lasts for 25–200
days, depending on the microsphere size.
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FIGURE 2.13. In vitro release of (A) fluorescein-labeled dextran and (B) rhodamine-labeled bovine serum albumin
from PLG (0.17 dL/g) microspheres prepared by PPF with a double emulsion. In (A), spheres are 31 µm (filled
circles), 44 µm (open circles) and 80 µm (triangles) in diameter. In (B), spheres are 34 µm (filled circles), 47 µm
(open circles) and 85 µm (triangles) in diameter.

Release from uniform microspheres showed only two phases: a lag and more rapid re-
lease. F-Dex release profiles were very distinctive for the three different sizes. The diffusion-
controlled lag period was followed by a sharp increase in release rate (Figure 2.13). The
time at which the release rate increased was strongly dependent upon but inversely propor-
tional to microsphere size. Again, after the lag periods, release rates of molecules increased
dramatically. Thus, uniform microspheres represent a new delivery system for therapeu-
tic proteins and DNA and provide unprecedented control of delivery rates using simple
injectable depot formulations.

2.5. CONCLUSIONS

The development of PPF technology has allowed the production of uniform micro-
spheres and double-wall microspheres capable of efficiently encapsulating model drugs. Of
primary importance was the ability of monodisperse microsphere formulations to eliminate
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initial drug burst while modulating the onset of steady drug release. Modified PPF tech-
nology has also been established as a single-step method for producing uniform poly-
meric microcapsules of controllable size and shell thickness. Monodisperse or precisely
defined particle size distributions can be achieved while maintaining the desired polymeric
shell thickness. Exact control of the volumetric flow-rates of the core and shell materials
also allows the formation of particle populations exhibiting discretely or incrementally
increasing shell thickness. Controlled release systems, especially those comprising
biodegradable polymer microparticles, have been heavily studied and have even reached
the clinic in several cases. However, notable limitations remain, especially in controlling
delivery rates. Monodisperse PPF microspheres and core-shell microparticles offer advan-
tages in reproducibility, control, and consistency that may provide valuable assistance in
designing advanced drug delivery systems. The FFESS technique is capable of producing
nanometer-scale solid particles as small as 10 nm or even smaller, and may be applica-
ble to fabrication of nanocapsules. However, to achieve precise control of the particle size
and reproducibly fabricate nanocapsules the technology needs to be further refined and
developed.
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