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Abstract: Cross-modality person re-identification is the study of images of people matching under
different modalities (RGB modality, IR modality). Given one RGB image of a pedestrian collected
under visible light in the daytime, cross-modality person re-identification aims to determine whether
the same pedestrian appears in infrared images (IR images) collected by infrared cameras at night,
and vice versa. Cross-modality person re-identification can solve the task of pedestrian recognition in
low light or at night. This paper aims to improve the degree of similarity for the same pedestrian in
two modalities by improving the feature expression ability of the network and designing appropriate
loss functions. To implement our approach, we introduce a deep neural network structure combining
heterogeneous center loss (HC loss) and a non-local mechanism. On the one hand, this can heighten
the performance of feature representation of the feature learning module, and, on the other hand,
it can improve the similarity of cross-modality within the class. Experimental data show that the
network achieves excellent performance on SYSU-MM01 datasets.

Keywords: cross-modality; person re-identification; heterogeneous center loss; non-local

1. Introduction
1.1. Definition of Person Re-Identification

Person re-identification technology (Re-ID) uses the whole body image of pedestrians
for identity recognition, which can extend the space-time continuity of the continuous
tracking of pedestrians under cameras. The research goal of person re-identification
technology is to determine whether a pedestrian appears under multiple non-overlapping
independent surveillance cameras [1–3]. In practical applications, the technology is facing
great challenges due to the influence of diverse factors such as light changes, different
perspectives, human postures, and so on.

Early person re-identification technology consisted of studies under visible light
modality (single modality). There are two key points in the research: one is feature
extraction, the other is metric learning. Feature extraction means extracting the image
features of the target pedestrian and candidate pedestrian images [1–5]. The distance
between the target pedestrian and candidate pedestrian images features is calculated by
metric learning, and then the similarity values between them are calculated. Most of the
traditional feature extraction algorithms use artificial feature extraction methods [1,2,6–10].
Since the application of deep learning to computer vision, the recognition accuracy of
single-modality pedestrian re-identification [11–17] has reached new stage, which has even
exceeded the ability of human re-identification.

1.2. Cross-Modality Person Re-Identification

Due to the increasing demand for person re-identification technology in practical
application scenarios, person re-identification of a single modality is also facing new prob-
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lems. Single-modality person re-identification [11–13,15,18,19] mainly uses the pedestrian
images collected by visible light cameras for recognition. However, under the condition of
insufficient light or night, the information of the images collected by visible light cameras
is seriously missing, which affects the effect of person recognition. With the reduction in
hardware costs and the progress of webcam technology, advanced monitoring instruments
have been equipped with dual monitoring modes under visible light and dark conditions.
The visible light monitoring mode is used when the lighting conditions are good in the
daytime, and the infrared mode is automatically switched to monitoring when the light
is weak at night. Cross-modality person re-identification [5,20–25] is a technology to
study whether the target pedestrian appears in the cross-modality surveillance cameras.
At present, the commonly used cross-modality cameras are visible-infrared cameras and
visible-thermal imaging cameras. Cross-modality person re-recognition technology mainly
studies the matching technology of pedestrian images in different modalities. For example,
given an RGB image of a pedestrian collected under visible light, the technology can
judge whether the pedestrian appears in the infrared images (IR images) collected at night,
and vice versa.

1.3. The Progress and Challenges of Cross-Modality Person Re-Identification

The difficulties of cross-modality person re-identification technology consist of study-
ing the common characteristics of the same pedestrian in different modalities and reducing
the modal difference of the same pedestrian in the two modalities. The main methods of
cross-modality pedestrian Re-ID [20,21,23,26,27] are to design a more optimized convolu-
tional neural network for feature extraction and design a suitable loss function. However,
the IR images in cross-modality person recognition lack a lot of color information, which
leads to great differences in the characteristics of the same pedestrian in different modali-
ties, as shown in Figure 1. At present, the mainstream process of cross-modality person
re-identification is to extract the features of RGB images and infrared images by using a
deep neural network of a two-way structure, then using the shared parameter network to
learn the features of the two modalities, and finally, realizing the re-identification. However,
in designing the loss functions, most methods consider expanding the differences among
different pedestrian categories. However, it is insufficient to learn the similarity of the same
pedestrian in different modalities.

Figure 1. Cross-modality differences of the same pedestrian. The three images on the left and the
three images on the right are RGB modality images and IR modality images of the same person,
respectively.

