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Abstract: Unexpected outcomes are usually associated with interventions in complex systems. Ex-
cess winter mortality (EWM) is a measure of the net effect of all competing forces operating each
winter, including influenza(s) and non-influenza pathogens. In this study over 2400 data points from
97 countries are used to look at the net effect of influenza vaccination rates in the elderly aged 65+
against excess winter mortality (EWM) each year from the winter of 1980/81 through to 2019/20.
The observed international net effect of influenza vaccination ranges from a 7.8% reduction in EWM
estimated at 100% elderly vaccination for the winter of 1989/90 down to a 9.3% increase in EWM for
the winter of 2018/19. The average was only a 0.3% reduction in EWM for a 100% vaccinated elderly
population. Such outcomes do not contradict the known protective effect of influenza vaccination
against influenza mortality per se—they merely indicate that multiple complex interactions lie behind
the observed net effect against all-causes (including all pathogen causes) of winter mortality. This
range from net benefit to net disbenefit is proposed to arise from system complexity which includes
environmental conditions (weather, solar cycles), the antigenic distance between constantly emerg-
ing circulating influenza clades and the influenza vaccine makeup, vaccination timing, pathogen
interference, and human immune diversity (including individual history of host-virus, host-antigen
interactions and immunosenescence) all interacting to give the observed outcomes each year. We
propose that a narrow focus on influenza vaccine effectiveness misses the far wider complexity of
winter mortality. Influenza vaccines may need to be formulated in different ways, and perhaps
administered over a shorter timeframe to avoid the unanticipated adverse net outcomes seen in
around 40% of years.

Keywords: influenza; vaccination; pathogen interference; immune diversity; antigenic distance;
winter mortality

1. The Excess Winter Mortality (EWM) Calculation

This and previous studies use a rolling/moving EWM calculation which shows deaths
in the four ‘winter’ months as a percentage difference to the preceding eight non-winter
months. Since winter infectious outbreaks can occur early or late, and that ‘winter’ is more
objective near the equator the calculation is performed as a rolling or moving percentage
difference. Hence, we start at the first 12-months data, where the EWM calculation is:

EWM = average deaths (September to December) ÷ average deaths (January to August).
Move forward one month and recalculate, etc. EWM for that winter is the maximum

value. In the northern hemisphere temperate zone, the EWM most commonly reaches a
maximum at the 12-months ending in March. The EWM calculation is very reliable and
the only instances when it will give an answer lower than actual is when there is a highly
unusual summer heat wave or when the winter of the preceding year occurs very late, and
the current winter occurs early. Both can be overcome by retrospective adjustment.
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2. Introduction

During the past 70 years both influenza epidemics and vaccination have been largely
viewed from a narrow single pathogen perspective. From this point of view, efficient
epidemic control for an antigenically variable pathogen, such as influenza, is achieved
by regular immunization of most of the human population—within the constraints of
cost benefit [1]. However, more recently it has become apparent that influenza outbreaks,
influenza vaccination and the observed excess winter (all-cause) mortality operate within a
complex system of:

1. human immune variability which includes gender, chronological and immune age,
individual history of host-virus and host-antigen interactions, ethnicity, persistent
pathogens, genetic mutations, epigenetic factors, psychological stress, and metabolic
health [2–8],

2. the role of meteorological variables on influenza (and other respiratory pathogen)
survival and transmission [9–14],

3. influenza virus evolution [15,16],
4. the variable spatiotemporal spread and distribution of influenza strains and mutations

(clades) each year [17,18].
5. the pathogenicity of influenza being the result of a complex system of interactions

between the influenza viruses, other viruses, the host, anthropogenic interventions,
and secondary infections [19–21].

6. the totality of winter pathogen-induced deaths which is a composite of (co)infection
by multiple pathogens [22–25].

All these factors combine to give remarkably high inter- and intra-national variation
in excess winter mortality (EWM) during each influenza season, along with highly complex
long-term trends [26], and equally remarkable variations in vaccine effectiveness between
seasons [27]. A recent study has suggested that the long-term average for the net effect of
influenza vaccination upon EWM was undetectable [26], because the whole system is far
more complex than just influenza and influenza vaccination. This same observation has
also been noted in two other large studies where, during a time of rapidly rising influenza
vaccination in the elderly, no net reduction in EWM could be discerned [28,29].

As an example of the shift to a more complex system view of influenza epidemics and
influenza vaccination, Table 1 shows the results of a search using Google Scholar regarding
the number of hits for a variety of influenza-related complex system queries. Clearly some
of these hits may not be relevant or be duplicates, nevertheless they indicate a general trend
toward system complexity thinking.

Table 1. Searches on influenza system complexity using Google Scholar. Search conducted on 6th
October 2021.

Search String Documents Identified

Influenza epidemics “complex systems” 94,800
Influenza and “systems biology” 22,000

Complex system dynamics pandemic influenza 18,800
Interactions influenza and “other pathogens” 16,200

Influenza and “pathogen interactions” 14,600
Influenza and “complex system” 10,900

Influenza vaccination and “complex system” 4520
Influenza and “pertussis complex relationship” 570

Key features of complex systems are unexpected dynamic and unexpected outcomes of
interventions, called ‘emergent behavior’, bifurcation (or tipping) points where a division
into branches or sub-groups occurs, i.e., fractal behavior, and unrealized multiple equilibria
or steady states [30–36]. The population dynamics of pathogens and pathogen-host interac-
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tions depend on multiple factors, including natural and anthropogenic factors, along with
other hidden factors, and are often underestimated.

Regarding the multiple equilibria, the immune system does indeed exist in multiple
steady states [37–42]. Such immune-endocrine steady states can correspond to certain
illnesses, such as Gulf War illness and chronic fatigue syndrome [38]. Infectious disease
models, likewise, show multiple equilibria [43–45]. In such a complex system, influenza
vaccination may yield unexpected outcomes, i.e., may benefit one group, have no effect on
another or cause disbenefit in another.

