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Abstract: Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and
electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal,
optical and electronic features, with a focus on their modulation by molecular design. The polycon-
desation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor
polymers with good thermostability, up to 318 ◦C. These displayed good solubility in organic sol-
vents, which enabled easy polymer processability in thin films with different molecular assemblies.
The molecular order improved the charge carrier’s mobility, with a direct impact on the bandgap
energy. The optical properties studied by UV–Vis absorption and fluorescence experiments showed
solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a
strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular
charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All
polymers showed good electroactivity, supporting both electrons and holes transport. The exchange
of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that
of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This
study may contribute to a deeper understanding of the physico-chemistry of electronic materials so
as to make them more competitive in the newest energy-related or other optoelectronic devices.

Keywords: polyazomethines; naphthylimide; carbazole; triphenylamine; opto-electronic behavior;
bandgap energy

1. Introduction

Organic electronics is one of the evolving technologies enabling development of
eco-friendly, lightweight, flexible and low-cost devices with versatile functionalities not
attained by silicon or other inorganic materials—that is, electronic devices that bend,
twist, and conform to any surface [1]. In this field, π-conjugated polymers attracted much
interest, being the subject of research for many years, due to their widespread use as
active components in various devices, including photovoltaic cells, thin-film transistors or
electroluminescent diodes [2,3]. However, these devices are still in infancy relative to the
commercial ones and need to overcome key research challenges towards a more innovative
and sustainable approach to developing our electronic world.

The main advantage encountered in conducting polymers relates to the possibility of
fine tuning the molecular structure through the organic synthetic strategies so as to achieve
desired and adjustable optoelectronic properties [4]. Apart from this, the simple synthetic
procedure and the reduced cost made them attractive replacements for the outstanding
semiconductors despite their still-low performance in many applications. They are also
candidates for wet processing techniques, forming homogeneous thin films of good quality
suitable for flexible electronic devices [5].

In recent years, azomethine (-CH=N-)-based conjugated polymers emerged as promis-
ing materials in different optoelectronic applications [6], being considered appropriate
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alternatives to π-conjugated polymers containing vinylene (-C=C-) bonds [7]. Conjugated
aromatic polyazomethines have demonstrated attractive electronic, optoelectronic and ther-
mal properties that can be readily modified depending on the molecular design. These have
found a plethora of applications, such as electroluminescent materials in light-emitting
devices, photonic memories or electrochromic materials, hole transporting materials in
solar cells or active layers in organic field-effect transistors [8–14]. However, a challenge
that still faces the development of polyazomethines is to obtain solution-processable, highly
conducting or fluorescent materials in a neutral state [15–17]. In this regard, there is still
a need to incorporate new functional groups in the main chains to attain both improved
solubility and innovative physicochemical properties, so as to make them compatible
with current optoelectronic devices. Some examples are reported in [18,19], where Schiff
base-derived materials with innovative aggregate-induced emission, mechanochromic
or photochromic characteristics were developed, which can provide a guideline towards
sustainable polyazomethines for use in advanced technologies.

One approach in this regard envisages the incorporation of triphenylamine (TPA)
moieties in polyazomethines. This propeller shape heteroaromatic unit endows the poly-
mers with both good processability and electroactivity, besides other useful characteristics,
owing to its redox activity, fluorescence or ferromagnetic behavior. It was widely used
as hole transporting core, as well as a building block in small molecules, dendrimers,
and polymers [8,20–22]. Another attractive functional group is carbazole, particularly
because various substituents can be attached to its nitrogen atom, while the aromatic core
can be easily substituted, allowing the tuning of its optoelectronic properties. Polymers
containing carbazole are highly thermostable and display good electro- and photoactive
properties induced by their hole-transporting ability and high absorption in the UV do-
main. Due to these characteristics, such polymers were used in smart windows, solar cells,
electroluminescent devices, biosensors, and other related applications [23].

Embedding a hole-transporting unit along with an electron accepting one separated
by a π-spacer in one polymer chain can generate donor-acceptor systems that can efficiently
meet the demands of optoelectronic devices [24]. The properties of these materials can be
readily adjusted by exchanging the donor or the acceptor according to the need, so that a
fine tuning of the HOMO, LUMO and bandgap energies, as well as other optoelectronic
properties, can be reached. Tetracarboxylic diimides, especially those with six-membered
imide rings like naphthalene(di)imides, are appropriate candidates for donor-acceptor sys-
tems, being known as electron-deficient moieties which can support the electrons’ transport
while they are very stable in air [25]. Besides, these units endow the materials with impor-
tant properties, such as high thermal stability, optical response, chemical and oxidation
resistance and good capability to pack into organized supramolecular structures [26,27].