At present, the methods of RGB image person re-identification have achieved re-
markable performance. The deep neural networks, which have made great progress
for single-modality person re-identification, have also boosted cross-modality person
re-identification. However, this new task still faces the problem of intra-class modality
difference, as shown in Figure 1. Therefore, cross-modality research not only focuses
on improving the feature extraction ability of the deep network but also considers how
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to design appropriate loss functions to improve the feature similarity value of the same
pedestrian in the different modalities. Zhu et al. [23] uses heterogeneous loss function to
improve the similarity of the same person under different modalities and achieves superior
performance. However, they do not consider the contribution of global features to each
location. To further improve the network’s contribution to cross-modality person Re-ID,
inspired by [23,25,28], we propose to improve the feature expression ability and intra-class
cross-modality similarity from two aspects, namely improving the structure of a deep net-
work and designing a loss function. In the following description, we design a dual-channel
deep neural network framework that combines a heterogeneous center loss function and
non-local module. The main contribution of this documentation is based on a two-way
network (RGB branch and IR branch) in order to extract the features of visible-light images
and IR images separately. We propose improving the contribution of global features to each
location. Specifically, inspired by [25,28], we propose to add a non-local attention module
to the RGB branch and IR branch to improve the contribution of global features to each
local location. The structure of the two network channels is the same, but the parameters
are not shared, and the network structure has scalability. To improve the feature similarity
of intra-class cross-modality images, inspired by HC loss [23], the heterogeneous center loss
function is used to shorten the distance between different modality feature centers in the
class. Therefore, this paper combines cross-entropy loss (CE loss) and the heterogeneous
center loss (HC loss) function to supervise training jointly. Beyond this, because different
parts of a human body have their inherent properties, the idea of the block is introduced
into the network to obtain the characteristic expression of discriminating force between
different modalities. The performance of the proposed method on the SYSU-MM01 [26]
dataset demonstrates the effectiveness.

2. Related Work
2.1. Visible Light Modality Person Re-ID

In visible light modality person re-identification, there are three main directions in the
aspect of pedestrian feature expression: global feature extraction, local feature extraction,
and feature extraction with attention mechanism. Global feature extraction: in the task of
image classification, global feature extraction has been treated as the primary choice to
obtain the features of images [4,29–31]. Global feature extraction consists of learning the
global feature vector representation [32] of person images through the deep neural network.
The IDE model [32] treats the recognition task of a pedestrian image as a classification task
and uses global feature extraction for person Re-ID. Many works [11,33] prove the validity
of the IDE. Local feature learning: due to the distinguishable features of various parts of the
human body, the PCB [11] proposes that the horizontal direction of the pedestrian feature
vectors are divided into several equal parts by using the idea of a horizontal block, and then
the local feature vectors of pedestrians are learned through the network. Finally, each local
feature is connected into a whole for person re-identification. On the principle of PCB [11],
some works [18,34] improve the algorithm and increase the recognition accuracy of the
person Re-ID task. Feature extraction with attention mechanism: the conventional deep
convolution neural network uses a convolution kernel with a convolution kernel of 3 or 5 to
extract the local features of the image, ignoring the contribution of the global characteristics
of the image to person image recognition. Wang et al. [28] use non-local operations to
improve the contribution of image global features by associating the information of any
two locations. The idea based on the non-local mechanism shows promising performance
in person re-identification [14,35].

2.2. Cross-Modality Person Re-ID

Cross-modality person re-identification [22,25–27,36–39] consists of solving the prob-
lem of person Re-ID under low light or night conditions. Wu et al. [26] for the first
time propose the deep zero-padding method for this task. Meanwhile, one-stream, two-
stream, and asymmetric FC network structures are proposed for RGB-IR-based person
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Re-ID [26,40]. At the same time, they contribute a standard benchmark SYSU-MM01 [26] for
cross-modality person Re-ID, and supporting evaluation criteria were released. Ye et al. [20]
propose a two-flow network using the top loss of the bi-directional central constraint to
reduce the modal difference. For a query image, the distance between it and images
of the same type should be less than the distance between it and images of different
types [20]. Inspired by the central loss in face recognition, Zhu et al. [23] suggest using
the feature center distance of the heterogeneous image instead of the feature distance.
Zhu et al. [23] propose using the heterogeneous center loss function to reduce the cen-
ter distance of the feature distribution of the same pedestrian in different modalities:
that is, to improve the feature similarity between different modalities within the class.
Hao et al. [41] apply the sphere softmax loss (usually used in face recognition) to cross-
modality person Re-ID, and Hao et al. [41] propose a hypersphere manifold embedding
network (HSMEnet). In cross-modality person Re-ID, cmGan [42,43] also attracts more
attention and makes good progress.