Hence, assessing overall, or net, vaccine benefits in such a complex system may be
less than straightforward. One study which used a systems biology approach screened
multiple morbidities, anthropometric measurements, and biochemical parameters and
concluded that only relative lymphopenia (decreased percent of lymphocytes in WBC
differential), OR 0.94, (95% CI 0.88–0.99); vitamin B12 deficiency OR 0.99, (0.99–1.00); and
hyperhomocysteinaemia OR 1.15 (0.99–1.32) showed potential to predict an influenza
vaccine response (as antibody production) for the 2003/04 trivalent vaccine [46]. For more
accurate evaluation of influenza vaccine efficacy parameters of cellular immunity and their
interaction with other factors should also be measured. However, this seemingly indicated
that biochemical health (howsoever determined) may be a neglected key parameter in
determining antibody production (but not necessarily vaccine efficacy). Hence factors such
as obesity and multi-morbidity are indirect measures of their effects upon the individual’s
biochemical balance.

The above issues are neatly summarized in a recent study, which demonstrated that
all-cause excess winter mortality (EWM) is the output of an exceedingly complex system
which exhibits long-term undulations in EWM—and therefore implies the existence of
potential hidden and unexpected ‘emergent’ outcomes [26].

The methodology behind the calculation of EWM has been extensively discussed in
two previous articles [26,47]. In summary, it calculates the percentage of excess winter
deaths for the four winter months relative to the eight non-winter months. The calculation
is performed on a running/moving basis to detect which four-month period gives the
maximum difference. This then allows for years in which influenza outbreaks may occur
very early or late and allows for winter in the southern hemisphere.

This study contains several parts. In the first is an overview of the international trends
in EWM, especially focusing on high inter- and intra-national spatiotemporal granularity
in each year and what this may imply regarding the complexity of each winter. We then
investigate if there is a relationship between international EWM and proportion of those
aged 65+ who receive influenza vaccinations. This is achieved using two data sets, namely,
age 65+ vaccinated data and doses of influenza vaccine distributed. The latter is then
converted into an age 65+ vaccinated equivalent. Both are previously described [26].

Rather than conduct this analysis over a longitudinal scale, as was done previously [26],
the analysis focuses on each winter and, specifically, on the differences in EWM as a function
of the differences in elderly influenza vaccination rates between world countries. The
emphasis is on the detection of unexpected or emergent outcomes which complexity theory
indicates should exist. EWM is a key tool, because it measures the net effects inherent in
each winter and can thereby detect unexpected or emergent behavior.

3. Materials and Methods
3.1. Sources of the Data

Monthly deaths and rolling/moving EWM calculations for a range of countries were
taken from a previous study [26]. Proportion of persons aged 65+ vaccinated in each
country over time was also taken from the previous study [26]. Data relating to vaccine
effectiveness in those aged 65+ in the USA was from the Center for Disease Control and
Prevention (CDC) [11]. Annual estimates of adult obesity since the 1980s for world countries
was obtained from the World Health Organization (WHO) [48] and the Global Obesity
Observatory [49].
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3.2. Adjusting EWM for Each Country to a US-Equivalent

The USA has the most available data for rates of vaccination in those aged 65+, plus
EWM data [26]. It therefore makes sense to adjust the EWM of all other countries to a
US-equivalent. This was achieved by adjusting the data from all countries using the median
EWM for each country compared to that of the USA. EWM data for each country was
adjusted such that the adjusted EWM has a median equal to that seen in the USA as detailed
in the previous study [26].

3.3. Method for Excluding Outlying EWM Values

For smaller countries with lower deaths per annum there can occasionally be statis-
tically high/low values for EWM. For countries lying close to 0% vaccination, adjusted
values of EWM lower than 5% and higher than 20% were trimmed. For countries with
higher rates of vaccination a different rule was applied, such that values were only ex-
cluded from the study if they were markedly higher/lower than all other countries. This
sometimes occurs for data from smaller countries where Poisson randomness becomes
more significant.

Exclusion is required to avoid the undue effect of outlying values on linear regression
based on the least-squares methodology. The distance squared means that outlying values
are unduly weighted in the regression. Future studies on this topic could use weighted
regression without trimming; however, this is unlikely to make a material change to
the conclusions.

3.4. Adjustment of EWM for Obesity Relative to the USA

As in the previous study EWM data for each year was adjusted to give the equivalent
to that in the USA [26]. Obesity data for world countries in 2016 was plotted against the
median EWM for each country over the period 1990 to 2020. This gave a slope of 0.2,
i.e., for each percentage point increase in obesity the median EWM increases by 0.2% (See
Figure A1 in the Appendix A).

This was higher than that observed in an earlier study [26], and so the effect of
the slope upon the relationship between EWM and influenza vaccination was evaluated
for values of the slope between 0.02 and 0.3. (Table S1 in the Supplementary Material).
The R-squared for this relationship reached a maximum at a value of the slope equal
to 0.12 (Figure A2 in the Appendix A). Since all countries in this study had a level of
adult obesity less than the USA the adjustment factor for EWM was then as follows:
Obesity Adjusted EWM = Raw EWM + [adult obesity in USA (%) − adult obesity in coun-
try A (%)] × 0.12. This calculation is repeated for each year.

3.5. EWM in US States since 2008

Monthly deaths have been available for US states since January 2008 [26]. The median
EWM for each state was calculated up to the winter of 2019/20 and adjusted EWM was
calculated as per Section 3.2. The proportion of persons aged 65+ vaccinated for influenza
for each state was estimated by multiplying the US average by the ratio of nursing home
residents vaccinated in each state relative to the US average [50].

3.6. Data Manipulation

All data was manipulated using Microsoft Excel. Linear regression was performed
using the “Add Trendline” function.

4. Results
4.1. EWM Shows Extreme Spatiotemporal Volatility

Excess winter mortality (EWM) varies considerably from one year to the next and
Figure 1 shows this variation using a rolling/moving EWM calculation for up to 143 countries
and states/provinces. In Figure 1 the EWM for each country has been adjusted up/down
by the ratio of the median EWM for the USA divided by the median EWM for each coun-
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try [26]. Note that the inter-quartile range only covers the 50% of countries closest to the
international median for each winter.

