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Abstract  Accurate assessment of the intrinsic period of the human circadian 
pacemaker is essential for a quantitative understanding of how our circadian 
rhythms are synchronized to exposure to natural and man-made light-dark 
(LD) cycles. The gold standard method for assessing intrinsic period in 
humans is forced desynchrony (FD) which assumes that the confounding 
effect of lights-on assessment of intrinsic period is removed by scheduling 
sleep-wake and associated dim LD cycles to periods outside the range of 
entrainment of the circadian pacemaker. However, the observation that the 
mean period of free-running blind people is longer than the mean period of 
sighted people assessed by FD (24.50 ±  0.17 h vs 24.15 ±  0.20 h, p < 0.001) 
appears inconsistent with this assertion. Here, we present a mathematical 
analysis using a simple parametric model of the circadian pacemaker with a 
sinusoidal velocity response curve (VRC) describing the effect of light on the 
speed of the oscillator. The analysis shows that the shorter period in FD may 
be explained by exquisite sensitivity of the human circadian pacemaker to low 
light intensities and a VRC with a larger advance region than delay region. 
The main implication of this analysis, which generates new and testable pre-
dictions, is that current quantitative models for predicting how light exposure 
affects entrainment of the human circadian system may not accurately capture 
the effect of dim light. The mathematical analysis generates new predictions 
which can be tested in laboratory experiments. These findings have implica-
tions for managing healthy entrainment of human circadian clocks in societies 
with abundant access to light sources with powerful biological effects.

Keywords  intrinsic period, forced desynchrony, velocity response of the human circa-
dian pacemaker, mathematical analysis, free-running blind humans
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Appropriate timing of physiology and behavior to 
temporal niches associated with geophysical cycles 
contributes to fitness of biological systems (West and 
Bechtold, 2015), including the health of humans 
(Fishbein et  al., 2021). This “appropriate timing” is 
reflected in 24-h rhythmic variation in gene expres-
sion, translation, physiology, and behavior and is 
referred to as circadian rhythmicity. A defining fea-
ture of circadian rhythms is that they are self-sustain-
ing (Pittendrigh, 1960). The rhythms are generated by 
oscillators, whose activity persists in the absence of 
cyclical changes, known as zeitgebers, in the external 
environment (Aschoff, 1960). In the study of the cen-
tral circadian pacemaker in mammals, the intrinsic 
period refers to the period of the pacemaker in the 
absence of zeitgebers. The intrinsic period is close to, 
but rarely equal to, 24 h (Czeisler et  al., 1999) and 
entrainment to 24 h is achieved by an adjustment to 
the intrinsic rhythm of the pacemaker through expo-
sure to 24-h zeitgebers (Daan, 1977, 2000).

Accurate estimation of the intrinsic period is 
important for two main reasons. First, the intrinsic 
period is a key factor in determining whether the 
pacemaker can entrain to 24-h light-dark (LD) cycles, 
since the magnitude of the adjustment required for 
entrainment depends on the difference between the 
intrinsic period and the period of the LD cycle 
(Pittendrigh and Daan, 1976b). Second, when the 
pacemaker entrains to LD cycles, the intrinsic period 
determines the phase of entrainment, that is, the tim-
ing of endogenous rhythmicity relative to the zeitge-
ber, with longer intrinsic period associated with later 
sleep timing (Duffy et  al., 2001). Thus the intrinsic 
period of the circadian pacemaker and its variation 
between individuals informs the interpretation of cir-
cadian rhythm sleep-wake disorders (Meyer et  al., 
2022; Micic et al., 2016) as well as the variation in the 
timing of rhythmicity in the general population. For 
example, mathematical models suggest that those 
with a longer intrinsic period are more sensitive to 
the delaying effects of access to evening light (Skeldon 
et al., 2017). Furthermore, guidelines on healthy light 
exposure requirements critically depend on an assess-
ment of the average and between-individual varia-
tion of this key parameter along with the sensitivity 
of the pacemaker to light.

The most reliable way to assess the intrinsic period 
of the pacemaker is to place a person or animal in 
constant darkness (DD). This is because in DD, the 
principal zeitgeber to the pacemaker, namely light 
(Czeisler et al., 1981; Dijk et al., 1995), is removed. The 
rest-activity cycle and behaviors associated with the 
rest-activity cycle, such as feeding, persist in DD, but 
the non-uniform distribution of these behaviors 
across the circadian cycle is assumed not to affect the 
period of the pacemaker to a significant extent (but 

see Kas and Edgar, 2001 for a counterexample). In 
nocturnal animals, the period in DD is measured 
readily (Pittendrigh and Daan, 1976a), but there are 
practical and ethical barriers to studying sighted 
humans in DD. Consequently, sighted people are 
rarely studied in DD, although in the 1970s Wever 
(1979) did assess the intrinsic period of 5 sighted 
humans who lived in DD for approximately 2 weeks. 
The intrinsic period of humans has traditionally been 
assessed in classical free-run (Wever, 1979) and forced 
desynchrony (FD) protocols (Czeisler et  al., 1999; 
Wang et al., 2023). In FD, participants are exposed to 
LD cycles with a period very different from 24 h, usu-
ally 28 h or 20 h. In standard protocols, lights are on 
and participants are required to be awake for two-
thirds of the time. Lights are off and participants are in 
bed and encouraged to sleep for the remaining one-
third. With 28 (20) h cycles, wake is therefore sched-
uled to occur 4 h later (earlier) each day. Since 28 (20) h 
is outside the limits of entrainment, over the course of 
(an integer multiple of) 6 LD cycles the circadian clock 
is exposed to light at (approximately) all different 
phases. In this design, the aim is to minimize the effects 
of light, which allows the human circadian clock to 
progress at its natural period.

More recently, the intrinsic period has been 
assessed by measuring the in vitro period of fibro-
blasts taken from individual participants (Pagani 
et  al., 2010). The fibroblast period is measured by 
introducing firefly luciferase genes into the fibroblast 
cells via a lentivirus. Since the expression of firefly 
luciferase is then driven by the circadian gene Bmal1, 
the fibroblasts exhibit periodic patterns of biolumi-
nescence which are measured via luminometry.

Figure 1 summarizes estimates of the intrinsic period 
in blind and sighted humans using these various meth-
ods. Here, only blind participants with nonentrained 
rhythms are included, where blind means having no 
subjective perception of light. For studies where mela-
tonin suppression was measured, we have further 
restricted those who had no melatonin suppression by 
light. For example, Flynn-Evans et  al. (2014) studied 
127 blind people of whom 41 had no light perception 
and 16 of these were nonentrained. In Figure 1, only the 
16 nonentrained participants are included.

