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Growing concern about biodiversity loss underscores the need to quantify and

understand temporal change. Here, we review the opportunities presented by

biodiversity time series, and address three related issues: (i) recognizing the

characteristics of temporal data; (ii) selecting appropriate statistical procedures

for analysing temporal data; and (iii) inferring and forecasting biodiversity

change. With regard to the first issue, we draw attention to defining character-

istics of biodiversity time series—lack of physical boundaries, uni-

dimensionality, autocorrelation and directionality—that inform the choice of

analytic methods. Second, we explore methods of quantifying change in biodi-

versity at different timescales, noting that autocorrelation can be viewed as a

feature that sheds light on the underlying structure of temporal change. Finally,

we address the transition from inferring to forecasting biodiversity change,

highlighting potential pitfalls associated with phase-shifts and novel conditions.
1. Introduction
A key scientific challenge is to quantify and forecast temporal change in biodiver-

sity attributable to both natural and anthropogenic causes [1,2]. Forecasting

biodiversity change is essential for developing successful policies to mitigate bio-

diversity loss [3] and for addressing basic ecological issues, such as the

relationship between diversity and ecosystem function [4], the linkage between

diversity and stability [5] and the detection of ecological tipping points [6] in
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relation to the existence of alternative stable states [7]. Because

most biodiversity studies are observational rather than exper-

imental—particularly at large scales, we argue that temporal

relationships between biodiversity, ecosystem services and

hypothesized driver variables are among the strongest poss-

ible evidence for causal links. Moreover, temporal studies of

biodiversity are essential for forecasting future change in

community structure and ecosystem function.

We begin by discussing key characteristics of biodiversity

time series, presenting details on the advantages and

limitations of different data sources in the electronic supplemen-

tary material. Second, we address the quantitative analysis of

biodiversity time series, identifying four main factors affecting

observed biodiversity temporal change: measurement error,

process error, systemic change and historical influence. We dis-

cuss methods used to estimate, quantify or (when appropriate)

minimize these sources of change. Third, we highlight

approaches and potential pitfalls in forecasting biodiversity

change, on the basis of inferences drawn from past trends. We

are restricted to time series of one (any) quantitative metric of

biodiversity. We are purposely agnostic about which metric,

and illustrate that the same analysis tools can be used for differ-

ent metrics. We highlight that anecdotal evidence and historical

records can provide important information, which need only

be translated into a quantitative assessment for these tools

to be useful for this sort of data.
2. Characteristics of temporal biodiversity data
A biodiversity time series documents the abundances (or at least

presence–absence) of multiple genes, traits or taxa at multiple

points in time. Taxa—species, in particular—are the most

common units of diversity, but most of the methods we discuss

are also applicable to other units of diversity (see figure 1 and

electronic supplementary material, figures S4 and S5 for an illus-

tration of this point). These data are typically used to estimate one

or more biodiversity metrics at each time point. Common diver-

sity metrics include species richness (the total number of species),

evenness (the relative dominance of taxa), species diversity

(indexes that combine both richness and evenness), functional

diversity (the range of traits present in the community, which

are often responsible for ecosystem function), phylogenetic

diversity (the evolutionary breadth of the community) or compo-

sitional analysis. The merits of different biodiversity metrics have

been thoroughly discussed elsewhere [10].

Collecting (or assembling) temporal data involves distinct

challenges from investigations made using spatial data. In

space, the grain (the units of observation), extent (the universe

encompassed by the data) and coverage (the proportion of the

extent that is observed) [11] can always be adjusted, assuming

that sufficient resources are available. However, researchers

cannot travel in time, and so must be opportunistic and

creative in identifying temporal data sources.

Four sources of data can be used for temporal inference: tem-

porally replicated sampling, chronosequences (in which space is

used as a proxy for time), legacy or historical records and

palaeobiological assemblages (see the electronic supplementary

material). Integrating data from different sources can provide

insights not possible to get from any one source and may over-

come some of the weaknesses of each type of data. For example,

a comparison of temporally replicated sample data with chron-

osequences can directly test the validity of the space-for-time
substitution [12]. Also, combinations of multiple time series,

including palaeobiological, historical and contemporary data,

can extend time series or provide more frequent sampling [13].