Figure 1. Upper and lower quartile for a rolling EWM calculation for 134 countries and 34 states/
provinces (Australia, Canada, Germany). Due to data availability, there is a maximum of 143 coun-
tries/states for each winter.

The variation is illustrated by showing the international upper and lower quartile.
As can be seen, EWM reached a minimum in the winters of 2000/01 and 2013/14 with a
median = 8.8% (for clarity the line for the median is not shown) and a maximum in the
winters of 1999/00 (median = 17.2%) and 2014/15 (median = 16.5%). However, the inter
quartile range (IQR) reached its maximum extent of 16.2% for the winter of 1989/90 and its
minimum extent of 6.9% for the winter of 2019/20, just before the COVID-19 pandemic. A
high IQR indicates extreme differences around the world. The sharpness of each winter
peak measures the differences in timing between countries. Note the cluster of 3 high years
between 2014/15 and 2017/18 and 4 high years between 1995/96 and 1999/00. Influenza
vaccination is therefore being applied into a system showing high intrinsic international
variation, clustering of high EWM, and year-to-year volatility.

To determine if a wide IQR is specific to world countries Figure 2 shows an identical
rolling EWM analysis to that in Figure 1 using 417 local government areas (LGA) within
the UK (2001 to 2021). Figure 2 also contains the first and second wave of COVID-19 as an
illustration of an infectious outbreak with high spatiotemporal variation.

The key point is that the range for the upper and lower quartile within the UK is very
close to that for world countries, even though world countries range from near the equator
to close to the poles, i.e., even the within-country variation in EWM is profoundly high.

The IQR in Figure 2 is not an artefact of LGA size since the median size (as deaths
per annum) in the two tails is not greatly different from the middle 50% of EWM values
(the IQR) and is at least 3-times higher than the minimum size threshold (400 deaths per
annum) applied to the international data. Indeed 50% of UK LGA have over 1500 deaths
per annum and 75% are higher than 1000 deaths per annum.

The second point is that both the upper and lower quartile in Figure 2 is made up
from unique winter behavior, which is indicative of differing spatial spread of the causative
agents—as observed for the two COVID-19 waves (last two peaks). Note that the events
in the winters of 2014/15 and 2017/18 have an upper quartile equal in magnitude to the
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second COVID-19 winter. It is proposed that it is the spatiotemporal spread of pathogens
within the UK which drives the variation, of which influenza made a significant (but not
exclusive) contribution prior to the arrival of COVID-19.
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The winter of 2013/14 in the UK, which had the lowest EWM, was remarkably mild
and wet [14], which seemingly led to low levels of influenza (and other winter pathogen)
activity and mortality [15]. This is consistent with cold-dry conditions favoring influenza
spread in temperate countries [13]. Hence, low EWM is associated with low levels of winter
pathogens while high EWM is associated with high levels of pathogens (as per COVID-19).

While high spatiotemporal variation in infectious outbreaks is well known to epidemi-
ologists, the implications to inherent complexity and unexpected or emergent behavior
may have been largely overlooked.

4.2. Influenza Vaccination in the Elderly

Rates of influenza vaccination vary widely between world countries. The median
for vaccination rates between countries in those aged 65+ ranges from 4% in 1988/89
(maximum 45%) to 48% in 2019/20 (maximum 85%). Countries with highest vaccination
rates for age 65+ changes over time with the Netherlands highest between 2000/01 to
2008/09 (range 76% to 83%), Mexico was the highest in 2009/10 during the Swine flu
pandemic (88.2%), and briefly highest between 2013/14 and 2014/15 (79% to 82%), while
South Korea was highest in 2011/12 and 2012/13, and from 2015/16 onward (up to 86%
vaccinated) [51]. Hence there is a sufficiently wide range in vaccination rates for every year
during the study to enable evaluation of the role of vaccination on EWM.

If influenza vaccination has a net protective effect the slope of the relationship be-
tween EWM and proportion aged 65+ vaccinated should have a negative slope. Figure 3
gives one example of such analysis for the winter of 2017/18 where the resulting slope is
positive (disbenefit) rather than negative. The R-squared for Figure 3 was 0.156. Such low
values of R-squared are typical for each year and arise as a direct consequence of the high
international variation demonstrated in Figures 1 and 2.
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Figure 3. Slope for the relationship between obesity adjusted EWM and proportion aged 65+ vacci-
nated for 80 world countries during the winter of 2017/18. Linear regression as the dotted line.

Note that the winter of 2017/18 in both Figures 1 and 2 shows unusually high EWM.
A slope of 0.073 in Figure 3 implies that a population with 100% vaccinated elderly persons
will have an EWM (at the US equivalent) which is 7.3% higher than if there had been no
vaccination, i.e., an adverse outcome. In Figure 3 raw EWM for each country was first
adjusted to the equivalent to the USA using the median EWM and then further adjusted to
match US levels of obesity via the effect of obesity on international EWM (as per #4 below).

Similar analysis to Figure 3 was conducted each year from the winter of 1987/88
through to 2019/20. Four alternative scenarios for each year were performed, namely:

1. Data from all available countries
2. The 50 countries with the highest number of years of available data
3. #1 plus data from US states (available for 2007/08 onward) [26]
4. #1 plus additional adjustment of each country for difference in obesity relative to the

USA [48,49]

These four scenarios were performed to demonstrate that the resulting slope and
intercept are robust. The resulting values for each scenario are given in Figure 4.