In Figure 1, it can be seen that the mean period of 
blind people is consistent across different protocols 
(Emens et al., 2010; Flynn-Evans et al., 2014; Hack et al., 
2003; Hull, 2009; Kendall et  al., 2001; Klerman et  al., 
1998; Lewy et al., 2004; Lockley et al., 1997; Lund, 1974, 
Sack et  al., 1992), and consistent within individuals 
assessed in both free-running field conditions and in an 
FD protocol in the laboratory (Hull, 2009). In contrast, 
the mean period of sighted people is variable depend-
ing on the protocol (Duffy et al., 2011; Hasan et al., 2012; 
Wever, 1979). The period of sighted people in DD is 
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consistent with intrinsic period estimates in the blind. 
In addition, there is no significant difference between 
the mean period of fibroblasts from sighted people and 
the period of fibroblasts from blind people (p = 0.17). 
The reported standard deviations of estimates of peri-
ods appear larger in classical free run and fibroblasts 
than observed in FD protocols but are similar between 
sighted people in FD and assessments in the blind.

Motivated by concerns over the impact of room 
lighting in classical free-run protocols, FD has emerged 
as a widely accepted gold standard method for assess-
ing the intrinsic period of the circadian pacemaker in 
sighted humans (Dijk and Duffy, 2020; Wang et  al., 
2023). It has been proposed that the shorter period of 
sighted people in FD compared to blind people is  
due to aftereffects of prior entrainment in sighted  
people (Duffy and Wright, 2005). The presence of 
aftereffects implies that the period of sighted people 
in FD should be variable depending on prior period 
of entrainment. However, in humans, the period of 
the zeitgeber during prior entrainment appears to 
have only a modest effect on the subsequent period 
of the pacemaker in FD (mean difference 0.1 h; Scheer 

et al., 2007). It is also interesting, and maybe surpris-
ing, to note that the average periods of fibroblasts in 
sighted and blind people in vitro are comparable with 
each other and similar to the intrinsic period of blind 
people (see Figure 1), although in sighted participants 
the fibroblast period does not correlate with the period 
of plasma melatonin as assessed in FD (Hasan et al., 
2012).

In classical free run, the self-selected light expo-
sure of participants is likely to modulate the period of 
the pacemaker in sighted people (Klerman et  al., 
1996). To minimize the effect of light, FD protocols 
aim to distribute light evenly over the circadian cycle 
and use dim light. For example, in Wang et al. (2023) 
it is recommended that light levels in FD should be 
less than 15 lux, and it is reported that in many FD 
experiments light of intensity less than 4 lux has been 
used. Even at these low intensities, there is evidence 
that dim LD cycles may modulate the period of 
sighted people. For example, Wright et  al. (2001) 
demonstrated that sighted people can entrain to dim 
(~~1.5 lux) 24-h LD cycles in a carefully controlled 
experiment with an imposed 8:16 rest-activity cycle.

Figure 1.  Estimates of the intrinsic period of the circadian pacemaker in blind and sighted humans using various protocols. Circles 
indicate the mean with the horizontal bars indicating the mean ± standard deviation. Where available, the square brackets indicate 
the range of the measurements. In some cases (e.g. Lewy et al., 2004) where the studies only include a small number of participants, 
the distribution of periods is skewed so that the smallest value recorded is greater than the mean – standard deviation. The gray 
vertical lines indicate accepted values for the circadian period of sighted (as measured in forced desynchrony) and blind individuals, 
respectively.
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In view of these discrepancies and unresolved 
issues relating to the intrinsic period of the human 
circadian pacemaker, and an absence of a formal 
mathematical analysis of how light may affect the 
human circadian pacemaker, a further analysis seems 
warranted. Here, we use a simple mathematical 
model of the circadian pacemaker to describe the 
effect of dim LD cycles on the circadian pacemaker in 
sighted humans. Using this model, we derive an 
expression relating the period in FD to the intrinsic 
period, which highlights the dependence of assessed 
period on the symmetry of the velocity response 
curve (VRC) in the model. We estimate parameters of 
our model using Wright’s data on the entrainment of 
humans to dim LD cycles (Wright et al., 2001). Then, 
we present a hypothesis for the observed shorter 
period of sighted people in FD compared to blind 
people. We describe experimental protocols to test 
this hypothesis. Our hypothesis offers one solution to 
a long-standing discrepancy and has implications for 
quantitative models that predict the effect of the light 
environment as mandated by policies about light 
exposure requirements and work schedules.

Materials and methods

Simple Clock Model of the Human Circadian 
Pacemaker for Dim Light Conditions

It is well established that the human circadian 
pacemaker behaves as a phase-amplitude oscillator, 
perturbations of which can lead to changes in phase 
and amplitude (Czeisler et  al., 1989; Khalsa et  al., 
1997; Strogatz, 1990). Kronauer’s model of the 
human circadian pacemaker (Jewett and Kronauer, 
1998) and its later versions (Forger et  al., 1999; 
Jewett et al., 1999; St Hilaire et al., 2007) are the most 
widely used in human circadian research. These 
models were designed to replicate phase resetting 
studies, including amplitude reduction, Type-1 
phase resetting, and Type-0 phase resetting (Khalsa 
et al., 1997). These models are currently being used 
to predict human circadian phase from ambulatory 
light data (Huang et  al., 2021; Rea et al., 2022; 
Woelders et  al., 2017) across a range of popula-
tions including students (Phillips et al., 2017) and 
shiftworkers (Stone et al., 2019) and are competi-
tive with traditional phase assessment methods 
in terms of accuracy (Dijk and Duffy, 2020). 
Kronauer-type models have been used to suggest 
interventions to minimize the disruptive effects 
of jet lag (Serkh and Forger, 2014), non-24-h sleep-
wake disorder, shiftwork, and social jet lag 
(Diekman and Bose, 2022). Kronauer-type models 
have also been combined with models of sleep 

regulation to investigate changes in sleep timing 
preferences (Phillips et  al., 2010; Skeldon et  al., 
2016), sleepiness and cognitive performance due to 
shift-working (Postnova et al., 2014; Postnova et al., 
2018), the impact of light and social constraints on 
sleep timing preferences and social jet lag (Skeldon 
et  al., 2017), and the effects of daylight saving 
(Skeldon and Dijk, 2019), and used to propose quan-
titative light “availability” interventions (Skeldon 
et al., 2022) to normalize sleep timing.

All the Kronauer-type models use a two-dimen-
sional oscillator with a strongly attracting limit cycle 
to reproduce the self-sustaining activity of the clock 
coupled with a model for the effect of light on the 
clock. Earlier versions of the model were developed 
from experiments in which the light intensity varied 
from 10 to 9500 lux. The most recent version (St Hilaire 
et  al., 2007) was adapted to more accurately reflect 
light sensitivity for intensities below 150 lux and addi-
tionally includes a non-photic zeitgeber. Here, the 
focus is on the effect of dim light, which constitutes a 
weak zeitgeber. It has been established that models 
with a strongly attracting limit cycle when exposed to 
a weak zeitgeber are well approximated by phase-
only models (Guckenheimer and Holmes, 1983; see 
the Supplementary Material for further details). 
Therefore, for the purpose of analyzing the effects of 
dim light, here we use a simple phase-only model. In 
addition, we assume that the effect of light is to con-
tinuously modulate the velocity of the clock, which 
means that the model is parametric. Parametric mod-
els are generally considered to be good models of the 
circadian system in diurnal animals (Daan, 2000).