Temporal data differ from spatial data in at least three crucial

characteristics. First, temporal data are directional, which creates

an asymmetry in the relationship among data points: the past

can influence the future, but not the reverse. This critical prop-

erty of temporal data can be used to strengthen inference

about causality [14] because effects cannot precede causes.

This asymmetry in the cause–effect relationships can be used

to predict change. Additionally, the statistical estimation of

time lags can shed light on cause-and-effect relationships in

temporal data.

Second, time is uni-dimensional, whereas space has three

dimensions. In this respect, strictly temporal patterns are sim-

pler to analyse than spatial patterns. In fact, spatial patterns

are often collapsed into fewer dimensions, such as transects

along latitudinal, topographic and habitat gradients [15]. How-

ever, time and space are frequently confounded, as in historical

fisheries records that cover time periods when the fleet was

focusing on different areas, or palaeo records that cover differ-

ent spatial locations as well as periods of time. Every time series

is embedded in a spatial context, just as every spatial dataset is

embedded in a temporal context. Hence, it is important to

either assess change in a spatio-temporal context or to consider

the contribution of spatial variation in the time series to

measurement and process error (see §3).

Third, temporal domains are often unbounded because, in

principle, the beginning and end of a time series is arbitrary.

However, there are several potential ‘natural’ boundaries to

time series, including colonization of new space, adaptive radi-

ations, the annihilation of a community (e.g. continental

glaciation or mass extinction), sharp transitions into alternative

states and the present day. In spatial data, boundaries can

directly or indirectly generate strong signals. For example,

even if species are randomly distributed within a spatial

domain, geometric constraints in range distribution lead to a

non-uniform accumulation of species at the domain centre

(the mid-domain effect [16]). These patterns would not be

expected to occur on unbounded temporal series. For bounded

time series, directionality means that the effect of a starting

boundary is different from that of an ending boundary. The

starting point is an important part of the successional pattern

that follows [17]. Moreover, when studying temporal change

relative to an arbitrary starting point, sensitivity of the

conclusions to the chosen baseline needs to be considered,

and potential effects of a shifting baseline should be

recognized [18].

Temporal and spatial datasets also share some qualities.

The concept of grain [11,19] is equally applicable to spatial

and temporal data. For temporal data, grain size is the

degree of time averaging within each data point, which is

akin to spatial averaging where biodiversity is quantified

within an area, rather than at a single point in space. In

practice, almost all data include some component of both

temporal and spatial averaging because spatial data are

seldom simultaneously collected in a single ‘snapshot’,

and temporal data are rarely collected at exactly the same

spatial location. Grain size can be standardized across mul-

tiple time series by temporally averaging higher resolution

series, or it can be statistically controlled in the analysis

[20]. Census interval (the time period between two discrete

samples) also affects temporal resolution. Increased census



period 1

(a) (b)