The year shows the winter ending in that year, hence, 1989 = 1988/89 through to
2020 = 2019/20. EWM for 2020 was calculated at the end of March to avoid distortion
due to the COVID-19 pandemic. In this study complete or partial data was available for
97 countries. The minimum available data pertained to 50 countries in 1987/88 through to
a maximum of 85 in 2013/14 and 2014/15. Countries were ranked by years of available
data. The top 50 group was an arbitrary division. The most complete data were for
members of the European Union, Australia, New Zealand, USA, and Canada. Table S2 in
the Supplementary Material shows the number of available countries for all countries and
the top 50 countries. The top 50 countries contain five small countries (Greenland, Malta,
Iceland, Liechtenstein, and Luxembourg) where Poisson randomness leads to occasional
instances of EWM values which were excluded. Hence, count of available data for the
top 50 range from 37 in 1987/88 through to 50, median is 46. For the 47 other countries
available data ranges from 11 to 36, with a median of 27.

From Figure 4 the intercept for the data with additional obesity adjustment is slightly
higher than the other scenarios. This is because all countries have lower levels of adult
obesity compared with the USA. The gap between obesity in the USA and other countries
rises with time. The maximum gap was a 12.9% difference in 1980 rising to a 34.7%
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(percentage point) difference between Japan and the USA in 2019. Hence their EWM is
adjusted upward by a maximum of between 1.5% (in 1980/81) and 4.2% in 2019/20. A
higher intercept is therefore to be expected.
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Figure 4. Slope and intercept of the relationship between adjusted excess winter mortality (EWM) and
proportion aged 65+ vaccinated. A negative slope implies that the net effects of influenza vaccination
are beneficial while a positive slope implies the opposite.

The slope of the relationship after obesity adjustment is highly correlated with the
slope before obesity adjustment (R-squared = 0.9798) but values of the adjusted EWM are
0.37% higher than the unadjusted slope (see Figure A2 in the Appendix A) because the
intercept has been increased. This is consistent with a slightly higher intercept leading to a
1.45% reduction in the slope (Table S1 in the Supplementary Material).

The slope for the top 50 countries shows highest divergence mainly because there
are fewer data points (as discussed above) and hence the uncertainty in the slope will be
higher. The scenario including US states has the highest number of data points each year.
The intercept and slope for each year is also shown in Figure A3 in the Appendix A. A
summary of the available data is given in Table S2 in the Supplementary Material which
also includes an estimate of the standard deviation of the slope by comparing methods #1,
#3 and #4 above.

As can also be seen, the slope of the relationship ranges from −6.7% for the winter
of 2003/04 (a net beneficial effect) up to +7.2% for the winters of 2014/15 and 2017/18
(net disbenefit). In addition, cyclic behavior is also apparent with the first cycle rising to
a maximum in the winter of 1989/99. After 1998/99 there is a trend down to 2003/04,
another trend up to a plateau, and a period of instability beyond 2012/13. Roughly half the
data lie above/below a slope of 0%, i.e., the point of no net effect.

4.3. Comparison with a Previous Study

A previous study gave an apparent zero slope for the relationship between adjusted
EWM, and proportion elderly vaccinated using data over a 30-year period [26].
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As was pointed out in the previous study [26], it would be highly unlikely for influenza
vaccination to have zero net effect on EWM in every single year and to this end a cumulative
sum of differences (CUSUM) is relevant. The CUSUM of the slope over time is given
in Figure 5. A CUSUM is a useful tool to reveal when the behavior shows a sudden
transition [52], which leads to a change in slope in the CUSUM. Over this 39-year period
there are two extended periods of net benefit, namely, 1986/87 to 1994/95 and 2000/01
to 2006/07, and two periods of net dis-benefit, namely, 1995/96 to 1999/00 and from
2008/09 onwards.
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Figure 5. CUSUM of the annual value of the slope.

There are two periods of high instability, namely 1980/81 to 1985/86 and 2013/14 to
2019/20. Over the entire 39 years the overall average net benefit is only 0.4% (percentage
point) reduction in EWM per annum, at a theoretical 100% of elderly vaccinated, i.e., a
CUSUM of −15% divided by 39 years. In comparison, for the 14-year period ending
1994/95 the average net benefit is a 2% (percentage point) reduction in EWM per annum
at 100% elderly vaccination. The perception of the net benefit of influenza vaccination
depends entirely upon when the study is conducted. Indeed, most studies only cover a
limited number of years.

4.4. Further Validation of the Results

The previous study [26] also included a second large data set where EWM was plotted
against total vaccine doses per 1000 total population (all-age) which covered the winters
1980/81 through to 2012/13.

Does this data behave in the same way as that used in Figure 4? Figure 6 shows the
output from such analysis where the slope of the EWM versus doses per 1000 population
data is plotted alongside the slope for proportion elderly vaccinated data. The vaccine
doses distributed data has first been adjusted for the fact that this method always gives
a greater value than that from the elderly vaccinated data. This relationship is shown in
Figure 7 where the slope from doses distributed must first be multiplied by 0.4936 to give
an equivalent slope to that from the proportion aged 65+ study. From the comparison of
the two data sets a further period of instability operates between 1980/81 and 1986/87.
However, the point has been established that both data sets mirror each other.
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Figure 6. Comparison of the slope for the two large data sets.
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Figure 7. Comparison of calculated slope in the relationship between adjusted EWM and proportion
vaccinated using either proportion elderly aged 65+ vaccinated or vaccine doses distributed per
1000 population, in the overlap years 1988/89 to 2012/13.

4.5. The Values for the Slope Follow an Extreme Value Distribution

Using the 40 years of available data, and ignoring the fact that the trend may have
cyclic elements, allows analysis of the frequency distribution for the slope. The average
value of the slope for each year was determined from #1, #2, #4 (plus 0.66% to account for
the difference in the obesity adjusted slope identified in Section 4.2) above plus available
data from the vaccine doses distributed data after adjustment as in Figure 7. Data was
aggregated into 1% increments in the value of the average slope, and this is presented
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in Figure 8. The average value for the slope is −0.3%, the median value is −1.2% and a
slope of −2% to −3% represents the most frequent value (the mode). The distribution is
right skewed, and a negative slope occurs on 63% of occasions, while 58% of the values
lie in the range 0% to −5%. The best description is that the shape of the distribution
resembles an extreme value distribution, or possibly the outcome of two or more extreme
value distributions. The implications of an extreme value distribution will be covered in
Section 5.7 of the Discussion.
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Figure 8. Frequency distribution for the calculated slope (as 1% increments) in the relationship be-
tween adjusted EWM and proportion vaccinated using either proportion elderly aged 65+ vaccinated
or vaccine doses distributed per 1000 population, over the 40-year period 1980/81 to 2019/20.