In phase-only models, the state of the clock at any 
time is described only by its phase φ∈1 . In line with 
experimental conventions, we specify that φ= 0  rep-
resents the circadian minimum, which is the state of the 
pacemaker when the core body temperature (CBT) is 
at its minimum (CBTmin). Dim light melatonin onset 
(DLMO) usually occurs about 7 h before the circadian 
minimum (Benloucif et al., 2005; Brown et al., 1997; 
Dijk et al., 1999). With the assumption that the clock 
velocity is approximately equal to 2 (24 ) 1π h −  between 
DLMO and CBTmin, the phase of the pacemaker at 
DLMO is then φ  = 17 ×  2 π/24. The assumption that 
in dim light and/or darkness the clock progresses 
approximately uniformly is made in both phase-only 
models (see equation [1]) and implicitly in Kronauer-
type models, see the Supplementary Material.

The velocity φ  of the clock is the rate of change of 
phase. In phase-only parametric models,

φ ω φ= ( ) ( ),+ B t R 	 (1)

where ω> 0  is the intrinsic velocity, B t( )  is the stimu-
lus produced by the LD cycles, R( )φ  is the VRC to 
light, and φ∈1 . The intrinsic period of the clock is 
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τ ω= 2 /π . The product B t R( ) ( )φ  is called the velocity 
response of the clock to light.

In parametric models, LD cycles of period T  in 
which lights are on for M  of the time produce a stim-
ulus of the form

B t
L t T M

t T
( ) =

, ( ) [0, ),
0, ( ) [

lights are on, mod
lights are off, mod

∈
∈ MM T, )





	 (2)

where L > 0  and depends on the intensity of light. 
Here we assume that L is constant throughout the 
light period, which is a reasonable assumption for 
laboratory protocols. The stimulus in equation (2) 
represents the tonic effect of light on the pacemaker 
(Daan, 1977).

In parametric models, the VRC typically contains 
an advance region, in which the effect of a stimulus is 
to speed up the clock, and a delay region, in which 
the effect of a stimulus is to slow down the clock. The 
VRC is a periodic function with period 2π so that it 
can be represented as a Fourier series,

R R a j b
j

j j( ) = ( ),
=1

φ φ+ −
∞

∑ sin 	 (3)

where
R R d=

1
2

( )
0

2

π
φ φ

π

∫ , 

is the mean level of the VRC.
In phase-only parametric models, the effect of light 

on the velocity of the clock is assumed to be smaller 
than the intrinsic velocity, that is

| ( ) ( )|< ,B t R φ ω 	 (4)

so that the phase of the clock advances monotoni-
cally. A schematic of the CBT rhythm and example 
VRCs are shown in Figure 2.

Results

Analytical Expression for the Period in FD 
Protocols as Found Using the Simple Clock Model

In experiments, the mean period in FD is evalu-
ated in one of two ways. When data of a phase marker 
such as CBT are collected throughout the protocol, 
the non-orthogonal spectral analysis (NOSA) algo-
rithm is used. The NOSA algorithm fits a mathemati-
cal function consisting of Fourier components for the 
mean period in FD, τFD , Fourier components for 
evoked behavior with a period of the LD cycle and a 
correlated noise term (Brown et  al., 1997; Czeisler 
et  al., 1999). Alternatively, the interval of time t  
between two occurrences of a biological phase marker 

Figure 2.  Schematic diagrams of the CBT, plasma melatonin 
rhythms, and the VRC in humans. (a) CBT and plasma mela-
tonin rhythms are shown. The minimum of the CBT occurs at 
circadian phase φ = 0 , and dim light melatonin onset occurs at 
phase φ = 17 / 12ππ . (b) Sinusoidal VRCs R c b1( ) = ( )φ φ++ −−sin  are 
shown for b = 0.5  and 3 different values of the parameter c. In 
each case, the VRC has an advance region and a delay region. 
The sizes and positions of the advance and delay regions depend 
on the parameters b  and c. The crossover from delay to advance 
occurs at phase b c b c−− ≈≈ −−−−1( )sin  and the width of the delay 
region is ππ ππ−− ≈≈ −−−−2 ( ) 21sin c c , where the approximations are 
valid for small c. Abbreviations: CBT = core body temperature; 
VRC = velocity response curve.

such as the CBTmin or DLMO is measured. The first 
occurrence is near the start of the FD protocol, and 
the second occurrence is near its end. The mean 
period is given by the quotient t n/ , where n  is the 
number of circadian clock cycles in the interval t  
(Eastman et al., 2015; Scheer et al., 2007).

Using the simple clock model, the mean period 
may be calculated as follows. If the FD protocol con-
sists of N  LD cycles each with period T  and the 
phase of the clock at the start of the protocol is φ0 , 
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then the phase at the end of the protocol is found by 
integrating equation (1) with initial condition φ φ(0) = 0  
to find the phase at the end of the protocol, φ( )NT ,

φ φ ω φ( ) = (0) ( ) ( ) .
0

NT B t R dt
NT

+ +[ ]∫ 	 (5)

The total change in phase ∆φTot  during the protocol is 
then given by

∆φ φ φ πTot = ( ) (0) 2 ,NT n− +

where n  is the number of times the clock traverses 
φ= 0  in the interval NT. The mean angular velocity of 
the clock is

ω
φ

FD
Tot= ,

∆
NT

and the mean period of the clock evaluated in FD is

τ
π

ωFD
FD

=
2

.

Since the simple clock model does not include noise 
or evoked effects (e.g. the effect of the sleep-wake 
cycle on the circadian-regulated CBT) and there is no 
experimental error in calculating the phase, calculat-
ing the change in phase from the beginning to end of 
the protocol should lead to an accurate determination 
of τFD .

In general, it is difficult to carry out the integral in 
equation (5), and hence find τFD , without resorting to 
numerical methods and simulation. While simulation 
is an extremely useful technique and has previously 
been used to optimize FD protocol design (e.g. Lok 
et al., 2022; Stack et al., 2017), an analytical expression 
is even more powerful, giving a general understand-
ing of which factors are important. Here, we derive 
an analytical expression for the period found in FD 
valid for dim LD cycles and intrinsic periods close to 
24 h. We have included (most of) the derivation of the 
analytical expression in the next two subsections with 
some steps relegated to the Supplementary Material. 
The less mathematically inclined reader may want to 
skip ahead to equation (14), which gives our expres-
sion for the mean period in FD τFD( ) , and the subse-
quent discussion of the implications and accuracy of 
our expression.