(c) (d )
period 2

TKJTrPCDSOCm
CzMzPz

TKJTrPCDSOCm
CzMzPz

TKJTrPCDSOCm
CzMzPz

ra
ng

e 
in

 s
he

ll 
si

ze
ra

ng
e 

in
 s

he
ll 

si
ze

timetime

Figure 1. Four ways of analysing trends in biodiversity. The data are range in gastropod fossil shell size (a metric of trait diversity) through the Phanerozoic from
Kosnik et al. [8]. Similar figures analysing taxonomic and genetic diversity are included in the electronic supplementary material, figures S4 and S5 to illustrate how
similar analysis tools can be used for different components of biodiversity. Grey lines show the observed data. All analysis done in R v. 2.12.2 (90); the code is
included as electronic supplementary material. (a) t-test comparing shell size diversity in two time intervals ( plotted as a box plot) with observed mean shell size
range significantly different at p , 0.001. (b) Global trend analysis; a linear trend is fit using both ordinary least squares (OLS; which ignores the non-independence
of errors close in time, black solid line), and generalized least squares (GLS) using a model with AR1 temporal autocorrelation of errors (dashed line). The two lines
estimated by the two methods are identical; hence, only the solid line is visible. The main difference in the two models is for the p value with p ¼ 0.007 for the
OLS and the more conservative and correct value from the GLS of p ¼ 0.033. (c) Local trend analysis; local regression using LOESS smoothing (black solid line) and a
GAM spline model (dashed line) of richness versus time are plotted. The results are similar with both methods suggesting that the change in trait diversity over time
is nonlinear. (d ) Threshold regression [9] to formally identify both the number and location of breakpoints. The plot shows the null model of no threshold (black
solid line), the preferred model of one threshold break (dashed line) and the second best model of two thresholds ( pointed line). The preferred model shows a DBIC
of .8 versus the null model showing very little evidence to select the null model. An F-test also shows the null model rejected at p , 0.001. Similar figures are
included in the electronic supplementary material, using examples of genetic and taxonomic diversity on the y-axis.
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interval tends to be associated with increased temporal

turnover [21,22].
3. Analysing temporal change
Regardless of the methods used to gather data (see the electronic

supplementary material), observed temporal change in

biodiversity can be attributed to four main factors: measure-

ment error, process error, historical influence and systemic

change. Measurement error includes sources of apparent

change that reflect bias or imprecision in measurement (includ-

ing detection error), and can reduce our ability to identify
patterns of interest. Process error refers to mechanisms that are

not included in the model, and is different from measurement

error. Historical influence is reflected in the patterns of

temporal autocorrelation of the biodiversity time series. Typi-

cally, we are interested in understanding the effects of

particular drivers of interest on systemic change. Systemic

change reflects a non-stationary system in which there are

long-term changes in ecological drivers, both anthropogenic

(ongoing climate change and increases in nutrient deposition)

and natural (shorter-term successional change and long-term

changes in speciation and extinction rates). Temporal change

due to other drivers may occur as a result of process error,

and this partitioning depends on the questions being
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addressed. Explicitly recognizing sources of error allows the

investigator to statistically control for these when testing for

systemic change in a biodiversity time series (see the electronic

supplementary material, figure S1 for an example in which

seasonal variation is removed to focus on longer-term trends).

Each temporally based observation of biodiversity arises

from the combined effects of deterministic and stochastic dri-

vers of change. Ultimately, the processes involved in systemic

change depend on the component of biodiversity being

studied and the spatial and temporal extent of the data. At

the most general level, the main processes behind change

within and among species are mutation, drift, selection, dis-

persal, speciation and extinction [23]. In order to draw

inferences about how different predictor variables affect

these processes and to forecast biodiversity change, measure-

ment and process error must be minimized or estimated, and

historical effects must be understood [24].
121931
(a) Dealing with measurement error
Measurement error is often the elephant in the room: every-

one who has collected empirical data is aware of its

existence, but we are sometimes reluctant to discuss its pres-

ence for fear it undermines the credibility of results.

However, identifying and quantifying measurement error

minimizes its effects on drawing inference. Moreover, report-

ing relevant sources of measurement error stimulates the

development of methods to minimize or control for error,

and allows future data users to make informed decisions

about how to learn from data.

Measurement error varies too much among biodiversity

components and potential drivers of biodiversity change for

a comprehensive review, here, of its sources and the tools

available to minimize it. Some examples are presented to

illustrate the variety of sources of measurement error. Instru-

ments that measure environmental data have associated

measurement error, which may change along a time series

as different equipment can have different precision and accu-

racy. For taxonomic diversity, sources of measurement error

include misidentification of specimens, changes in nomencla-

ture, failure to recognize cryptic taxa and variation in

detection probabilities among taxa [25,26]. For trait diversity,

measurement error arises from error in the physical measure-

ment of traits or inconsistency in trait measurements [27]. The

latter is particularly affected by ontogenetic and phenotypic

plasticity, which may create false signals if appropriate stan-

dardization is not used (e.g. a temporal trend in leaf

morphology due only to plant age). For genetic diversity,

sources of error are associated with the processes of selection

of the genes of interest, amplifying and sequencing genes,

and (especially for microbes) determining the boundaries of

operational taxonomic units. In the case of phylogenetic

diversity, error associated with the process of building

(including topology and branch lengths) and dating molecu-

lar phylogenies must also be considered. Finally, some

sources of error are common to all biodiversity components,

such as misinterpretation of records, mistakes in transposing

information and sampling error.