5. Discussion

This study does not in any way seek to claim that influenza vaccination does not offer
a measure of protection against influenza induced death per se. We merely highlight that
winter is a multi-pathogen complex system, and that unexpected or emergent outcomes
should be expected as ‘normal’. Figures 1 and 2 illustrate system complexity which seems
far higher than could arise from the action and spread of a single pathogen, i.e., influenza.

5.1. What Is the “Real” Long-Term Effect?

Our earlier study suggested that higher rates of influenza vaccination appeared to
make no effect on the long-term trend in EWM [26]. We proposed that this may be due
to increasing (multi) morbidity in many countries acting to mask the effects of influenza
vaccination. However, Figure 5 gives an alternative explanation in that the apparent slope
of the relationship will depend on the time-period. The periods of benefit/disbenefit also
help to explain the high variation associated with the proportion of age 65+ vaccinated in
the earlier study. Recall that in the earlier study levels of vaccination increased over time.

Using the data behind Figure 4 and applying a 12-year rolling median/average (as
an example of a randomly chosen period) the apparent median/average slope between
1996/97 to 2007/08 would be −1.5%/−0.5% respectively (net benefit), while the apparent
slope between 2008/09 and 2019/20 would be +1.2%/+1.4% respectively (net disbenefit).

Hence, over the longer term, the years in which influenza vaccination has a net benefit
is cancelled out by the years in which there is net dis-benefit. The rolling 12-year average
in this study (using 12-years as a random example) goes from a net zero effect up to the
12-years ending 2008/09, reaches a maximum net benefit of −1.3% for the 12-years ending
2011/12 and then shows maximum net disbenefit of +1.4% for the 12-years ending 2019/20.
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Hence the conclusion from this, and the previous study [26] that the “real” long-term
slope is close to zero, is likely to be the best estimate, since the observed medium-term
slope shows undulations over time. Clearly any effect due to the increasing proportion of
persons aged 65+ vaccinated is being overwhelmed by other specific annual factors.

5.2. Limitations of Our Earlier Hypothesis

In our preceding paper we proposed that the benefits of increased influenza vacci-
nation were being counterbalanced by rising levels of obesity and other (multi) morbidi-
ties [26]. The USA was used as a worst-case scenario. EWM in the USA was increasing
at just 0.02% (percentage points) per annum [26]. A 0.8% (percentage point) increase in
40 years. However, the study of Simonsen et al. [28], which covered the somewhat shorter
period of very rapid expansion in elderly influenza vaccination in the USA between 1987
to 1996 (a jump from 25% to 62% elderly vaccinated in just 9 years), was unable to detect
any measurable effect on EWM.

Obesity and other (multi) morbidities only increase slowly over decades and would
be totally unable to overwhelm the benefit of such a large and rapid expansion in elderly
influenza vaccination. The same was observed to occur in Italy [29]. In Figure 6, 1987 to
1996 encompasses a 7-year period of moderate net benefit followed by a 4-year period of
rapidly escalating net disbenefit (also illustrated in the CUSUM in Figure 5).

It is this switch from net benefit to net disbenefit which confounded the above-
mentioned studies [28,39], rather than any small increment in obesity and (multi) morbidi-
ties. Indeed, as this study demonstrates, adjusting world countries to the equivalent US
obesity level has little effect on the observed slope of the relationship each winter.

Hence, while we concede that increasing obesity and (multi) morbidities may act
slowly over decades to erode the benefits of increasing elderly vaccination, it is likely
that the more powerful annual effects far outweigh such long-term trends in human
health status.

5.3. Adjustment for Obesity

The adjustment for obesity in Section 4.2 is an example of a single parameter model. As
such, it is highly likely that obesity may be acting as a proxy for the wider morbidity issues
discussed in the previous study [26], which are also increasing with time. The relatively
low slope for the seeming effect of ‘obesity’, i.e., a 0.12% increase in EWM for each 1%
increase in obesity seems to add weight to the proposal that rising levels of morbidities are
not the cause of the apparent lack of effect of influenza vaccination observed over a 40-year
period in the earlier study. The real reason lies in the annual effects reported in this study.

5.4. Implications of High International Variation

The high inter- and intra-national variation observed in Figures 1 and 2, along with the
high scatter around the trend line in Figure 3, leads to a low R-squared. An R-squared of
0.156 was quoted for the winter of 2017/18 (Figure 3) with a similarly low value for 2014/15
of 0.1336 (as a wider example). A low R-squared implies that the principal variable, i.e.,
proportion of persons age 65+ vaccinated, is only explaining 13% to 16% of the observed
variation in EWM. This will partly be because influenza vaccine effectiveness (VE) is itself
highly variable [27]. However, the low R-squared is probably more to do with the fact that
winter is a multi-pathogen complex system. Hence influenza vaccination per se is unable to
exert much control over the variation in EWM. This concurs with the sometimes-unexpected
results presented in Figures 4 and 6.

5.5. 2014/15 as an Example of Poor Vaccine Matching

As can be seen in Figures 4 and 6 there are only 2 years with a very high net protective
effect from influenza vaccination (1988/89 and 2000/01), but four years with a very high
net disbenefit (1998/99, 1999/2000, 2014/15, 2017/18) and all the net disbenefit years
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correspond with very high EWM. Hence it is difficult to claim that influenza alone was
responsible for the higher deaths in these four high years.