3. Methods
3.1. Overview of a Deep Neural Network Framework Combining Heterogeneous Center Loss and
Non-Local Modules

The framework of deep neural network combining heterogeneous center loss and
non-local module is shown in Figure 2. The framework uses a dual-channel structure
for feature extraction of the RGB images channel and the IR images channel. Resnet50 is
used as the backbone for each channel. Compared with Resnet50, there are three main
differences. One is to remove the down sampling operation in the fourth layer before the
average pooling operation. In this way, a larger feature map can be obtained and more
feature information can be obtained. Another more important difference is that inspired
by [25,28], we add non-local module (which will be introduced in Section 3.2) to the second
layer and the third layer to enhance the contribution of the global features of the image
to the location features. Thirdly, after the fourth layer, the feature map is divided into P
blocks (P = 6) in the horizontal direction by using the idea of PCB [11]. The dimension of
each block is reduced by using 1× 1 convolution; then, L2-norm layer operation and FC
layer operation are performed. Finally, HC loss (which will be introduced in Section 3.3)
and CE loss are calculated.

Figure 2. The framework of deep neural network combining heterogeneous center loss and non-local
mechanism. It uses a dual-channel structure for feature extraction of RGB images and IR images. We
add non-local module to the second layer and the third layer to enhance the contribution of the global
features of the image to the location features. After the fourth layer, the feature maps are divided into
six blocks in the horizontal direction. CE loss and HC loss are used for training supervision jointly.
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3.2. Non-Local Module

In the application of computer vision, the common convolution operation is to extract
local features. The non-local operation [28] is to calculate the relationship between the
pixels in two different positions on the image. That is to say, it is used to capture long-range
dependencies. When calculating the response of a pixel, non-local operations take into
account the contribution of features in all positions. Let the receptive field of convolution
be larger, not limited to a local area. The general expression of non-local [28] is as follows:

yi =
1

C(x) ∑
∀j

f
(
xi, xj

)
g
(
xj
)
, (1)

where x represents the input feature map, i represents the response of the current position,
and j represents the response of each position on the feature map. Given the corresponding
i in a certain position, the global response is obtained by weighted summation of the
response j in each position. f

(
xi, xj

)
is used to calculate the similarity between i and all

possible associated locations j. We use g(xi) to represent the feature representation of the
feature map at the j position. C(x) is the standardized factor. Finally, we obtain y with the
same size as x. Non-local is used in the shallow layer of CNN and before the layer of FC.
FC uses the learned weights to calculate the mapping from input to output. In the layer of
FC, the relationship between position i and position j will not be reflected in the output,
and the position correlation is lost to a certain extent. By combining the information of
non-local and local, we can make up for this loss and extract more abundant features.

3.3. Metric Learning Module

In cross-modality pedestrian images, RGB images and IR images are called heteroge-
neous images due to different imaging principles. The contour information and texture
information of the same individual will remain consistent in different modalities, but the
color information will change greatly in different modalities. The traditional cross-entropy
loss is used to push the distance between different types of pedestrian images. However,
it cannot help to shorten the feature distance of the same category of pedestrians under
different modalities. Inspired by the central loss function used in face recognition [44],
Zhu et al. [23] propose a heterogeneous center loss function. By penalizing the center
distance of features of the same category in different modalities, the similarity of cross-
modality within the category is improved. The loss function of heterogeneous centers is
expressed as follows:

LHC =
U

∑
i=1

[
‖Ci,1 − Ci,2‖2

2

]
, (2)

ci,1 =
1
M

M

∑
j=1

xi,1,j, (3)

ci,2 =
1
N

N

∑
j=1

xi,2,j, (4)

where Ci,1 and Ci,2 represent the center of the characteristic distribution of the ith person in
two modalities. Using the same method as [23], to reduce the computational cost, a small
batch strategy is used to update the center of feature distribution in two modalities of each
batch. It has been verified in [23] that HC loss can only improve the inter-modality similarity
within a class, yet cannot enlarge the distance between different categories. Thus, we take
the form of supervision training combined with cross-entropy loss and heterogeneous
center loss (HC loss). We use the following formula to express the contribution of the
two losses:

Total_Loss = CE_loss + ηHC_loss, (5)

where η is the weight of HC loss in the total loss.
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3.4. Comparison with HC Loss (Zhu et al., 2020) and AGW (Ye et al., 2021)