The most prevalent source of measurement error in biodi-

versity data is that most biodiversity metrics are sensitive to

sampling intensity [28]. Observed species richness, for

instance, is an underestimate biased against rare species,

which typically comprise the greatest fraction of species.
Criteria of rarity in a spatial context include the abundance

at any one location, spatial occupancy and habitat specializ-

ation [29]. Biodiversity time series have an additional

criterion, the probability of occurrence over time (i.e. transi-

ent versus resident species [30]). Similar reasoning applies

to traits and alleles, although abundance distributions of

these are less well understood. In theory, sampling at a site

could continue until an asymptote is reached, but in practice,

this is seldom possible. Hence, although sampling intensity

should be as high as feasible, meaningful comparisons can

be made only if sampling effort is standardized either

while collecting data or statistically.

The two main strategies to standardize data statistically, for

any form of comparison including temporal comparisons, are

subsampling and extrapolation [31]. Rarefaction to a common

sampling effort adjusts for differences in sampling intensity,

and has long been used with palaeontological time series

[32]. The chief disadvantage of rarefaction is the loss of infor-

mation involved in equalizing sample size to the smallest

sample in the time series. An alternative is to adjust sampling

effort according to the diversity of the community being

sampled [33,34]. The Good Turing concept [35,36] suggests

that observed rare entities carry most information about the

undetected diversity in a sample. Hence, rather than using

uniform sample sizes, this method proposes adjusting

sampling effort to achieve proportionally similar samples in

order to decrease bias in richness estimates. This implies

higher sampling effort when there are many rare species

[37,38]. Another approach is extrapolating to estimate the

asymptote of the sampling accumulation curve [39]. This

approach has been designed for species richness but can be

applied to other components of biodiversity. Several methods

are available for doing this, including asymptotic curve-fitting

[40], parametric estimators based on abundance distributions

[41,42] and non-parametric estimators [43,44].

Sampling methods have inherent biases that cause some

taxa, traits or genes to be detected more readily than others.

Estimating detectability can improve the accuracy of abundance

estimates [45], although all sampling methods have biases [28].

The simultaneous use of multiple sampling methods can

reduce some of these biases [46]. In temporal studies, sampling

methods are not always controlled by the scientist throughout

the time series, particularly when using historical or large-

scale data. In this case, it is necessary to control for the effect

of sampling method statistically, by standardizing the time

series with respect to the sampling bias of each method [47].