Analytical Expressions for the Phase Transition Curve and 
the Mean Angular Velocity.  We first construct an 
expression for the mean angular velocity, ωFD , in 
terms of the cumulative phase response across the 
whole protocol by considering the phase transition 
curve (PTC). First we consider the phase after a single 
LD cycle in FD, starting at t = 0  and ending at t T= , 
where T  is the period of the LD cycles in FD. The 

function that gives the phase at the end of the LD 
cycle is known as the PTC, g g( (0)) = ( )0φ φ , where

g T B t R dt n

T B t R dt

T

T

( ) = ( ) = ( ) ( ) 2 ,

= ( ) ( ) 2

0 0
0

0
0

φ φ φ ω φ π

φ ω φ

+ +[ ] −

+ + −

∫
∫ nnπ,

	 (6)

where n  is the number of times the clock traverses 
φ= 0  in the interval from t = 0  to t T= . Equation (6) 
essentially states that the phase at the end of the cycle 
is the phase at the beginning of the cycle φ0 , plus the 
phase change due to the intrinsic angular velocity of 
the clock ωT, plus a phase change due to the effect of 
the zeitgeber, namely

P B t R dt
T

( ) = ( ) ( ) ,0
0

φ φ∫ 	 (7)

where P( )0φ  is known as the phase response curve 
(PRC). Subtracting 2nπ ensures that the value of 
g( )0φ  remains within the interval [0, 2π). The PTC 
and hence the PRC may be evaluated for any 
φ π0 [0, 2 )∈  by integrating the differential equation in 
equation (1).

More generally, defining φ φk kT= ( ) , then using 
equations (6) and (7), the phase after each LD cycle is 
given by the following circle map:

φ φ ω φ πk k kT P+ + +1 = [ ( )] 2 . mod 	 (8)

In other words, starting at φ0 , after one LD cycle the 
phase will be φ1 , after the next LD cycle the phase 
will be φ2 , and so on. This sequence of phases can be 
visualized by plotting the PTC and constructing the 
“cobweb” diagram (see Figure 3 for two examples).

Having calculated the phase after one LD cycle, we 
can now calculate the phase after N  LD cycles as fol-
lows. From equation (8),

φ φ ω φ π
φ φ ω φ π

φ ω

1 0 0

2 1 1

0

= [ ( )] 2
= [ ( )] 2
= [ 2

+ +
+ +
+ +

T P

T P

T P

 mod 
 mod 

,
,

(( ) ( )] 2
=

1 0

3

φ φ π
φ

+ P  mod .


So after N  cycles,

φ φ ω φ πN
k

N

kNT P= ( ) 2 .0
=0

1

+ +












−

∑  mod 

Hence the total change in phase ∆φTot  over the course 
of the FD protocol can be expressed as

∆φ ω φTot = ( ),
=0

1

NT P
k

N

k+
−

∑
where the first term on the right-hand side describes 
the total change in phase due to the natural angular 
velocity of the clock and the second term describes 
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the cumulative phase response to successive LD 
cycles. The mean angular velocity is then:

ω ω φFD = 1
1

( ) ,
=0

1

+












−

∑NT
P

k

N

k
 	 (9)

where T T = ω . In the next section, we derive an 
approximate expression for P k( )φ , which leads to an 
approximate expression for ωFD .

Approximate Expression for the Cumulative Phase 
Response Across a FD Protocol.  To calculate the mean 
angular velocity ωFD , and hence period, in FD an 
expression for the cumulative phase response given 
by the sum term on the right-hand side of equation 
(9) is needed. This is a difficult problem in general, 
but an approximation can be derived by making two 
reasonable assumptions, namely that the effect of 
dim LD cycles is small and that the intrinsic circadian 
period is close to 24 h.

We first consider the phase response to a single 
cycle P( )0φ . Substituting for B t( )  in equation (7) 
using equation (2) gives

P L R dt
M

( ) = ( ) ,0
0

φ φ∫ 	 (10)

where M  is the length of the light period and L  is 
the magnitude of the stimulus. Using equation (1) to 
change the variable of integration in equation (10) 
from t  to φ  gives an implicit relation between the 
PRC and the VRC:

P A
R
AR

d
M P

( ) =
( )

1 ( )
,0

0

0
(
0
)

φ
φ
φ

φ
φ

φ φ+ +

∫ +

ω

	 (11)

where A L= /ω . We assume that A = 1ε , that is, 
the effect of dim light on the angular velocity of the 
clock is small compared to the intrinsic angular veloc-
ity. Then, Taylor expanding the integrand near ε = 0  
and using the fact that P( )0φ  is O( )ε , equation (11) 
gives

P R R O d
M O

( ) = ( ) ( ) ( ) .0
0

0
( )

2 2φ ε φ ε φ ε φ
φ

φ ω ε+ +

∫ − +

Thus,

P R d O
M

( ) = ( ) ( ).0
0

0 2φ ε φ φ ε
φ

φ ω+

∫ + 	 (12)

Using the further assumption that the intrinsic period 
τ π ω= 2 /  is close to 24 h, that is τ δ= (1 )Tsolar + , where 
Tsolar 24 h=  and | |δ  1 , (e.g., when τ = 24 45 h. , 
δ = 0 0. 19 ), in the Supplementary Material we show

1
( ) = ( , ),

=0

1
2

NT
P f R O N N

k

N

k


−

∑ +φ ε δ ε 	 (13)

where f M T= /  is the fraction of the LD cycle that is 
the photoperiod.

Approximate Expression for the Period Measured in FD 
Protocols.  Finally, combining equation (13) with 

Figure 3.  The phase transition curve as a one-dimensional map. Cobweb diagrams illustrating the map in equation (8) in simulations of 
FD are shown for LD cycles with different periods: (a) T = 28 h  with M = 18 7 h. , that is, LD cycles with 18.7 h of light and 9.3 h of dark 
and (b) T = 02  h  with M = 13 3 h. , that is, LD cycles with 13.3 h of light and 6.7 h of dark. In each case, the phase transition curve is shown 
in red. The phase-only model with VRC R( ) =φ φsin  was used with initial phase φ0 = 0. Abbreviations: FD = forced desynchrony; LD = 
light-dark; VRC = velocity response curve.
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equation (9) leads to an expression for the angular 
velocity in FD,

ω ω ε δ εFD = [1 ( , )].2+ +f R O N N

If the O N N( , )2 δ ε  terms are negligible, which means 
that the stimulus induced by the dim LD cycles is suf-
ficiently small (small ε ) and the intrinsic circadian 
period is sufficiently close to 24 h (small δ ), then

τ τ εFD ≈ −(1 ).f R 	 (14)

Implications and Accuracy of the Approximate 
Expression for τFD

Implications of the Approximate Expression for τFD .  
Equation (14) states that, to lowest order, the observed 
circadian period in FD, τFD , will be the same as the 
intrinsic circadian period τ.  However, unless the 
VRC has a mean of zero R = 0( )  so that it has equal 
size advance and delay regions, there will be small 
correction terms. The magnitude of these correction 
terms will be proportional to the magnitude of the 
stimulus produced by dim LD cycles ε , the degree of 
asymmetry R  in the VRC, and the fraction of the 
time that the lights are on f .