Ye et al. [25] applies the idea of non-local attention to the design of the network, taking
into account the contribution of the global response of the image to the local response.
Although AWG [25] has achieved good performance in single-modality (RGB modality)
person re-identification and cross-modality (RGB-IR modality) person re-identification,
some improvements are needed to improve the similarity of the intra-class under different
modalities. Zhu et al. [23] uses the loss of heterogeneous centers to improve the intra-class
similarity of different modalities, but the contribution of the global response of the image to
the local positions is not considered in the network designing. Considering the advantages
of AWG [25] and HC loss [23], we design a cross-modality pedestrian re-identification
network combining heterogeneous center loss and non-local mechanism, which not only
solves the problem that local operations cannot see the whole situation clearly but also
improves the cross-modality similarity within the class. It provides an excellent baseline
for cross-modality person re-identification.

4. Experiment
4.1. Datasets and Setting
4.1.1. Datasets

The experiments in this paper are carried out on datasets of SYSU-MM01 [26], which
is publicly used in cross-modality pedestrian re-identification. SYSU-MM01 [26] is the first
published cross-modality pedestrian Re-ID dataset (visible images and infrared images). It
contains 491 pedestrians, including 287,628 RGB images (captured with cameras numbered
as 1, 2, 4, and 5) and 15,792 IR images (captured with cameras numbered as 3 and 6). SYSU-
MM01 [26] contains a training set of 296 pedestrians, a validation set of 99 pedestrians,
and a testing set of 96 pedestrians. To make the captured image consistent with the actual
situation, the visible light cameras are set in a bright place, and the infrared cameras are set
in a dark place. To prevent the influence of different light between indoor and outdoor on
the shooting effect, the cameras numbered 1, 2, and 3 are placed indoors, and the cameras
numbered 4, 5, and 6 are placed outdoors. The SYSY-MM01 [26] dataset is very challenging
due to the changes in camera viewing angle and human postures.

4.1.2. Evaluation Metrics

In the SYSU-MM01 [26] datasets, the training set is used for training. In the testing
phase, the query set comes from the IR images, and the gallery set comes from the RGB
images. According to the locations of the cameras, the search mode is divided into all-
search mode and indoor-search mode. All-search mode contains images from indoors and
outdoors. Indoor-search mode contains images from indoors. Single-shot and multi-shot
are all included in the all-search mode and indoor-search mode, respectively, and the
single-shot all-search mode is used in our experiment. In the evaluation phase, the SYSU-
MM01 [26] datasets are repeated multiple times (10 times) during evaluation to take the
mean as a relatively stable result. The evaluation indexes that are widely used in person
re-identification are CMC, mAP, and Rank-n. CMC is cumulative matching characteristic
curve, mAP is mean average precision, and Rank-n is the probability that the first n
searched results contain correct samples.

4.1.3. Implementation

The model of GPU used in the experimental environment is an NVIDIA Titan XP,
and the experimental code is built under the pytorch framework. To compare with [23]
under the same condition, we use the same parameter setting as [23]. The size of the
image is set to 288× 144. On account of the limited number of pedestrian images in SYSU-
MM01 [26], we do some preprocessing operations on pedestrian images to achieve the
purpose of data enhancement. Image preprocessing includes random clipping and random
horizontal flipping. We use small batch settings of batch size 64. For each batch of the data,
8 RGB images and 8 IR (or thermal imaging) images are selected from each pedestrian
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image set by a random extraction method. When the feature map is evenly partitioned
horizontally, the number of blocks is set to 6. We use a convolution kernel with a size of
1 to reduce the dimension of the eigenvector (512). When calculating loss, the weights
of cross-entropy and HC loss are set to 1 and 0.5, respectively. The value of epoch is set
to 60. Using the warmup dynamic learning rate adjustment strategy, the learning rate is
initialized to 0.01. When the epochs are between 30 and 60, we change the learning rate to
0.001. The optimization algorithm adopts the stochastic gradient descent with momentum
0.9.