(b) Historical effects: understanding
temporal autocorrelation

Autocorrelation can be an important reason to be wary that

‘correlation is not causation’, but time series can be particularly

informative in assessing causality because the timing of events

makes it possible to deduce the direction in which information

is being transferred [48]. Both temporal and spatial data are

affected by autocorrelation, with points closer in space or

time on average more similar than distant points. As a

result, at least in realistic ecological situations, variability typi-

cally increases with increasing extent [49]. However, the nature

of autocorrelation differs between time and space in three

subtle ways. First, a focal point in space can influence and be

influenced by nearby points in three dimensions, whereas a

focal point in time can be influenced only by points that
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Figure 2. Tools for assessing temporal autocorrelation. These data examine changes in species richness of a small rodent community over 26 years at the long-term
research site in Portal, Arizona run by James Brown, Morgan Ernest and others [50,51] at control un-manipulated sites. All analysis done in R v. 2.12.2 [52]; the code
is included as electronic supplementary material. The data are monthly or yearly and detrended (via the difference operator) or trend-retained, as described in the
titles. (a) Autocorrelation function (ACF) analysis on monthly data, with the expected decay of correlation ( y-axis) with increasing time lags (x-axis). (c) The same
dataset after removing the trend via differencing, highlighting 5-month cycle (these patterns can also be seen in the trend-retained data but less obviously).
(b) Analysis of yearly data, with a recurring positive signal at approximately 4 – 5 years (and again at 9 – 10 years) with matching negative correlations at 2, 7 and
12 years. (d ) Periodogram on yearly differenced data. The x-axis is frequency (the reciprocal of the lag found in ACF plots, i.e. frequency ¼ 1 per lag) and the y-axis
is a measure of the statistical power found at that frequency. The subtle peak at frequency 0.2 – 0.3 (¼lag of 5 – 4 years) identifies the same 4 – 5 year cycle found
in the ACF.
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precede it and can only influence points that follow it chrono-

logically. This does not necessarily mean that spatial

autocorrelation is stronger, because effects on a focal point

from different directions can be counteracting. Because of the

three dimensions, there is also the possibility of anisotropy

(different covariances in different directions) in space but not

in time. Second, the underlying autocorrelation in time, arising

at least in part because some or all organisms survive into the

next time period, is generally intrinsically stronger than any

type of spatial influence, where the most direct causal factor

is dispersal or environmental autocorrelation. Third, from an

empirical point of view, cycles are common and important in

temporal but rare in spatial autocorrelation patterns.

In practice, the study of autocorrelation in space and time

typically differs in three ways. First, temporal data are typically

collected at constant time intervals, allowing easy calculation of

lags between points, whereas spatial variables are often

recorded at irregular locations distributed continuously in

space, requiring the use of techniques such as binning distances

to estimate variograms. Second, for historical reasons, vario-

grams (based on variance) are typically used for spatial

autocorrelation, while correlograms or autocorrelation func-

tion (ACF) plots based on correlation are used for time.
Third, the uni-dimensionality of time series, in combination

with the prevalence of cyclic changes, means that spectral

analysis (see below and figure 2) is often done in time but

rarely in space.

There are contrasting perspectives on the implications of

autocorrelation for ecological and biodiversity analysis. One

perspective is that autocorrelation can lead to spurious con-

clusions such as inferring a causal relationship between two

variables that are correlated only because the observations

were non-independent [53]. Thus, autocorrelation must be

taken into account when analysing time series to avoid inflated

type I error probabilities. This can be dealt with either by

removing autocorrelation from the data before the analysis

[54], or by using statistical approaches that relax the assump-

tion of independence between observations, such as

generalized least squares (GLS), with covariance decaying

with distance between points [55]. Another tool specifically

designed for this purpose is autoregressive integrated

moving average (ARIMA), often used to model and forecast

economic time series [56]. ARIMA models can include the fol-

lowing as predictors for a variable at time t: various lagged

values of the time series, autoregressive terms (i.e. lags of

the differenced series) and lagged forecast errors (using a
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moving average to estimate a local mean instead of the most

recent observation). Combinations of these models for differ-

ent lags typically reduce the influence of autocorrelation on

the estimate of the time series global trend.

An alternative perspective is that autocorrelation is not

a nuisance, but rather a revealing signal of underlying

processes. For example, an analysis of a desert rodent commu-

nity (figure 2) shows a cycle of autocorrelation approximately

every 4–5 years, which is likely related to the influence of El

Niño Southern Oscillation on the environment in this region

[50]. Patterns of autocorrelation can be quantified by different

methods. The simplest way to study temporal autocorrelation

is examining the correlation of a time series with itself at differ-

ent lags (figure 2a–c) using ACF analysis [57]. The degree of

inertia in the time series can be determined by examining the

rate of decay of correlation with time lag. If the time series is

long enough and has sufficient resolution, it may be possible

to identify temporal cycles by looking for consistent distances

in time lags between positive and negative correlations. The

time-series spectral density indicates the contribution of differ-

ent frequencies to the total signal (figure 2d). Spectral density

can be examined in periodograms, which are typically obtained

by using a fast Fourier transform to decompose a time series

into sine waves of different frequencies [58]. Important frequen-

cies have a higher density in the periodogram, and its overall

shape reflects the type of temporal fluctuations in the system.