Among the large family of donor-acceptor systems, polymers containing the strong
electron acceptor naphthyl(di)imide core directly connected to the azomethine unit that can
enable an easy electron flow to the donor unit are still unknown. They can subscribe to the
family of materials with the ability to fine tune the physicochemical and (opto)electronic
characteristics, facilitated by synthetic chemistry involving azomethine bond generation.
Recently, we have reported our first attempt to prepare oligomer systems with such molec-
ular design [28], and since we found their characteristics attractive for optoelectronic
applications, here we extended this structural pattern to polymers. The scope was to survey
the possibility of fine tuning the HOMO, LUMO and bandgap energies, as well as the
florescence properties through an extended π-system and through structural parameters.
Our target was also to overcome one of the challenges encountered with these aromatic
polymers, which is low solubility due to strong intermolecular interactions, so as to be
conveniently processed into thin layers from solutions by using easily accessible solvents.

Thus, this study is focused on the development of donor-acceptor polymers in which
the azomethine is the π-bridge between the electron acceptor naphthyl(di)imide and elec-
tron donor TPA or Cbz. The correlation between structure and targeted properties was
investigated in terms of film processing capability and morphology, thermal stability,
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photo-optical, electrochemical and electronic properties. The effect of electron-donor or
electron-acceptor exchange on the overall physicochemical characteristics of these polymers
was particularly investigated.

2. Experimental
2.1. Starting Materials

The structure of the diamine and dialdehyde monomers (M1–M4), which were al-
lowed to react by polycondensation reaction to produce polyazomethines P1–P4, are
illustrated in Figure S1 (Supporting Information, SI). Naphthalene-N,N’-bis(imido-amine)
(M1) was prepared following the procedure reported in [19]. 1,1-Dichloro-2,2-bis(1,8-
dicarboxynaphthalene-N-imido-amine)ethylene (M2) was obtained according to refer-
ence [21]. 9-(2-Ethylhexyl)carbazole-3,6-dicarboxaldehyde (M3) and 4,4′-diformyltriphenyl
amine (M4) were purchased from Sigma-Aldrich and used as received, with no further
purification. Other reagents and materials were provided by various commercial sources
and used without purification.

2.2. Polymers Synthesis

Four donor-acceptor polymers containing azomethine linkages were prepared by the
well-known polycondensation procedure [8,10], starting from aromatic diamines containing
naphthyl(di)imide unit (M1, M2) and 9-(2-ethylhexyl)carbazole-3,6-dicarboxaldehyde (M3)
or 4,4′-diformyltriphenylamine (M4), as shown in Scheme 1.
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Scheme 1. Synthetic way to polyazomethines P1–P4.

The reactions were carried out either in CHCl3 (P1 and P2, based on M1 diamine) or
DMF (P3 and P4, based on M2 diamine) at a concentration of 10% total solids, under a
nitrogen stream and at 60 ◦C (in CHCl3) or 120 ◦C (in DMF) for 24 h. In the case of P1 and
P2, the polycondensation reaction was performed under catalytic conditions in the presence
of trifluoroacetic acid (TFA). The following example illustrates the general procedure.

In a 25 mL vacuum-dried Schlenk flask purged with nitrogen and equipped with a
magnetic stirrer, the diamine M1 (88.23 mg, 0.298 mmol) and CHCl3 (2 mL) as solvent
were placed. Then, dicarbaldehyde M3 (100 mg, 0.298 mmol) was added to the resulting
suspension, being followed by the dropping of 20 µL TFA. Then, the reaction mixture was
heated under stirring and nitrogen at 60 ◦C for 24 h. When the temperature reached 60 ◦C,
the solution color turned from dark green to dark red. Upon cooling to room temperature,
the obtained reaction mixture was poured into dry methanol to precipitate P2 as a dark-
red solid. The purification was performed by multiple washing of the polymer with hot
methanol. After drying in an oven at 100 ◦C for 6 h, P2 was obtained as a light- red powder,
with a reaction yield of 85.5%. The other polymers were obtained as brown (P1), yellow
(P3) or dark-yellow (P4) powder, with a reaction yield of 69.1%, 87% or 90.2%, respectively.
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P1, 1H NMR (DMSO-d6, 400.13 MHz, δ ppm): 8.74–8.72 (m, 6H), 7.96–7.83 (dd, 4H),
7.50–7.47 (t, 2H), 7.33–7.24 (m, 5H), 7.18–7.16 (d, 2H).
P2, 1H NMR (DMSO-d6, 400.13 MHz, δ ppm): 8.89–8.68 (m, 6H), 8.22–8.20 (dd, 4H), 8.06 (s,
2H), 7.86–7.83 (m, 2H), 4.42–4.39 (m, 2H), 2.04 (s, 1H), 1.33–1.19 (m, 8H), 0.88–0.77 (m, 6H).
P3, 1H NMR (DMSO-d6, 400.13 MHz, δ ppm): 8.97–8.91 (m, 2H), 8.64–8.49 (m, 4H),
8.13–8.19 (m, 2H), 7.92–7.81 (m, 6H), 7.47–7.45 (d, 2H), 7.29–7.14 (m, 7H).
P4, 1H NMR (CDCl3, 400.13 MHz, δ ppm): 8.84–8.50 (m, 8H), 8.30–8.22 (m, 2H), 8.11–7.95
(m, 2H), 7.71–7.43 (m, 4H), 4.34–4.21 (m, 2H), 2.10 (s, 1H), 1.40–1.25 (m, 8H), 0.97–0.86 (m, 6H).