So, if the advance region is larger than the delay 
region R > 0( )  then FD underestimates the intrinsic 
period. Whereas if the advance region is smaller than 
the delay region R < 0( )  then FD overestimates the 
intrinsic period. For illustration, equation (14) is plot-
ted in Figure 4 for 3 different values of the asymmetry 
parameter, R , and 2 different values of the intrinsic 
circadian period ( τ = 24 15 h.  and τ = 24 45 h.  corre-
sponding to δ = 0 00. 6  and δ = 0 0. 19 , respectively) as 
a function of the stimulus strength ε . Hence, as 
shown in Figure 4b, the discrepancy between the 
period of 24.45 h found in the blind and of 24.15 h 
found in sighted people in FD protocols in which the 
lights are on for two-thirds of the time f = 2 3/( ) , 
could, for example, be explained by an asymmetry 
parameter of 0.49 with a stimulus strength of 0.038. 
Any combination εR =  180 0.  can explain the dis-
crepancy. Here we have chosen to use a stimulus 
strength of 0.038 because of the fitting discussed 
below in the Parameter Estimation section.

Furthermore, equation (14) predicts that the distri-
bution of circadian periods measured in FD will be 
similar to the distribution of intrinsic circadian peri-
ods. For example, if τ = 24 45 h. , ε = 0 0. 38 , and 
R = 0.49 , then the standard deviation of τFD  will be 
smaller, but negligibly so, than the standard devia-
tion of τ  (approximately 2% smaller).

Equation (14) also suggests possible approaches 
for assessing if there is asymmetry in the VRC. 
Specifically, since the size of the deviation from the 
intrinsic period is dependent on the fraction of time 

in which lights are on, f , our analysis predicts that if 
there is asymmetry in the VRC sufficient to explain 
the difference between the observed periods in blind 
and sighted people, then the period in dim 7:13 LD 
cycles f = 0.35( )  should be approximately 0.14 h lon-
ger than the period in dim 13:7 LD cycles (where 
f = 0.65). Meanwhile, if the assumption that the VRC 

is symmetric is valid, there should be no difference 
between the period in dim 7:13 LD cycles and dim 
13:7 LD cycles (see Figure 4c-4f).

Accuracy of the Analytical Expression for τFD .  To illus-
trate the accuracy of our analytical expression, we 
compare it to simulations of FD using a simple clock 
model (see Figure 4). Equation (14) holds for a gen-
eral VRC with mean value R . However, for simula-
tions and fitting to data a form for the VRC must be 
specified. Here, we have taken the lowest order trun-
cation of the Fourier series given in equation (3), 
namely,

R c b1( ) = ( ),φ φ+ −sin 	 (15)

where the VRC to light has been scaled in such a way 
that the coefficient of the sine term is unity (see Figure 2). 
For this specific form for the VRC, R c= . Results are 
shown for 2 different values of the cycle length (20 
and 28 h).

Equation (14) assumes that ε  and δ  are small. 
Figure 4 shows that, as is to be expected in an asymp-
totic analysis, the simulated circadian period deviates 
from the approximate analytical formula as ε  
increases. The deviation is bigger when δ  is bigger, 
that is the deviation from the approximate formula is 
greater in the right-hand panel δ = 0 0 0. 2 8( )  than in 
the left δ = 0 00. 625( ) . Interestingly, the deviation is 
greater when the period of the LD cycles is T = 28 h  
(red lines) than when T = 02  h  (blue lines), and this 
holds regardless of whether the delay region is bigger 
than the advance region ( R  negative) or vice versa 
( R  positive).

The deviations of the simulated results from the 
approximate solution can be explained qualitatively. 
There are two distinct effects on the observed period 
as   increases. First, as ε  increases, the velocity of the 
clock is increasingly phase-dependent and, in gen-
eral, the exact phase response given in equation (10) 
tends to be smaller than the first-order approxima-
tion in equation (12). This effect acts to lengthen the 
simulated period in FD as compared with the approx-
imate period in equation (14).

Second, as ε  increases, the change in phase from 
the start of one LD cycle to the next is increasingly 
non-uniform, so-called relative coordination. The 
effect of relative coordination on the simulated period 
depends on the period T  of the LD cycles. In the left-
hand panel of Figure 3 and also in equation (S13) in 
the Supplementary Material we see that when 
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Figure 4.  Effect of zeitgeber strength, VRC asymmetry, and duration of light period on the observed circadian period in FD predic-
tions using a phase-only model. Upper panels show the period in FD predicted by equation (14) (dashed lines) for a protocol in which 
the lights are on for two-thirds of the time f = 2 3/(( )) . For comparison, simulations of a 12 LD-cycle FD protocol for T = 28 h  (red) 
and T = 02  h (blue) are shown. Results are shown for 3 values of the asymmetry parameter R  and this for both ττ = 24 15 h.  (a) and 
ττ = 24 45 h.  (b). For the simulations, the angular VRC R R c( ) = ( ) =1φ φ φ++ sin  was used, where c R= , with φ0 = 0 . The lower panels show 
the effect on observed period of the fraction of time that lights are on for c R= = 0  (c) and c R= = 0.49  (d). The light stimulus parameter 
εε = 0 0. 38  in both cases. (e) and (f) then show the predicted population distribution of periods measured in FD for a symmetric and an 
asymmetric VRC, respectively. Abbreviation: VRC = velocity response curve; FD = forced desynchrony; LD = light-dark.

T = 28 h , the phase of the clock advances after each 
LD cycle, and the advance is smallest when P k( )φ  is 
minimal. As a result, the clock becomes “trapped” at 
phases where the PRC is minimal, and relative 

coordination acts to lengthen the simulated period. 
Meanwhile, in the right-hand panel of Figure 3, and 
in equation (S14), we see that when T = 02  h , the 
phase of the clock retreats after each LD cycle, and the 
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retreat is smallest when P k( )φ  is maximal and relative 
coordination acts to shorten the simulated period.