Studying autocorrelation as a phenomenon in itself

provides crucial insights into biodiversity dynamics and can

help increase the accuracy of forecasts of biodiversity change.

For example, given that the pattern of autocorrelation in sto-

chastic variation influences population persistence [59],

quantifying autocorrelation patterns by examining spectral

density of time series may help predict extinction probabilities.

More intense, high-frequency variation should increase extinc-

tion probability. Moreover, autocorrelation patterns provide

indications of relevant external forcing variables. Large-scale

climatic variables are often good predictors of temporally

autocorrelated patterns in ecology [60], which means that fore-

casting biodiversity change can take advantage of predicted

changes in these variables. In general, incorporating spatial

and temporal autocorrelation tends to improve model

predictive power [61].

(c) Quantifying systemic change
Standardizing data to minimize the effects of measurement

error and characterizing or removing temporal autocorrelation

facilitates quantification of systemic change in biodiversity.

However, there is still process error to consider, which can

make difficult the task of quantifying systemic change. In prac-

tice, disentangling systemic change from process error largely

depends on the question being addressed. We distinguish the

following approaches to quantifying systemic change: point or

interval comparisons, models for temporal data (including

long-term and short-term trends) and spatio-temporal models.

(i) Comparing points or time intervals
Comparing biodiversity at two points or intervals in time

requires an estimate of the precision of the point estimates,

typically in the form of a confidence interval. Unless the stat-

istical distribution of the diversity metric is well understood,

it is preferable to estimate confidence intervals via a non-

parametric bootstrap [62], where sites, species or individuals
can be re-sampled, depending on the nature of the data [63].

By plotting the point estimates of diversity with their confi-

dence intervals against time, we can examine temporal

changes in the index. Confidence levels must be adjusted

when more than two points are compared simultaneously

[64]. Inference about the significance of a difference in

mean values should consider that significance may be

found despite overlapping confidence intervals [65].

Figure 1a shows that range in shell size (a metric of trait

diversity) was significantly lower in the Ordovician to

Carboniferous period than in the Permian to recent period.
(ii) Models of temporal trends
An alternative to following the fluctuations of the point esti-

mates is to estimate long or short-term trends in biodiversity.

Long-term trends are typically estimated by the slopes of

linear regressions of the biodiversity metric over time,

whereas nonlinear models can be used to characterize fluctu-

ations and shorter-term trends. Figure 1b shows a long-term

increase in shell size diversity in a Phanerozoic fossil time

series. We show linear trends as fitted by ordinary least

squares, that ignores the non-independence of errors close

in time, and GLSs using a model with temporally autocorre-

lated error. Although the lines estimated by the two methods

are very similar, the GLS model has a more conservative

p-value because it models the non-independence of points.

In quantifying systemic change in biodiversity, there are

two options to deal with temporal autocorrelation. If seen as

nuisance, autocorrelation can be removed a priori, for example

by analysing ARIMA residuals of the time series or by differen-

cing the data by subtracting successive elements in the time

series. Alternatively, the raw data may be analysed, and if the

residuals of the model display an autocorrelated pattern,

additional predictors may be added to the model to help

reduce or remove autocorrelation. Other approaches include

modelling residuals as a correlated ARIMA time series or mod-

elling the covariance pattern in the variance-covariance matrix

as in the GLS regression. Among many statistical models, gen-

eralized additive models (GAMs) [66] are widely used to fit

smooth curves or surfaces to data over time for this purpose.

GAMs extend generalized linear models and assume additive

relationships among the effects of predictors, allowing data to

determine the (generally nonlinear) relationship between the

response variable and the set of predictors (see electronic sup-

plementary material for more detail and extension into the

spatio-temporal case).