2.3. Preparation of Polymer Films (Coatings)

Thin polymer films were prepared at room temperature by using two techniques: spin-
coating and drop-casting. Before deposition, all plates were firstly cleaned with deionized
water and then with toluene and isopropanol in an ultrasound bath. Glass, quartz and
indium tin oxide (ITO)-coated glass substrates were used as plates to coat thin polymer
layers from chloroform (CHCl3) solutions with a concentration of 1%. In the case of the
spin-coated films, the rotational speed was set to 1000 rpm, whereas the film deposition
time was maintained for 30 s. The solvent evaporation was allowed to occur at room
temperature under slight air ventilation. The as-obtained films were subjected to various
investigations to assess the morphological, optical and electrochemical characteristics.

2.4. Measurements

The 1H-NMR spectra of the polymers were obtained with a Bruker Advance III 400
spectrometer (Bruker, Rheinstetten, Germany) operating at 400.13 MHz for 1H nuclei. The
chemical shifts of the protons are provided in δ units (ppm) against the residual peak of
the solvent.

The Fourier-transform infrared spectroscopy (FTIR) experiments were carried out on
a FT-IR Vertex 70 Spectrophotometer (Bruker, Ettlingen, Germany), by using KBr pellets.

Thermogravimetric analysis (TGA) was recorded on the thermobalance STA 449F1
Jupiter (Netzsch, Selb, Germany) by heating the sample in an open Al2O3 crucible in
nitrogen environment from 25 ◦C to 700 ◦C. The heating rate was set at 10 ◦C/min, and
Al2O3 was used as reference material.

The UV–Vis absorption spectra were registered on an Analytik Jena-Specord 210 PLUS
spectrophotometer (Analytik Jena, Jena, Germany) operating between 200 and 1100 nm by
using dilute polymer solutions (approx. 10−5 M) or thin polymer films deposited on quartz
substrates.

Perkin Elmer LS 55 apparatus (PerkinElmer, Inc./UK Model LS 55, Waltham, MA,
USA) was used for the acquisition of the fluorescence spectra of the polymers on similar
samples used in UV–Vis absorption experiments.

The morphology of the thin films spin-coated or drop-cast onto glass supports was in-
vestigated by scanning electron microscopy (SEM) using a Quanta 200 ESEM (FEI Company
Hillsboro, OR, USA).

The thicknesses of the films were estimated by KLA Tencor D500 contact profiler
(D500, KLA Tencor, Milpitas, CA, USA).

The electrochemical characteristics of the polymers were assessed on the basis of cyclic
voltammetry (CV) experiments, which were carried out on a Potentiostat-Galvanostat
(PG581, Uniscan Instruments, Buxton, United Kingdom). The electrochemical cell was
composed of three electrodes: a reference electrode (Ag/Ag+), an auxiliary electrode
(platinum wire) and a working electrode (analyte-coated ITO glass). The cell was completed
with an electrolyte salt (tetrabuthylammonium perchlorate—TBAP) dissolved in acetonitrile
(ACN), at a concentration of 0.1 M, and then purged with a gentle flux of N2. The CV
curves were recorded at room temperature, at a scan rate of 50 mV/s, while ferrocene was
employed as the external reference for calibration (Eonset = 0.34 V in ACN vs. Ag/Ag+).
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3. Results and Discussions
3.1. Synthesis and Structural Characterization

Carbazole (Cbz) or triphenylamine (TPA)—containing electron donors along with
electron acceptors based on naphthyl(di)imide were used as the main building blocks to
obtain polymers with azomethine as a π-conjugated bridge. The monomers were reacted by
polycondensation at the 1:1 stoichiometry ratio in CHCl3, in the presence of trifluoroacetic
acid as catalyst, or in DMF, without catalyst, as described in the Experimental sections. The
different experimental conditions were adjusted so as to achieve satisfactory reaction yields
as well as to keep the final polyazomethine in solution.

The formed polyazomethines were fully soluble in chlorinated solvents like chloroform
(CHCl3) and methylene chloride (CH2Cl2) and partly soluble in tetrahydrofurane (THF),
dimethylsolfoxide (DMSO) and dimethylformamide (DMF). However, P3 and P4 displayed
solubility in these solvents at a higher concentration compared to P1 and P2, owing to
the higher chain flexibility induced by the CCl2 kinking center, leading to polyazome-
thines with more twisted chain conformations. Generally, this is a significantly improved
solubility compared to that of fully aromatic polyazomethines, well explained by the non-
coplanarity of the three aromatic rings in TPA units or long aliphatic side chains grafted
on carbazole moieties, leading to higher distances between macromolecules and reduced
physical bonding. The good solubility of the present polymers enabled their processing by
wet methods, including spin-coating and spin-casting, so as to obtain thin films suitable for
optoelectronic applications.