When the period of the LD cycles in FD is T = 02  h, 
the effect of increasing ε  on the phase-dependent 
velocity of the clock is balanced to some extent by the 
effect of relative coordination. Therefore, equation 
(14) is a better approximation of τFD  in T = 02  h  LD 
cycles compared to T = 28 h  LD cycles, especially as 
ε  increases. Note that all effects are small, so for 
example, with f = 2 3/ , ε = 0 0. 38 , and c = 0.49, the 
analytical expression gives τFD 24 15 h= . , the simula-
tions with T = 02  h  give τFD 24 14 h= . , and the simu-
lations with T = 28 h  give τFD 24 18 h= . . It is 
interesting to note that in Duffy et al. (2011), where 
results of estimates for T = 02  h  and T = 28 h  are 
given, the mean period observed for T = 28 h  was 
longer by 0.04 h than that observed for T = 02  h . 
Since the difference is so small, it was not found to be 
statistically significant.

Parameter Estimation

Having shown that our analytical formula accu-
rately describes how asymmetry in the VRC and dim 
LD cycles affects the estimate of intrinsic circadian 
period in FD in a phase-only model of the circadian 
pacemaker, the expected next question is whether it is 
possible to estimate the model parameters from avail-
able data. The simple clock model with the sinusoidal 
VRC contains a total of 4 parameters, namely the 
intrinsic period τ π ω= 2 / , the magnitude L  of the 
stimulus produced by dim light, the parameter b  that 
describes the horizontal shift of the VRC, and the 
asymmetry parameter c  (equivalent to R ) of the 
VRC. Below, using data from Wright et al. (2001) we 
estimate the parameters L  and b , although unfortu-
nately we find that it is not possible to estimate c .

In Wright et  al., 4 participants were shown to 
entrain to dim LD cycles with period T = 024  h. . In 
each participant, their period in a 28-h FD protocol 
was also measured. Data for entrained phase were 
obtained by applying a graph reading application to 
Figure 1b in Wright’s paper and cross-checked by 
comparing with results reported in Figure 2 of Wright 
et  al. (2001) and Figure 2 of Wright et  al. (2005). 
Wright’s data are reproduced in Figure 5a. Circadian 
phase was measured using DLMO in all cases.

The map in equation (8) applies both in FD and 
during entrainment to LD cycles. Moreover, during 
entrainment, the clock completes exactly one cycle in 
each LD cycle, that is

ω φ πT P+ ( ) = 2 ,0
	 (16)

where φ0  is the phase of the clock at the start of the 
LD cycle. Equation (16) can also be written as

P T( ) = 2 ,0φ π −  	 (17)

where T T = ω , which is known as Pittendrigh’s 
equation.

In dim LD cycles and making the assumption that 
the VRC is sinusoidal, equation (12) gives:

P fcT
f T
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2 2
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


 +sin sin 	 (18)

Since P O( ) = ( )0φ ε , Pittendrigh’s equation gives 
T O = 2 ( )π ε+ . Then, substituting for P( )0φ  in equa-
tion (17) using equation (18) gives

2 2 ( ) ( ) ( ) = 2 .0
2πε ε π φ π ε πcf f b f O T+ − + + −sin sin    (19)

In deriving an explicit expression for the phase of 
entrainment ψ , we use the arcsine  function. 
Therefore, it is convenient to write equation (19) as

2 2 ( ) ( ) 2 ,0πε ε π φ π π πcf f b f T− − + − ≈ −sin sin  	 (20)

where the argument of the sine function involving φ0  
is in the range ( /2, /2)−π π .

The phase of entrainment, ψ , reported in Wright 
et al. (2001) and shown in Figure 5, is the timing of 
DLMO relative to the onset of the dark interval of the 
LD cycles, whereas in equation (20) phase φ0  is mea-
sured from the start of the light interval. Hence φ0  
and ψ  are related by

φ φ ψ π π0 [ 2 (1 )] 2 ,≈ − + −M f  mod 	 (21)

where φ πM = 17 /12  is the phase of the clock at 
DLMO, and 2 (1 )π − f  is the approximate phase 
advance between the onset of the dark interval and 
the onset of the photoperiod.

Substituting equation (21) into equation (20) and 
rearranging gives an explicit expression for the (sta-
ble) phase of entrainment

ψ
τ ε

ε π π
φ π≈

− −







 − + − +−1 1 /

( )/
(1 ).sin

sin
T cf

f
b fM 	 (22)

Since P O( ) = ( )0φ ε , equation (17) gives T O/ = 1 ( )τ ε+ ,  
and T O/ = 1 ( )τ εFD + . Then, substituting for τ  using 
equation (14) gives T T cf O/ = / ( )2τ τ ε εFD − + . Thus, 
equation (22) gives an expression for ψ  in terms of 
τFD
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ψ
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ε π π
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and to the lowest order approximation, the parame-
ter c  has been eliminated. Next, if we assume ψ  is 
near the middle of the range of entrainment, we can 
use the small angle approximation to obtain the 
derivative

d
d

T
f

ψ
τ

π
ε π τFD FD

≈
sin( )

.2
	 (24)

Using measurements of ψ , τFD , and d dψ τ/ FD , equa-
tions (23) and (24) can be solved for ε  and b . At the 
midpoint of the range of Wright’s data, τFD = 24.0 h, 
and the linear regression line gives

ψ = 0.16 ,− rad

d
d
ψ
τFD

rad h= 3.95 .1−

The linear regression line has been superimposed on 
the data in Figure 5a. Using these data and equations 
(23) and (24), we obtain ε =  0.038 and b = − 0.63. Since 
ε ω= /L , for ε =  0.038 and τ ∼∼ 24 h, the fitting sug-
gests that dim light of intensity 1.5 lux produces a 
stimulus L ∼∼ 0.010 h−1  in our model. Note that the 
data provide no information on the value of the 
parameter c . The prediction of the phase of entrain-
ment using the simple clock model and the fitted 
parameters is shown in Figure 5b. Since the linear 
regression line is based on only 4 data points, the 95% 

confidence interval for the slope of line is large. 
Hence, the 95% confidence interval for the parameter 
L  based on these data is (0.005 h−1 , 0.085 h−1 ). 
Meanwhile, the 95% confidence interval for b  is ( −
0.61, −0.66).

In another part of Wright’s study, 5 participants 
were exposed to dim LD cycles with period T = 24 6 h.  
and the period in FD was also measured in these par-
ticipants. None of the participants entrained to the 
T = 24 6 h.  LD cycles but their periods were signifi-
cantly longer than their periods in FD. It is possible to 
estimate the parameters ε  and b  in the simple clock 
model by simulating this part of Wright’s study. This 
produces similar estimates to those we have obtained 
using the entrainment data, ε = 0 0. 34  and b = 0− .84.

Possible Explanation for the Difference Between 
the Period in FD and the Period in DD

Equation (14) relates the period in FD to the intrin-
sic period. Equation (14) contains the parameter ε , 
which represents the strength of the zeitgeber in dim 
LD cycles, and the parameter R , which is the mean 
value of the VRC. The use of FD to assess the intrinsic 
period of sighted people is based on the assumption 
that εR  is negligible. In other words, it is assumed 
that either the VRC to light has equal advance and 
delay regions R = 0( )  or the zeitgeber in FD is too 
weak to affect the observed period ε ≈( )0 .