The winter of 2014/15 can be used as an example since in Figure 1 it is characterized as
having the highest upper quartile for world countries, as also seen in Figure 2 for UK LGAs.
The Public Health England summary report covering the whole UK noted that levels of
influenza-like-illness (ILI) were barely above baseline [53], which was entirely insufficient
to explain the unusually high mortality. Influenza A predominated early in late 2014 to
early 2015 while B predominated after week 10 in 2015. Most excess deaths occurred in
2015 [53]. However, a series of antigen mismatches in both influenza(s) A and B between
the vaccine used that year and the strains and variants which circulated were noted [53].
The report also noted that “A portion of 2014 to 2015 influenza A(H3N2) viruses did not
grow sufficiently for antigenic characterization” [53]. Hence, additional hidden antigenic
complexity may be involved.

Vaccine uptake for those aged 65+ across the UK ranged from 68% to 76% for the four
countries in the union. A mid-season estimate of vaccine effectiveness (VE) for influenza A
was only 2.3% (range −48.5% to +36.1%). Influenza A(H3N2) had a VE of only 0.6%. No
VE for influenza B was given in this report [53]. VE in Canada and several other countries
went negative, and unusual patterns of small area deaths were noted across England and
Wales [54]. Respiratory syncytial virus (RSV) was also active [53].

It should be noted that VE in the UK is determined on (ambulatory) General practi-
tioner (GP) visits and hence may overestimate VE relating to deaths. For example, in a
Swiss study persons aged 65+ admitted to hospital with ILI were 7.5-times more prevalent
than the ILI visits to a GP surgery and the GP sample contained 5.8-times more aged 5–14,
and 4.5-times more aged 15–29 [55]. Presentation at the hospital also commenced earlier
than in the community [55].

Influenza activity and excess deaths during the earlier 2014 winter in Australia (south-
ern hemisphere) were unremarkable [56], hence, the emerging strains/variants which
contributed to high EWM in the northern hemisphere likely became more prevalent after
September of 2014. It is unknown when and where they originated.

We propose that low and possibly negative VE (for death) is seemingly associated
with the unusually high winter deaths seen in both the UK and other northern hemisphere
world countries during 2014/15. This has partly contributed to the observed net disbenefit
due to influenza vaccination that year.

5.6. Roles for Pathogen Interference

Winter is a multi-pathogen event [22,57–59], and multiple pathogens cause influenza-
like-illness (ILI), and death [59]. Interaction between pathogens is very common and is
termed ‘pathogen interference’ [60,61]. Pathogen interference in coinfections can diminish
or augment infection by other pathogens and has direct clinical consequences [62].

Since pathogen interference is not a widely appreciated phenomenon, it has been
claimed that the imposition of lockdowns during the COVID-19 pandemic were responsible
for the early decline in influenza activity during the winter of 2019/20 [63,64]. However,
close inspection of weekly influenza activity figures in the UK show very clearly that
influenza activity had dropped to baseline levels by week 3 of 2020 and had declined to
zero during week 12 [65]. Lockdown in the UK legally came into force on Thursday 26th
March 2020 [66] which is just at the point when influenza activity had already dropped
to zero. In the UK, lockdowns cannot in any way be said to have contributed to the fall
in influenza activity which commenced its rapid decline much earlier in the year when
COVID-19 spread was gaining momentum [65].

In Canada during the 20-week period after week 11 of 2020 compared to the pervious
148 weeks a 70% decline in influenza prevalence was observed. However, respiratory
syncytial virus (RSV) only declined by 54%, parainfluenza virus (PIV) declined by 60%,
but coronaviruses (hCoVs) (excluding COVID-19s) increased by 80%, metapneumoviruses
(HMPV) increased by +45%, and entero/rhino viruses (hERV) by +40% [64]. These results
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indicate that while protective measures may have played a limited role, additional virus-
specific factors were specifically involved.

Of even greater relevance to pathogen interference is the virtual extinction of influenza
B/Yamagata during the COVID-19 pandemic [67]. In Israel, pneumococcal disease in young
children radically reduced during the first year of COVID-19, mainly due to suppression
of RSV, influenza viruses, and hMPV. However, hERV and PIV activities were within or
above expected levels [68].

In the USA influenza and RSV activity were initially suppressed by COVID-19, How-
ever, RSV then underwent an unusual resurgence during the summer of 2021 [69]. This
study also demonstrated that there was considerable variation in the reduction in influenza
activity between US states, with a 79% reduction in Texas through to a 28% increase in
Idaho [69]. Coinfection with influenza and COVID-19 occurs at low frequency, although
coinfection appears to occur more often in Asia than the USA [70].

To explain all the above requires that pathogen interference between COVID-19 and
other viruses is the predominant explanatory force. We propose that pathogen interference,
which has been active for many centuries, has a major role in the observed long-term cycles
in EWM detailed in the previous study [26] and during the COVID-19 era.

5.7. Could Vaccine Effectiveness Be an Illusion Created by Pathogen Interference?

The introduction of PCR-confirmed ‘test negative’ influenza VE commenced around
the early 2000s and is well recognized to rely on the assumption that the levels (and
pathogenicity) of non-influenza pathogens is identical in both groups [71]. However, earlier
studies consistently reported lower net VE. For example, the study of Fireman et al. [72]
found that influenza vaccination only reduced mortality by 4.6% over 9 flu seasons. Note
that the design of this study is such that this is a net reduction, i.e., the net effect in a
multi-pathogen complex system.

Several studies do exist which suggest that pathogen interference is active after in-
fluenza vaccination in children [73,74], during pregnancy [75] and in the elderly [76]. Such
observations question the fundamental assumptions behind the calculation of VE and
indicate a shift to higher infection by non-influenza pathogens. As an aside, pregnancy
is an example of a temporary immune steady state [77]. Indeed, the immune response
to influenza vaccination is recognized to exhibit variation between individuals [78] and
has been proposed to alter the balance of pathogen interference and affect the optimum
timing of vaccination [79]. In light of the findings in this study this area requires far
greater investigation.

5.8. Heliobiology and Additional Hidden Complexity

As can be seen in Figures 4–6 the data seems to become more volatile/unstable during
two periods from 1980/81 to 1986/87 and 2000/01 onwards. We propose a potential
relationship with fluctuations in solar radiation or, more correctly, coronal mass ejections
(CME) [80].