The investigated naphthylimide-based polyazomethines displayed low molar masses
when investigated by GPC in CHCl3, suggesting their oligomeric nature. Thus, Mw was
found in the range of 1540–5680 g/mol, whereas Mn ranged between 1280 and 3290 g/mol
(Table 1).

Table 1. Molecular weights (evaluated by GPC in CHCl3) and TGA data of P1–P4.

Polimers Mn (g/mol) Mw (g/mol) Mw/Mn Tonset (◦C)

P1 1280 1540 1.19 345

P2 2150 2880 1.34 318

P3 2700 5100 1.88 328

P4 3290 5660 1.72 338

They all displayed a polydispersity below 1.9, which is characteristic for polymers
obtained by the polycondensation method. Although P3 and P4 exhibited higher molecular
weights compared to P1 and P2, this was expected due to the higher molar mass of the
structural unit of P3 and P4 compared to P1 and P2. Also, it was observed that Cbz-
derived polymers P2 and P4 displayed slightly higher molecular weights compared to
their counterparts based on TPA, P1 and P3, which can be explained by the better reactivity
of dialdehyde M3 relative to that of M4 towards diamines M1 and M2. However, this is
only a crude estimation of the molar masses of the present polymers, since standards of
polystyrene were used for calibration, with significant structural differences compared to
our polymers.

The successful accomplishment of the polymerization reaction was assessed by 1H-
NMR and FTIR analyses. The 1H–NMR spectra of polyazomethines P1–P4 are shown in
Figure S2. All proton chemical shifts assignments were made by comparing the spectrum
of the polymer with those of the starting monomers, as representatively illustrated in
Figure S2b for P2. One of the main characteristics of the synthesized polyazomethines re-
lates to the presence of the end-capped aldehyde groups, mostly due to low reactivity of the
naphthyl(di)imide-based diamines. As highlighted in the spectra of P2 and corresponding
monomers, there is a small shift, up to 0.02 ppm (8.15 Hz), between the aldehyde proton
signal from the polymers and that from the starting aldehyde counterpart. Moreover,
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the absence of the chemical shifts corresponding to NH2 protons at 5.86 ppm (M1) and
5.78 ppm (M2) proved the total incorporation of the diamine segments in the structure
of the obtained polymers. Under these circumstances, the azomethine proton signal as
representative proton signal for this class of polymers could be accurately identified at
8.72 ppm for P1 and P2, and 8.62 ppm for P3. In the case of P4, this specific signal was
found overlapped with other aromatic protons signals. The aromatic protons belonging to
TPA and Cbz structures were found in the region 8–7 ppm (P1 and P3) or 9–7 ppm (P2 and
P4). In the case of Cbz-based polymers (P2 and P4), the protons belonging to the aliphatic
side groups were clearly evidenced by the signals at approx. 4.29, 2.10, 1.40–1.27, 0.97 and
0.87/0.92 ppm.

FTIR spectra brought further evidence on the appropriate structure of the synthesized
polymers. In these spectra, the azomethine units gave strong bands overlapped with those
generated by the symmetrical stretch of the C=O bond in the naphthyl(di)imide in the
range of 1678–1670 cm−1. The naphthyl(di)imide unit was also identified by the absorption
bands provided by the asymmetric stretch of the imidic C=O bond at 1712–1708 cm−1,
the CN bond vibrations at 1321–1314 cm−1 and in-plane deformation of the imide ring
at 780–756 cm−1. Whilst the absorption bands at 3080–3063 cm−1 and 1599–1592 cm−1

were associated with the vibrations of the aromatic C-H and C=C bonds, respectively, the
aliphatic C-H bonds in the FTIR spectra of Cbz-based polymers, P2 and P4, were evidenced
by the absorption bands at 2959–2854 cm−1. Also, in the FTIR spectra of polymers P3 and
P4, the signature of the C-Cl bond was found through the absorption band at 935–932 cm−1.
Figure 1 displays comparatively the recorded FTIR spectra of P1–P4.
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3.2. Films Morphology

Generally, polymers can lead to defectless thin films, with flat and homogeneous sur-
faces, suitable for use as active layers in various applications, particularly in optoelectronics.
This prerequisite is necessary to allow the current to flow through the device layers without
producing short circuits. In this context, due to the good solubility in conventional organic
solvents, P1–P4 were processed into thin films on glass plates from CHCl3 solutions by
using two wet-deposition techniques: spin-coating (SC) and drop-casting (DC). Scanning
electron microscopy (SEM) was employed to examine the quality and morphology of the
obtained films. According to SEM images shown in Figure 2, these polymer films are mor-
phologically different, suggesting that each selected structural building block affected in a
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particular way the solid-state packing of the macromolecules. In addition, the solid-state
packing arrangement varied in dependence on the deposition method.
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Whereas the cast P1 film consists of polymer chains organized into self-assembled
sheet-like building blocks of various shapes and sizes, the solid-state packing of P2 led
to a dense network of wires that tend further to form spherical shapes. It seems that the
bulk aliphatic side groups grafted on carbazole unit in P2 induced a steric effect, reducing
the packing ability of the polymer chains during the film preparation. When spin-coating
was employed to obtain polymer films, these morphological entities were less distinct,
while their evolution stopped at an intermediary phase, mainly due to the fast solvent
evaporation. Thus, the solvent evaporation rate affected the polymer packing, since the