However, if εR  is non-negligible and positive, then 
this can explain the shorter period in FD compared to 

Figure 5.  Phase of entrainment to 1.5 lux LD cycles with period T = 24 0. h  and photoperiod duration M = 16 h  as a function of the 
period in FD. The phase of entrainment is the timing of DLMO relative to the onset of the dark interval. (a) Data from Wright et al. (2001) 
and linear regression line fitted to the data. (b) Predictions of the simple clock model with L = 0 0 0 1. 1  h−− , b = 0.63 , and c = 0  (results are 
independent of c). Abbreviations: DLMO = dim light melatonin onset; FD = forced desynchrony; LD = light-dark.
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the period in DD. For example, using Wright’s study 
of sighted humans in dim LD cycles, we determined 
that the stimulus produced by dim light of intensity 
1.5 lux is ε = 0 0. 38. In the FD study reported in Wright 
et al. (2001), light during waking periods was 1.5 lux 
and in most other FD protocols it is typically between 
5 and 20 lux (Duffy et al., 2011). Together, these sug-
gest that ε  is at least 0.038 during FD protocols.

We expect that light of intensity approximately 
15 lux, as frequently used in FD protocols, produces a 
stimulus of greater magnitude, but without further 
data we cannot describe how ε  depends on light 
intensity, although it is likely to be nonlinear. In 
Kronauer-type models of the circadian pacemaker, 
the light intensity appears raised to the power p  in 
the function that describes the action of light on the 
pacemaker, where p  is typically taken in the range 
0.33-0.6 (e.g. see Forger et al., 1999; Jewett et al., 1999; 
St Hilaire et al., 2007).

Discussion

The intrinsic period of the central circadian pace-
maker is an important parameter that determines the 
ability of the pacemaker to entrain, and the phase of 
entrainment, to LD cycles. FD carried out in dim light 
conditions is considered the gold standard method 
for measuring circadian period in humans (Dijk and 
Duffy, 2020; Wang et al., 2023).

We have used a phase-only parametric model to 
describe the effect of dim LD cycles on the assessment 
of period in FD. The key result is that the model-pre-
dicted period measured in FD, τFD , is related to the 
intrinsic period τ  by the equation

τ τ εFD ≈ −(1 ),f R 	 (25)

where ε  measures the effect of light, f  is the fraction 
of time in each LD cycle for which light is on and R  
measures the asymmetry of the VRC. The approxima-
tion holds when the effect of light is small, as sup-
ported by the simulations shown in Figure 4.

Equation (25) suggests that FD gives a very accu-
rate assessment of intrinsic circadian period pro-
vided the VRC to dim light has equal sized advance 
and delay regions R = 0( )  and/or that the stimulus 
from dim LD cycles produces a negligible change to 
the velocity of the clock ( ε  small). Using data from 
entrainment experiments, we have estimated ε  and 
shown that a positive value of R , that is, a VRC with 
a larger advance than delay region, could explain 
why the mean period of sighted people in FD is 
shorter than the mean period of free-running blind 
people.

Our formal estimation of the error between intrin-
sic circadian period and period as measured in FD 
also confirms that the design of the protocol means 
that confounds due to dim light are small. Indeed, we 
emphasize that this confound is much smaller than 
that found for sighted individuals in classical free run 
(see Figure 1), and we therefore still expect FD to give 
a much more accurate estimate of intrinsic circadian 
period than classical free run.

Period Evaluation and Aftereffects

Several explanations have been offered for differ-
ences between the observed circadian period in blind 
and sighted individuals assessed in FD protocols (e.g. 
see Czeisler et  al., 1999; Lockley et  al., 2007; Lewy, 
2007). The current dominant view is that observed 
differences are due to the presence of aftereffects, that 
is, that the period measured in FD in sighted people 
is a consequence of their prior entrainment to 24 h. In 
this scenario, after a sufficiently long time in DD, the 
period of sighted people would converge to the 
period observed in the blind. Such long-term tran-
sients have been observed in nocturnal rodents 
(Pittendrigh and Daan, 1976a).

The simple clock model cannot model afteref-
fects—it responds instantaneously to changes in the 
light environment, so the mechanism suggested here 
is fundamentally different. To capture aftereffects, 
amplitude-phase models (such as the van der Pol 
oscillator/Kronauer-type models) are required. 
Indeed, an amplitude-phase model that captures the 
dependence of measured circadian period on prior 
light exposure for a diurnal rodent (Bano-Otalora 
et al., 2021) has been constructed (see Usmani, 2022, 
Chapter 6).

To capture aftereffects, using an amplitude-
phase model requires the parameter m to be small 
(e.g. in Usmani, 2022, to fit to the diurnal rodent 
data, µ =  20 0.  was taken). However, for humans, 
the requirement that one 6.7 h pulse of approxi-
mately 9500 lux light causes Type-1 phase resetting 
(Khalsa et  al., 2003), but pulses on 3 successive 
days of 6.7 h of approximately 9500 lux light cause 
Type-0 phase resetting (Khalsa et  al., 1997), puts 
bounds on possible values. Typical values used are 
in the 0.1-0.25 range (see Supplementary Table S2). 
A consequence of such large m values is that 
Kronauer-type models of the human circadian 
response to light show rapid recovery from pertur-
bations and cannot capture aftereffects of the mag-
nitude required to explain the 0.35-h difference in 
intrinsic period between sighted and blind individ-
uals. At this point, it is not entirely clear how to 
reconcile both the Type-1 and Type-0 PRC data and 
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an aftereffect interpretation of the period differ-
ences between sighted and blind individuals.

Period Evaluation and Physiological Changes 
Caused by Blindness

The only study we have found of sighted people in 
DD (Wever, 1979, n = 5) reported an average intrinsic 
period consistent with that in the blind. Nevertheless, 
given the small size of the study, a further explana-
tion is that there are physiological changes in the 
blind that result in a fundamental change to the circa-
dian system. For example, Yamazaki et  al. (2002) 
show that in hamsters intrinsic circadian period is 
shorter and more variable following enucleation. 
Yamazaki et al. suggest a possible explanation is that 
coupling of retinal clocks with the suprachiasmatic 
nucleus is an important determinant of the intrinsic 
period. Hull (2009) also highlights a role for retinal 
clocks. If there are physiological differences to the cir-
cadian system that occur as a result of the lack of light 
perception, then it may be unrealistic to expect the 
same mathematical model to describe both blind and 
sighted people.