Solar output of electromagnetic radiation (7% X-ray, gamma-ray and ultraviolet, 44%
visible, 49% microwave, infrared and radio wave) is surprisingly volatile even at the level
of seconds and minutes [81]. These fluctuating emissions are due to coronal mass ejections
(CMEs), which also include high energy protons, and tend to occur more often (but not
always) at periods when solar flares are most active [80]. One of the observable effects of
these solar storms (CMEs) are electrical power grid anomalies (power surges and electrical
transformer failures) which arise from geomagnetically induced currents [82].

CMEs and resulting electromagnetic levels have been linked to short-term fluctuations
in human health, immune function, morbidity, and mortality called heliobiology [83]. One
review concluded that 10–15% of the population are predisposed to the adverse effects
of geomagnetic variations [84]. Patients with multiple sclerosis show enhanced hospital
admission during periods of geomagnetic disturbance [85]. Obscure phenomena, such
as sudden infant deaths, appear to rise with sunspot activity (by implication CMEs) [86].
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Geomagnetic field fluctuations have been observed to alter gene expression [87]. Several
studies have suggested that influenza pandemics are aligned with the solar cycle [88,89].
COVID-19 and other pathogen outbreaks all appear to fall into the same pattern [90]. We
propose that CMEs add a hidden layer to the already complex behavior observed in the
previous study [26] and this study.

We offer the following tentative observations; namely, the points at which the CUSUM
in Figure 5 changes to a positive slope around 1994/95 and 2007/08 occur as sunspot
cycles 22 and 23 approach their minima. The two periods of instability both correspond to
very intense instances of sunspots at the peaks of sunspot cycles 22 and 24. The CUSUM
slope goes negative after the intense parts of the peaks in sunspot cycles 22 and 23, see
chart in reference [91]. We stress this is tentative evidence, since CME magnitude and
timing does not exactly follow sunspot cycles. However, a body of evidence appears to
be accumulating.

5.9. Implications of an Extreme Value Distribution for the Slope

Figure 8 demonstrated that the slope of the annual relationship appeared to be an
example of an extreme value distribution. Extreme value distribution is commonly used to
describe natural events such as temperature variation, rainfall, river flow, flooding, and
stock market volatility [92]. The implication is that the volatility in the slope is subject
to natural world complexity in which the minimum value of the slope, i.e., influenza
vaccination is net protective, i.e., has a lower boundary, while the upper boundary can
exhibit extreme values, i.e., influenza vaccination promotes net disbenefit. Roles for CMEs
(Section 5.6) and other potential contributory factors need to be further explored. It is
fundamentally important to understand which factors trigger the unexpected adverse net
effects of influenza vaccination. In practice, CMEs are very difficult to quantify (apart from
directly measuring the electromagnetic flux at different points on the Earth’s surface) and
are highly likely to show extreme spatiotemporal variation.

5.10. Minimum Value of the Slope

In the previous study, a minimum possible slope of −10% was assumed [26] and this
corresponds to −6% at 60% VE. A VE of 60% is the highest VE for persons aged 65+ ever
reported in the USA [27]. A slope of −6% is demonstrated in this study to only occur once
in 40 years. This study therefore questions the preliminary suggestion made in the earlier
study that obesity and other (multi) morbidities may be masking the effects of influenza
vaccination [26]. This is especially relevant in that adjustment of annual data for the effects
of obesity in Figure 4 made little effect on the slope of the relationship (also discussed in
Section 4.5). Recall that in Figure 4 the effect of obesity is most likely to be serving as a
proxy for wider time-related changes in multiple morbidities [26].

5.11. Biochemical and Immune Health

One study has implicated roles for biochemical health in the response to vaccina-
tion [46]. A large study is relevant to this concept. In this study the results from common
biochemical tests were combined into a composite score [92]. The interesting observation
was that humans had a wide range for the composite score, which was, however, relatively
stable over time for each person. The population average for this score (biochemical health)
only showed a small decline with age but showed a rapid decline in the weeks and months
preceding death [93]. This is consistent with the nearness-to-death effect [94], where frailty,
cognitive function, perceived physical health and mental wellbeing, etc., only show a rapid
change as death approaches [95–98]. The suspicion is that nearness-to-death, howsoever
determined, is a completely neglected variable and may imply that birth cohort effects
play an additional role in long-term trends and vaccine effectiveness [99–101]. This point is
raised in the context of additional hidden system complexity.

The immune system consists of specialized cell populations that communicate with
each other to achieve systemic immune responses. Analysis of various immune cell popu-
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lation frequencies in healthy humans and their responses to diverse stimuli showed that
human immune variation is continuous in nature, rather than characterized by discrete
groups of similar individuals (as observed for the composite biochemical score study
above) [102]. Three combinations of immune cell population frequencies were observed to
define an individual’s immunotype and predict a set of functional responses to cytokine
stimulation. Even though inter-individual variations in specific cell population frequencies
can be large, unrelated individuals of younger age had more homogeneous immunotypes
than older individuals. Across age groups, cytomegalovirus seropositive individuals dis-
played immunotypes characteristic of older individuals. The conceptual framework for
defining immunotypes suggests the development of better therapies that appropriately
modulate collective immunotypes, rather than individual immune components [102].

The above suggests that certain individuals may be more susceptible to the unintended
adverse effects of influenza vaccination. This possibility requires further investigation.
Indeed, do persons in the terminal decline phase of life, which occurs in the last year of life,
benefit equally from influenza vaccination? There are gaps in our understanding, which
may be relevant to the unintended net effects of influenza vaccination.