Molecules 2022, 27, 5761 8 of 17

macromolecules require time to rearrange and pack into specific assemblies. In the case of
more flexible polymer chains (P3 and P4), the macromolecular packing ability significantly
decreased even in the case of drop-cast polymer films. During P3 film preparation, the
solvent evaporation led to isolated islands that protuberate out of the whole matrix. Even
though the naphthyldiimide segment is a bulky unit, the TPA moiety allows for greater
conformational changes of P3 polymer chains than the Cbz unit by rotating around the
azomethine bond and thus facilitating a mound-like morphology. Instead, the P4 film
showed a smooth morphology with no specific molecular arrangement, despite the better
chain planarity induced by Cbz compared to TPA. From this perspective, it is assumed that
the decreased ability to pack into tight structures originates from the presence of side bulky
aliphatic chains in P4 that cause a steric effect, preventing the tight molecular packing.
Unexpectedly, the spin-coated film of P4 displayed grain-like morphology, with small
spherical structures surrounded by the amorphous polymer chains. In conclusion, it should
be stated that TPA moiety allows for significant macromolecular chain packing compared
to the related Cbz-derived polymers, despite the more rigid structure of this heterocycle,
mostly due to the great effect exerted by the lateral aliphatic groups.

3.3. Thermal Stability

Thermogravimetric analysis (TGA) was involved as an experimental tool to evaluate
the thermal stability of the present polymers up to 700 ◦C. The recorded TGA curves for
P1–P4 are displayed in Figure 3.
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Figure 3. TGA curves of naphthyl(di)imide-based polymers P1–P4.

All investigated polymers present high thermal stability, with decomposition tempera-
tures well above 318 ◦C. According to the TGA curves, P1 is the most thermally stable in
the series (345 ◦C), being followed by P4 (338 ◦C), P3 (328 ◦C) and P2 (318 ◦C). Although
P1 and P3 contain TPA as a structural element, which usually endows polyimides with
high thermostability [20,29], P3 is less thermally stable than P1. This can be reasonably
explained by the presence of the more rigid and planar naphthyldiimide in the structural
unit of P1. This moiety appears to exert a better effect on thermal stability than on the
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two naphthylimide moieties in P3, despite the higher molecular weight of the latter. In
addition, the twisting CCl2 center in the dianhydride-derived fragment of P3 lowers the
polymer planarity, thus overcoming the impact induced by the molar mass on thermal
stability. The Cbz-based polymer P2 decomposes at a significantly lower temperature
than the related polymer P1 containing TPA, which is an expected behavior in light of
the presence of aliphatic side chains in P2, which are less thermally stable, thus reducing
the overall polymer thermostability. Compared to P3, a slightly higher thermal stability
was noticed for P4, although the opposite effect was expected due to the presence of the
aliphatic groups-substituted Cbz. It appeared that the higher molecular weight of P4
compensates the thermal effect induced by the aliphatic side chains, so that its thermal
stability exceeds the one of the related TPA-based polymer P3. Any attempt to evaluate the
glass transition temperature (Tg) of these polymers failed. No detctable Tg was registered
up to 300 ◦C, suggesting their rigid nature, or even the presence of molecular interactions
between macromolecules in a solid state.

3.4. Photophysical Studies
3.4.1. UV-Vis Absorption Characteristics

The ultraviolet-visible (UV-Vis) absorption response of polymers P1–P4 was first
investigated in CHCl3 solutions (10−5 M) and then in thin films drop-cast from CHCl3
solution. The recorded spectra are comparatively shown in Figure 4, whereas the optical
data extracted from these spectra are listed in Table S1.
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As a whole, it was noticed that the spectral pattern in a solution of TPA-containing
polyazomethines P1 and P3 consists in only one band system, whereas the Cbz-based poly-
mers P2 and P4 display a spectra with two band systems (Figure 4a). The supplementary
absorption bands with maxima at 275/278 and 300/306 nm recorded in the case of P2
and P4 were attributed to the π-π* transitions in the Cbz chromophore [30]. The lower
energy absorptions centered at 347/352, 364/368 and 382/407 (P2/P4) can be associated
with both the vibronic states of the naphthyl(di)imide segment and π-π* transitions of
azomethine moiety or carbazole–azomethine conjugated segments. Since the azomethine
and naphthyl(di)imide are electron-withdrawing units and Cbz an electron-donor moiety, a
slight internal charge transfer is expected to occur that can also contribute to the absorption
band system registered at higher wavelengths. A distinct feature in the spectrum of P4 is,
however, the appearance of a very low energy band, with a maximum at 604 nm, which
can be accurately associated with the direct HOMO to LUMO transition, as predicted by
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DFT simulations on the corresponding oligomer (Az3), reported in reference [28]. As seen
in Figure 4, the UV–visible absorption bands from the highest wavelengths of P1 and P3
containing TPA are red-shifted (approx. 15 nm) and broadened compared with those of
related Cbz-based polymers, whereas their origins can be found in both π-π* transitions
occurring in naphthyl(di)imide, azomethine and TPA–azomethine fragments, as well as in
ICT transitions between donor and acceptor units. Such behavior suggests a better electron
transfer in the case of TPA-based polymers due to the stronger ability of TPA to push
electrons to the acceptor units compared to Cbz.