Period Evaluation and Data Selection

A further argument that has been used for the 
observation of a longer mean intrinsic period in the 
blind versus sighted people has been that data from 
studies in the blind have been biased toward those 
that do not entrain. The accepted value from FD for 
sighted people is 24.15 h with a standard deviation of 
0.20 h (Duffy et al., 2011). In Hull (2009), it was argued 
that deviations of less than 0.10 h from 24 h could not 
be detected. If data are normally distributed, then 
11% have an intrinsic period less than 23.90 h and 
60% have an intrinsic period greater than 24.10 h. The 
mean of the 60% with a period greater than 24.10 h is 
24.28 h. To find a mean value of 24.50 h requires selec-
tion of the 11% of people with an intrinsic period 
greater than 24.40 h. For context, in Flynn-Evans 
et al.’s (2014) study, 41 people with no light percep-
tion were studied. Of these, 16 (39%) did not entrain 
and had a mean period of 24.50 h, including 1 partici-
pant with an intrinsic period less than 24 h. Together, 
these results suggest that bias in data collection can-
not explain the magnitude of the difference between 
sighted and blind individuals.

Period Evaluation and Stimulus

We estimated that light of intensity 1.5 lux pro-
duces a stimulus ε  of 0.038 based on entrainment 

data from Wright et al. (2001). This is at least an order 
of magnitude greater than the value predicted for 
light of intensity 1.5 lux in the light transduction 
model of Kronauer (Jewett et al., 1999). Indeed, to fit 
Wright’s data, St Hilaire et  al. (2007) introduced a 
rest-activity zeitgeber where the rest-activity zeitge-
ber produced a stimulus of approximately 50 times 
the magnitude of the light stimulus for light of inten-
sity 1.5 lux. We note that nothing in the derivation of 
equation (25) explicitly relates to light exposure. Any 
zeitgeber which can be described in the general form 
given in equations (1)-(3) will contribute corrections 
to the intrinsic period of the form εf R , where ε is the 
stimulus strength, f  is the fraction of the FD period 
for which lights are on, and R  is the mean value of 
the relevant VRC. This includes the rest-activity zeit-
geber introduced in St Hilaire et al. (2007). The lowest 
order correction terms to τFD will be additive. For 
example, for 2 zeitgebers, equation (25) becomes

τ τ ε εFD ≈ − −( )1 ,1 1 2 2f R f R

where εi  and Ri  are the stimulus strength and mean 
value of zeitgeber i , respectively. However, if rest-
activity is the principle zeitgeber of relevance in dim 
light conditions then one would expect it to have a 
similar effect in both blind and sighted people.

Implications and Limitations

Mathematical models, combined with longitudi-
nal light data collected from people in their natural 
every day environment, have been suggested as a 
non-invasive low-cost method to estimate circadian 
phase (Woelders et al., 2017). For day-to-day living, 
the estimates from models are comparable with 
DLMO. However, models have so far proved less 
accurate for irregular LD schedules as occur during 
shiftwork (Stone et  al., 2019) and when the natural 
day length is short (Cheng et al., 2021). Current math-
ematical models are largely variants of those devel-
oped by Kronauer (e.g. Jewett and Kronauer, 1998).

One reason for reduced accuracy in shiftworkers 
may be that models do not currently adequately cap-
ture the response to light levels below 50 lux (e.g. see 
Figure 9 in St Hilaire et  al., 2007) typical of night-
working (Price et al., 2022). Inaccuracy in the model-
ing of the response to dim light could also explain the 
reduced accuracy for short natural photoperiods 
when observed light levels are typically lower 
(Shochat et  al., 2019). One approach to the further 
development of models is to return to data collected 
in highly constrained laboratory environments and 
re-consider whether models adequately capture 
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previous and newly available data, including data on 
spectral sensitivity of the human circadian pacemaker 
(e.g. St Hilaire et  al., 2022). For example, Usmani 
(2022) highlights that current models cannot capture 
circadian phase alignment in both dim and bright 
light laboratory studies.

Here, we have focused on period assessment in 
dim light FD protocols. In dim light, the original 
Kronauer-type models (e.g. Jewett and Kronauer, 
1998) describe a velocity response that is symmetric 
( )R = 0 . Later versions include additional “stimulus 
modulation” terms which have the effect of introduc-
ing a small amount of asymmetry in the VRC, but 
substantially less than we propose. Our suggestion 
that fundamental biological results may be explained 
by an asymmetric VRC has implications for the 
design of more accurate mathematical models.

A limitation of our hypothesis is that it depends on 
the value of the asymmetry parameter R . The VRC 
cannot be measured directly making estimating 
appropriate values challenging (Taylor et  al., 2010). 
Measured PRC curves to bright light appear approxi-
mately symmetric (Khalsa et  al., 2003) and may be 
generated by approximately symmetric VRCs. 
However, measuring the PRC in dim light is difficult 
and it is not clear from current experiments whether 
the VRC is asymmetric in dim light conditions or not 
(Revell et  al., 2012; St Hilaire et  al., 2012). Since the 
measured phase response in an experimental protocol 
consists of both a drift due to the intrinsic circadian 
period and the phase response to light, whether or not 
PRCs appear symmetric also depends on the assumed 
free-running period. We note that others have argued 
that if there is asymmetry, it is in the opposite direc-
tion to the direction we suggest (Khalsa et al., 2003).

We note that our results are consistent with previ-
ous simulations using Kronauer-type models in the 
relevant limits, that is, dim light, so that a phase-only 
model is reasonable, and close to symmetric VRC as 
occurs in Kronauer-type models. Specifically, the 
simulations of Lok et  al. (2022) indicate that an FD 
protocol with a LD cycle length of 18 h gives a more 
accurate estimate of the intrinsic circadian period 
than a 28-h protocol. Stack et al. (2017) simulated an 
ultradian protocol of 4 h and FD protocols of 5 and 7 h 
and systematically varying light intensity, number of 
days in the protocol, and initial circadian phase. They 
found that more accurate estimates occurred when 
light intensity was low and the number of days and 
length of protocol further facilitated an even distribu-
tion of light across circadian phases. In dim light with 
R  = 0, similar to Lok et al., we predict that a 20-h FD 
protocol gives a more accurate estimate than 28 h. 
Similar to Stack et al., we find that dimmer light gives 
more accurate estimates. Where our approach differs 
from the simulations of Lok et al. (2022) and Stack  

et al. (2017) is that we have derived an approximate 
analytical expression which predicts the effect of 
asymmetry in the VRC on estimates of intrinsic circa-
dian period in dim light FD protocols.

Finally, validated mathematical models describing 
the effects of light on the human circadian pacemaker 
are a prerequisite for understanding the effects of 
light exposure, which in our society is increasingly 
dominated by biologically effective human-made 
light. Novel technologies for monitoring this light 
exposure longitudinally in people going about their 
daily lives, combined with validated mathematical 
models, will enable a better prediction of the circa-
dian health consequences of changes in policies 
related to light exposure and novel light sources.
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