A common method for short-term trend models is to use

cubic regression splines to construct each smooth function,

applying the penalized regression spline technique [67],

which controls the degree of smoothness by adding a penalty

to the likelihood function. This model usually provides a

better fit than parametric linear or quadratic models. Many

other smoothing methods are available, including piecewise

regression, kernel methods, LOESS (locally weighted poly-

nomial regression), running-mean (or running-median)

smoothers, classification and regression tree, and multivariate

adaptive regression splines [66,68]. Figure 1c shows two local

models (LOESS and GAM with splines) fitted to the fossil

shell size diversity time series. A comparison with figure 1b
illustrates the complementary nature of global and local

models: despite a long-term increase in diversity of this trait,

the rate of change has not been constant.
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Non-parametric smooth functions are not only sufficiently

flexible to model changes in trends, but also allow us to deter-

mine points in a time series at which the rate of change

increases or decreases (i.e. the second derivative of the

curve). Alternatively, change points can be identified using

threshold regression (figure 1d ) or by finding the locations of

knots (which separate sections to each different polynomials

are fitted) in GAM models [66].
hing.org
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4. From inferring to forecasting
To forecast future change, it is crucial to understand

how biodiversity changes through time. Having taken into

account how measurement error affects perception of biodi-

versity change, knowledge of the patterns of correlation

(autocorrelation and cross-correlation with predictor

variables) can be used for this purpose. Incorporating auto-

correlation is a parsimonious approach to improving the

precision of forecasts by including the effects of unmeasured

factors, which are reflected in autocorrelation patterns.

Forecasting can be accomplished in three main ways. First,

temporal trends can be extrapolated into the future. The slope

of a line fitted to the time series (using GLS, GAM or ARIMA

models, for example) is indicative of the trend in the time

series. However, an understanding of the patterns of temporal

autocorrelation is crucial to gauge how uncertainty scales with

time lags, and hence how far into the future it is reasonable to

extend predictions. An example of a forecasted trend are extinc-

tions caused by habitat loss as estimated from the species–area

relationship [69], which are predicted to occur over an

extended period of time, with an extinction debt persisting

well into the future [70]. This extinction debt over time can

be forecasted and intervention windows for conservation

action to prevent extinction estimated [71].

Second, biodiversity can be modelled as a function of

covariates, which we may be able to predict more accurately

than biodiversity itself, and hence obtain indirect predic-

tions of future biodiversity. Again, regression models such

as GLS or GAMs can be particularly useful in this endea-

vour, but it is important to consider how temporal

autocorrelation can cloud our understanding of cross-

correlations. An example of predictions based on forecasted

covariates is the prediction that climate change may cause

the extinction of many endemic species in Australian

tropical rainforests [72].

Third, process-based ecosystem models can be used to pro-

ject future abundance and distribution of biodiversity [73].

Incorporating the time axis and understanding the effects of

time lags could extend our ability to model biodiversity as a

function of covariates and thus to predict, but is not yet

used in, species distribution models (W. Thuiller 2011, per-

sonal communication). The accuracy of these approaches

depends heavily on how completely we understand the mech-

anics of the community, and tends to decrease with increasing

complexity. A recent comparison of predictions by different

models at a global-scale highlights the level of uncertainty in

these forecasts and the extent to which incomplete ecological

knowledge contributes to this uncertainty [74]. For example,

predicted extinction rates vary nearly twofold, depending on

poorly understood migration rates [75]. Ultimately, these

models can only be as good as our empirical understanding

of the ecological mechanisms involved in biodiversity change.
To predict long-term, large-scale change, we need biodiversity

time series at comparable scales.