The solvent change from CHCl3 to the one with higher polarity (DMF) revealed some
small hypsochromic shifts only for the lowest energy absorption band, the maximum shift
of 6 nm being registered in the case of P1 (Figure S3). This slight negative solvatochromic
behavior that suggests a better stabilization by solvation of molecules in ground state
relative to excited state with decreasing solvent polarity provides clear evidence for the
ICT character of the transitions contributing to this absorption.

In thin films, all polymers preserved the UV–Vis absorption spectral profiles of the
macromolecules in solution (Figure 4b). The only difference relates to the position of the
absorption maxima that are red-shifted with respect to the corresponding absorptions
of the isolated molecules in solution. These bathochromic shifts are mostly induced by
the intermolecular packing of polymer chains in solid state, when macromolecules can
adopt more planar conformations than in solution, leading to an extended conjugation.
In addition, the HOMO to LUMO transitions in the spectrum of P3 are no longer present,
being suppressed by the molecular rearrangement in solid state.

3.4.2. Fluorescence Characteristics

The fluorescence spectra of the synthesized polymers recorded in CHCl3 solutions by
excitation with wavelengths corresponding to the absorption maxima indicated a strong
influence of the structural parameters on the emissive properties. According to the fluores-
cence spectra shown in Figure 5, the TPA-based polymers P1 and P3 displayed fluorescence
spectra with a well-defined intense emission band centered at 453 nm and 456 nm, respec-
tively, which can originate from the naphthyl(di)imide that is usually a blue-light emissive
fluorophore [26,31]. Apart from this, a weak emission occurred in the spectrum of P3 at
626 nm, which can be associated with the ICT emission (Table S1). It is worth nothing
that the presence of TPA in the structural pattern of P1 and P3 prevented the quenching of
monomer emission usually encountered at polyazomethines [6,32]. This is the case with
carbazole-based polyazomethines P2 and P4, which are weakly emissive due to the lack of
monomer emission, either provided by carbazole or naphthyl(di)imide.
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Figure 5. Fluorescence spectra of P1–P4 in (a) CHCl3 solution and (b) thin films cast from CHCl3 solution.
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Although it was expected that Cbz would substantially improve the intrinsic emission
of these polymers, in fact it contributed to the almost complete fluorescence suppression.
Previous investigations by fluorescence spectroscopy and laser flash photolysis revealed
the absence of triplet states, providing the conclusion that the azometine bond induces the
quenching of the singlet excited state [6]. The fluorescence deactivation modes were associ-
ated with both the rotation around the aryl-N linkage and intramolecular photoinduced
electron transfer to the azomethine [33,34]. However, in the case of P4, a weak emission
band with a maximum at 555 nm was recorded, being attributed to the ICT state’s emission.

The influence of solvent polarity on fluorescence properties of P1–P4 has been also
explored by recording the spectra in three additional solvents: DMF, tetrahydrofurane
(THF) and N-methylpyrrolidone (NMP). By polarity increase, the ICT emission is no longer
allowed, whereas the intrinsic fluorescence band profiles are less resolved (Figure S4).
Whereas the PL spectra of P1 and P3 in THF mirror the ones obtained in CHCl3 with small
shifts, in DMF and NMP these polymers displayed red-shifted emission bands, with two
maxima (P1, DMF: 445, 476 nm; NMP: 460, 483 nm) or one shoulder-like maximum and one
maximum (P3, DMF: 428, 480 nm; NMP: 483, 530 nm). These can be tentatively ascribed to
the H-bond formation between these polymers and highly polar solvent molecules [17],
leading to the loss of polymer coplanarity compared to that in CHCl3, and the appearance
of twisted locally excited states. Thus, in the case of TPA-based polymers, the overall
polymer emission can arise from mixed states: planar and twisted excited states. Note that
Cbz-based polyazomethine P4 also exhibited fluorescence in DMF, the emission maximum
being centered at 464 nm, whereas in the case of P2 the fluorescence was completely
quenched. We may assume that the intramolecular photoinduced electron transfer is no
longer possible in the twisted conformer of P4 formed in DMF, and, as a consequence,
the locally excited states energy is transferred to the ground state. On the other hand, the
molecular twisting of the more rigid Cbz-based related polymer P2 is not strong enough
to prevent the internal conversion due to the rotation around the azomethine bond or the
photoinduced electron transfer to azomethine.