5.12. A Potential Basis for Extreme Variation in the Net Effects of Influenza Vaccination

The thrust of this paper has been that well intended interventions into a highly
complex system are likely to generate unexpected outcomes. This is supported by wider
research in complexity theory [30–33]. We have highlighted instances of immune and
biochemical health, and of heliobiology, where differences exist among individuals within a
population. We would also like to point out that the immune manipulating persistent virus,
cytomegalovirus, has a major reservoir of infection in the lung [103]. This virus has been
proposed to interact with influenza in the lung; however, CMV, likewise, seems to affect
some individuals more so than others. All of this is then within the context of pathogen
interference and the potential unintended effects of influenza vaccination upon pathogen
balance and the immune response of different people.

6. Pragmatic Implications to Health Care Services

Influenza vaccination is widely recommended by public health agencies as a route to
reducing health service winter pressures. One of the contributing factors to this study was
the observation that increasing influenza vaccination rates did not seem to be making a net
contribution to the reduction in hospital winter capacity pressures [104]. This seemed to
contradict the known ability of influenza vaccination to reduce influenza-related hospital
admissions and death. This study confirms this earlier observation that deaths, and the
associated acute care prior to death, are showing unexpected outcomes.

7. Implications to Influenza Policy

The economic rationale for influenza vaccination partly relies on the assumption that
it has a net beneficial effect against deaths [105]. The implications of the earlier study [26]
and this study question this assumption. Furthermore, two large regression discontinuity
studies have demonstrated that at the age 65 boundary, where influenza vaccination
is widely recommended, there is no statistically detectable net benefit against hospital
admission and deaths [106,107]. The possibility exists that estimating influenza VE for the
age 65+ group—an age range which is far too wide—is concealing further complexity, in
that age is acting as a poor proxy for nearness-to-death. Policy must be based on facts and
not upon flawed single pathogen, simple system behavior assumptions.

8. Limitations and Future Research

This study is limited by the availability of monthly data. The majority of Africa
has no data and data from Asia and South America is limited. Countries with larger
states/provinces/regions should confirm the results of this study using sub-national data.
Brazil is an ideal example, since it spans the equator. Total proportion vaccinated (all-age)
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or age 65+ vaccinated can be used depending on data availability. Potential roles for other
winter pathogens need to be clarified. The adjustment factor based on median EWM may
need to be refined given the long-term cycles which seemingly characterize the trends in
EWM [26]. It is unknown if these cycles are country-specific or are driven by other factors,
such as heliobiology.

The exact role of obesity, other morbidities and polypharmacy remains to be accurately
quantified—although they represent long-term trends. Regarding the risk of death due to
COVID-19, it has been noted that “polypharmacy may represent a marker of vulnerability,
especially for younger groups of older adults” [108]. Japan, South Korea, and Singapore can
serve as low obesity benchmarks. Future studies on this topic could use weighted regression
without trimming; however, this is unlikely to make a material change to the conclusions.

However, even after assuming a moderately high contribution for obesity upon EWM
no significant effect could be demonstrated on the slope of the annual data.

9. Conclusions

This study has demonstrated that unexpected or emergent behavior is indeed oc-
curring as an unintended effect of widespread influenza vaccination. Adverse outcomes
regarding net winter mortality after influenza vaccination occur in roughly 40% of years.
However, the exact relationship appears to follow long-term cycles. The existence of such
cycles was demonstrated in a previous study [26]. This study appears to confirm the predic-
tions made in the 2010 study of Berencsi et al. [79] that vaccination has the potential to alter
pathogen balance. One of the points made in their study was that the timing of vaccination
may need to be modified to account for time-based prevalence of other pathogens [78].
This is a testable hypothesis, given that the date of vaccination for individuals is gener-
ally readily available and that many countries also have data on the prevalence of other
common winter pathogens.
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Figure A1. Proportion of obese adults in 2016 versus the median excess winter mortality (EWM) for 
65 world countries. Footnote: Median EWM data has not been adjusted for latitude and the resulting 
slope is likely to be an over-estimate. In a previous study regarding the effects of elderly obesity on 
latitude adjusted median EWM for US states the slope of the relationship was 0.07 [26]. Hence the 
true slope is probably somewhere between these two values. The most likely value of the slope was 
determined by applying values of the slope between 0.02 and 0.3 to the study data. The R-squared 
value reached a maximum at a slope of 0.12 (as per Table S1 in the Supplementary Material). Note 
that the proportion of obese elderly aged 65+ is very similar to overall adult obesity. As this study 
demonstrates adjusting for the obesity differential to the USA makes no effect on the outcome. 
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Figure A1. Proportion of obese adults in 2016 versus the median excess winter mortality (EWM) for
65 world countries. Footnote: Median EWM data has not been adjusted for latitude and the resulting
slope is likely to be an over-estimate. In a previous study regarding the effects of elderly obesity on
latitude adjusted median EWM for US states the slope of the relationship was 0.07 [26]. Hence the
true slope is probably somewhere between these two values. The most likely value of the slope was
determined by applying values of the slope between 0.02 and 0.3 to the study data. The R-squared
value reached a maximum at a slope of 0.12 (as per Table S1 in the Supplementary Material). Note
that the proportion of obese elderly aged 65+ is very similar to overall adult obesity. As this study
demonstrates adjusting for the obesity differential to the USA makes no effect on the outcome.
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Figure A2. Relationship between the slope of the relationship between EWM and proportion aged
65+ vaccinated before and after obesity adjustment. Footnote: The obesity adjustment factor is a 0.12%
increase in EWM for a 1% increase in adult obesity as per Table S1 in the Supplementary Material.
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Figure A3. Slope and intercept of the linear regression between international EWM values and
percentage elderly vaccinated over all the years included in this study. Footnote: The slope and
intercept are not correlated (R-squared = 0.022). The standard deviation between the lines of best fit
reaches a minimum at 0% to 15% vaccination. The intercept at 0% vaccination ranges from 16.6% in
2016/17 down to 9.6% in 2019/20. As can be seen there are only 2 years with a very high net protective
effect (1988/89 and 2000/01), but four years with a very high net disbenefit (1998/99, 1999/2000,
2014/15, 2017/18) and all these years correspond with very high EWM. Hence it is difficult to claim
that influenza alone was responsible for the higher deaths in these four years.
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