The most serious difficulty with forecasting biodiversity

change is that many past changes have been neither gradual

nor linear. Examples of drastic changes that fundamentally

altered biodiversity and ecosystem function include the mass

extinctions evident from the fossil record, with a mass extinction

event possibly currently underway [76], and ecosystem phase-

shifts between alternative stable states, such as coral dominated

and algae dominated reefs [77]. Additionally, ecosystems often

show path dependence (hysteresis), in which restoring con-

ditions before the tipping point is not sufficient to reverse a

phase-shift [78]. An urgent area of research, in which temporal

patterns of biodiversity are crucial, is learning to recognize

early warning signs of drastic changes in ecosystems before

they occur. Specifically, analysing frequency patterns in autocor-

relation may provide important clues (J. Ardron 2011, personal

communication). Fluctuations in ecological communities have

long been recognized as containing important information

regarding ecosystem stability [79]. Ecosystems tend to recover

more slowly from perturbations and show increased variance

in temporal patterns before undergoing a phase-shift to an alter-

nate basin of attraction [6]. Specifically, studying autocorrelation

patterns in small grain time series that include phase-shifts will

provide deeper insights into these patterns. Examining the

generality of changes in autocorrelation patterns prior to

phase-shifts may provide important tools to anticipate drastic

biodiversity change, much like monitoring seismic activity

helps predict major earthquakes.

Most statistical methods that are used to forecast future

trajectories of biodiversity implicitly assume that the mechan-

isms driving historical and recent trends continue into the

future, albeit with new levels for some covariates. However,

drastic changes often involve pressures upon ecosystems,

generating novel systems [80] that function differently, as

the pool of functional traits changes [81], and combinations

of environmental variables arise that have no contemporary

analogues [82]. In many cases, palaeo-climates encompass a

greater range of projected conditions and may provide

important clues for expected biotic responses [83]. These

issues create challenges for predicting biodiversity trends

that require us to understand the mechanisms driving diver-

sity and call for placing greater statistical weight on datasets

that better represent the anticipated change.
5. Conclusions
Availability of long-term, large-scale, high-resolution data is the

single most important factor limiting progress in understanding

temporal patterns in biodiversity. Given the difficulty of obtain-

ing data from the past, we reiterate the appeal to preserve data

and associated metadata in publicly accessible archives [84].

Public databases of biodiversity records are providing unprece-

dented insight into large-scale, long-term patterns (e.g.

Paleobiology database—http://paleodb.org, Global Biodiver-

sity Information Facility—http://data.gbif.org/). Establishing

standards for meta-information should ensure that future scien-

tists can not only access but also take full advantage of the data

we are now collecting [85]. The challenges that arise from deal-

ing with historical data (see the electronic supplementary

material) should help signal pitfalls to avoid when making

contemporary data available.

http://paleodb.org
http://paleodb.org
http://data.gbif.org/
http://data.gbif.org/
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If possible, data should be collected using methods, grain

and sampling effort that allow linking to other data sources,

such as palaeo and historical data. Achieving standardization

of methods will facilitate integration of multiple sources of

contemporary data. Although ecologists should always strive

to collect data as accurately as possible, incomplete or partial

data can be better than no data at all. Imperfect data at relevant

spatial and temporal scales (e.g. range maps from floras) allow

answering questions unapproachable with high precision data

at short timescales or with time series that take highly

degraded states as the baseline [18]. Exploring non-traditional

sources of data, such as archaeological deposits, historical

images and traditional knowledge passed orally through gen-

erations [86], and collating different sources of data may help

address previously intractable questions.

The unique features of temporal data should be recognized,

accepted and used as advantages rather than treated as

nuisances. These include the general lack of boundaries,

uni-dimensionality, inherent autocorrelation and directionality.

Rather than coercing temporal data into restrictive assumptions
for analysis, methods that treat these characteristics as part of the

pattern should be considered. The study of autocorrelation and

frequency analysis of time series and their relationship with eco-

system stability are areas that we believe will prove fruitful.

Measurement error should be minimized and, when possible,

estimated, particularly given the potential additional sources

of error in temporal data. We should consider the spatial context

of time series, the temporal context of spatial data, and types and

rates of change expected in fully spatio-temporal contexts.

Finally, forecasts of biodiversity change should recognize

that the future is never a strict repetition of the past but

appreciate that the past sheds light on how life on earth has

dealt with immense challenges and how biodiversity

responds to critical transitions.
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