However, a particular florescence response was noticed in thin films obtained from
CHCl3 solution (Figure 5b). Indeed, the most intense emission was obtained at high
wavelengths, and only in the case of naphthylimide-based polymers P3 and P4. The
emission band perfectly overlaps with the ICT emission band registered in CHCl3 solution
for each polymer; therefore, it can be excluded that it arises from aggregates or excimers.
However, the spectrum of the TPA-based polyazomethine P3 also contains the contribution
from the locally excited states’ emission, which is expected in the view of the most twisted
conformation of this polymer in the investigated polymer series.

3.4.3. Optical Bandgap Energy

The bandgap energy (Eg) and the position of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied orbital molecular (LUMO) versus vacuum are among
the most important parameters of the donor-acceptor polymers. By structural design, the
bandgap and the position of HOMO and LUMO levels can be finely tuned, as was our
target, too. An accurate estimation of the bandgap of an organic semiconductor is often
challenging. The optical gap is usually associated with the energy of the onset of electronic
absorption band that can be accurately evaluated by the Tauc method [35], according to
the relation:

αhν ∝ (hν − Eg)n (1)

where Eg is the optical band gap energy, h is the Planck’s constant, ν is the frequency of
light, n is a factor that characterizes the electronic transition mode (direct/indirect and
allowed/forbidden) and α is the absorption coefficient.

The absorption coefficient against the photon energy—(αhv) versus hv dependence
allows estimating the edge of the electronic absorption spectrum from the intersection of
the linear fit with the hv axis. According to previous studies [36,37], n was considered
equal to 1

2 . The obtained Eg values for the investigated polymers are listed in Table 2. These
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were found to range from 1.8 to 2.9 eV, being largely dependent on the molecular structure
but also on the solid-state packing arrangement of the individual molecules in thin films.

Table 2. Optical band gap data of for polymer films estimated by the Tauc method.

Polymer Eg (eV) Thickness (µm)

P1 1.8 0.512

P2 2.7 0.351

P3 2.6 0.638

P4 2.9 0.357

By far, the polyazomethine with the lowest bandgap energy is P1, containing naph-
thyldiimide and TPA moieties that induce a simple conformational chain packing, which
favors electron delocalization and conjugation along the backbone. In addition, the strong
intermolecular interactions taking place via stacking of individual P1 molecules, as ob-
served in SEM images, mostly contributed to a better electron delocalization between
polymer chains or exciton coupling [38,39], leading to the decrease of the bandgap energy.
The incorporation of alkyl-substituted Cbz units in the P2 backbone was less efficient in
lowering the bandgap, although Cbz is more planar than TPA. This is mainly due to the
interchain effect’s suppression, which hindered the molecular order. The bulky side chains
enhance the spatial distance between the macromolecules and prevent their interaction.
Such disorder alters the charge carrier’s mobility in polymer films, with a direct impact
on the bandgap energy, but contributes to a better solubility and processability of the
polymers by wet methods. Most likely, by grafting of shorter alkyl groups on Cbz moiety,
a compromise between solubility and solid-state organization can be achieved. A similar
effect on the bandgap energy was noticed when multiple twisting centers are present along
the chains, as in the case of P3 and P4. These reduced the overall conjugation and path for
electrons’ delocalization in these polymers. As expected, the effect is greater in P4 due to
the presence of alkyl chain spacers, both effects contributing to the Eg increase.

3.5. Polymer’s Electroactivity and Electronic Structure

The electroactivity of P1–P4 in solid state was investigated by cyclic voltammetry (CV)
upon current sweep between 0 and 2 V to survey their capacity to release electrons, as well
as in the potential window between 0 and −2 V to evaluate their electron pulling ability.
For this purpose, polymer-modified ITO glass plates were used as working electrodes in
electrochemical cells fitted with Pt wire and Ag/Ag+ as counter and reference electrodes,
respectively, and tetrabuthylammonium perchlorate in ACN (0.1 M) as supporting elec-
trolyte. Figure 6 exhibits the CV waves recorded for P1–P4 in the anodic and cathodic
regions, at a scan rate of 50 mV/s. The electrochemical data extracted from the CV curves
are listed in Table 3.

According to Figure 6a, all polymers are electroactive in the positive region and can
be oxidized in quasi-reversible (P1 and P3) or irreversible (P2 and P4) processes. The
redox couple recorded for P1 and P3 at the potential values presented in Table 3 can be
accurately assigned to the quasi-reversible oxidation of the central N atom of the TPA unit
to radical cations. The oxidation potential is slightly influenced by the ability of the imide
core to withdraw electrons. Thus, P1 is very difficult to oxidize compared to P3 due to
the stronger pulling effect exerted by naphthyldiimide in P1 compared to the one of two
naphthylimide fragments in P3. A similar trend was observed in the case of Cbz-based
polyazomethines P2 and P4. However, the Cbz heterocycle underwent a very difficult
oxidation process compared to TPA, denoting the difficulty of pushing electrons in these
polymer systems. In addition, the formed radical cations generated under irreversible
conditions are unstable, their restoration to the neutral forms being completely prevented
by the electron-withdrawing azomethine–naphthylimide framework.
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Table 3. The electrochemical characteristics of polyazomethines P1−P4 films.