4.2. Comparison with Mainstream Methods

In our comparative experiments, we enumerate several non-deep feature learning
methods (LOMO [8], HOG [45]) and several deep learning methods in cross-modality
person Re-ID and compare them with this paper. The methods of deep learning are
zero-padding [26], TONE+HCML [46], BDTR [20], and HC-loss [23], as shown in Table 1.
The baseline of this paper is inspired by HC-loss [23]. As shown in the data in Table 1,
the accuracy of rank-1 has been steadily improved after adding non-local to the feature
extraction module. We also apply the PCB method, which was originally used for person
Re-ID in visible light modality, to cross-modality person Re-ID. The experimental results
show that if we apply the single-modality method to cross-modality person Re-ID without
changing anything, the effect will be significantly reduced. The reason is that the differences
between different modalities are not considered.

Table 1. Comparison of experimental results in single-shot all-search mode on SYSU-MM01 [26]
datasets. The data unit is %.

Method Rank-1 Rank-10 Rank-20 mAP

HoG+Euclidean [45] 2.76 18.25 31.91 4.24
HoG+KISSME [45] 2.12 16.21 29.13 3.53
HoG+LFDA [45] 2.33 18.58 33.38 4.35
LOMO+CCA [8] 2.42 18.22 32.45 4.19
LOMO+CDFE [8] 3.64 23.18 37.28 4.53
LOMO+GMA [8] 1.04 10.45 20.81 2.54

Asymmetric FC [26] 9.30 43.26 60.38 10.82
One-stream [26] 12.04 49.68 66.74 13.67
Two-stream [26] 11.65 47.99 65.50 12.85

Zero-padding [26] 14.80 54.12 71.33 15.95
PCB [11] 16.43 54.06 65.24 16.26

TONE+HCML [46] 14.32 53.16 69.17 16.16
BDTR(AlexNet) [20] 20.84 63.81 79.14 22.86

BDTR(ResNet50) [20] 27.32 66.96 81.07 27.32
eBDTR(ResNet50) [20] 27.82 67.34 81.34 28.42

cmGAN(ResNet50) [42] 26.97 67.51 80.56 27.80
HC-loss [23] 55.96 90.51 96.19 55.07

Ours 58.09 93.14 97.42 58.30

4.3. Ablation Study

We compare the performance between without using HC loss and with using HC
loss, as shown in Table 2. The first row in Table 2 shows the effect of our experiment when
combining the use of HC loss and CE loss. The second row in Table 2 shows the recognition
accuracy of our experiment using CE loss alone. The data in Table 2 shows that if CE loss is
used alone, the recognition accuracy will be reduced. When HC loss and CE loss are used
together, the recognition accuracy is improved. The reasons are as follows: firstly, the CE
loss is used to widen the characteristic distance of different types of pedestrians in the
general direction, and then HC loss is used to reduce the center distance between different
modalities in the class. CE loss and HC loss can be jointly beneficial to re-identification.
The data used for verification are shown in Table 2.
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Table 2. Our experiment with HC loss and without HC loss. The data unit is %.

Method Rank-1 Rank-10 Rank-20 mAP

Ours 58.09 93.14 97.42 58.30
Ours without HC 46.78 86.13 93.18 46.13

We compare the performance between without using the non-local module and with
using the non-local module, as shown in Table 3. If we add non-local to the shallow input
with a large size, the computation will be very heavy. So we choose to add the non-local
module in the high-level semantic rich layer. The two integer-type parameters in parenthe-
ses indicate where the non-local module is embedded. The third row in Table 3 shows that
when we choose to add the non-local in the second and third layers, the performance of
recognition is the best. The effect of adding non-local to other layers is shown in Table 3.

Table 3. Our experiment with non-local module and without non-local module. The data unit is %.

Method Rank-1 Rank-10 Rank-20 mAP

Ours without Non-local 55.96 90.51 96.19 55.07
Ours Non-local (1, 2) 55.56 93.16 97.34 55.82
Ours Non-local (2, 3) 58.09 93.14 97.42 58.30
Ours Non-local (3, 4) 57.30 92.95 97.37 56.56

5. Conclusions

In this work, we propose a dual-channel deep network combining heterogeneous
center loss and non-local features. To improve the contribution of global response to
local response, a non-local module is embedded in the high-order semantic layer of the
network. Before average pooling, we use the method of horizontal segmentation to extract
the features of each part of the human body. Finally, we concatenate the features of each
horizontal segmentation into a whole for cross-modality person Re-ID. When calculating
the loss function, we use cross-entropy loss and heterogeneous center loss to enlarge the
characteristic distance between different pedestrians and reduce the characteristic distance
of the same pedestrians in different modalities. Experimental results show that our method
achieves good performance. Our method can provide a good baseline for subsequent
cross-modality person Re-ID. In the next stage, we will attempt using this method to study
multi-modality re-identification.
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