Polymer
Film

Oxidation
Potential (V)

Reduction
Potential (V) Energy (eV)

Eox
onset Eox Ered

onset Ered1 ELUMO EHOMO Eg

P1 1.13 1.30 −0.77
1.12
−1.07
−1.61

−3.67 −5.57 1.9

P2 1.36 1.78 −0.76 −1.13 −3.68 −5.8 2.12

P3 1.09 1.29 −0.82 1.09
−1.23 −3.62 −5.53 1.91

P4 1.34 1.73 −0.83 −1.46 −3.61 −5.78 2.17

Eonset—onset potential; Eox—anodic peak potential; Ered—cathodic peak potential; Eg—bandgap energy.

No redox couple was recorded in the negative potential window, although a slight
tendency was noticed. Here, only one reduction peak was clearly seen and attributed
to the reduction of the naphthyl(di)imide cores of the polymers, according to previous
reports [40]. Although the reduction of azomethine was expected to occur at potentials
below−2V, the second reduction observed in the CV curve for P1 can be associated with the
formation of azomethine radical anions, or the reduction of bisimide anion to the dianion
form. After the first reduction, the electron density on the O atom of imide carbonyl became
greater, reducing the ability of the radical anion to accept an additional electron [41]. Still,
when the extra electron density can be delocalized on the aromatic cores, as in the case of
naphthyldiimide, the second reduction is made possible by inserting the additional electron
at the other imide carbonyl or azomethine. The absence of this process in the case of P2
can be explained by the lower capability of Cbz to push electrons compared to TPA. The
first reduction takes place at similar potential in P1 and P2, being barely affected by the
electron donor unit. Instead, the naphthylimide core in P2 and P4 is very difficult to reduce
to the radical anion state, and at significantly different potentials. It is obvious that TPA,
with its stronger ability to release electrons than Cbz, induces an easier reduction of the
naphthylimide core. The second reduction step was not detected in the studied potential
window, probably due to the impossibility of the smaller size naphthylimide moiety to
stabilize the dianion form.

The suitability of the synthesized polymers for use as active elements in optoelectronic
devices can be discussed on the basis of HOMO, LUMIO and bandgap energies. To
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evaluate these characteristics, the first oxidation and reduction onset potentials were used
by assuming that the position of the Fc/Fc+ redox system used for calibration is 4.78 eV
versus vacuum level. Thus, according to the well-known relations [27,42] and the onset
potential of Fc/Fc+ measured in our system against Ag/Ag+, which is 0.34 eV, an estimation
of the above-mentioned parameters was made, as shown in Table 3. From this table, it
is easy to observe that the LUMO energy is considerably affected by the pulling ability
of the imide–azomethine framework and is slightly influenced by the electron-donor
unit capability. Instead, the HOMO energy is significantly dependent on the electron-
donor strength, the exchange of TPA with Cbz leading to an energy variation of approx.
0.23–0.25 eV. The synergistic effect of the electron donor and acceptor units in polymers
P1–P4 led to a bandgap energy variation from 1.9 eV to 2.17 eV (Figure 7), placing them
among electroactive materials with both electron- and hole-transporting characteristics that
are suitable for opto-electronic applications. However, there is a difference between the
electronic and optical bandgap values, as expected, due to their different means (minimal
energy required to create an electron hole pair in a semiconductor versus the exciton energy
that determines the onset of vertical interband transitions) and distinct experimental
techniques [43].
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4. Conclusions

Novel polynaphthylimide-azomethines with donor-acceptor architecture were syn-
thesized and thoroughly investigated to anticipate their potential use as electroactive
materials in energy or optoelectronic applications. The constituent units, which are naph-
thyl(di)imide, azomethine and Cbz/TPA, beside the direct connection of imide with azome-
tine through the N-N bond, allowed the fine tuning of the solid-state packing and overall
physicochemical characteristics of the polymers. The naphthyl(di)imide moiety endowed
the azomethines with high thermal stability, up to 318 ◦C, while it dictated the overall rigid
shape of the molecules. Still, all the investigated oligomers displayed a good solubility,
which allowed their processing in thin films of various morphologies. In the UV-Vis absorp-
tion spectra, the signatures of both localized and ICT transitions were identified, denoting
a complex optical behavior. Thus, the present polymers displayed light emission from
localized or ICT transitions depending on the experimental conditions, donor-acceptor
strength and polymer chain geometry. The cyclic voltammetry analysis evidenced variable
hole- and electron-transport capability, with a direct impact on the HOMO, LUMO and
bandgap energies. With electrical and optical characteristics well-modulated by the molecu-
lar design, the investigated polymers can be considered the starting point for designing new
donor-acceptor systems by interplay between donor and acceptor units, which may find
applications as active layers in energy-related devices or other optoelectronic applications.
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