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BACKGROUND AND AIMS: The SARS-CoV-2 pandemic has
overwhelmed the treatment capacity of the health care systems
during the highest viral diffusion rate. Patients reaching the
emergency department had to be either hospitalized (in-
patients) or discharged (outpatients). Still, the decision was
taken based on the individual assessment of the actual clinical
condition, without specific biomarkers to predict future
improvement or deterioration, and discharged patients often
returned to the hospital for aggravation of their condition. Here,
we have developed a new combined approach of omics to
identify factors that could distinguish coronavirus disease 19
(COVID-19) inpatients from outpatients. METHODS: Saliva and
blood samples were collected over the course of two observa-
tional cohort studies. By using machine learning approaches,
we compared salivary metabolome of 50 COVID-19 patients
with that of 270 healthy individuals having previously been
exposed or not to SARS-CoV-2. We then correlated the salivary
metabolites that allowed separating COVID-19 inpatients from
outpatients with serum biomarkers and salivary microbiota
taxa differentially represented in the two groups of patients.
RESULTS: We identified nine salivary metabolites that allowed
assessing the need of hospitalization. When combined with
serum biomarkers, just two salivary metabolites (myo-inositol
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and 2-pyrrolidineacetic acid) and one serum protein, chitinase
3-like-1 (CHI3L1), were sufficient to separate inpatients from
outpatients completely and correlated with modulated micro-
biota taxa. In particular, we found Corynebacterium 1 to be
overrepresented in inpatients, whereas Actinomycetaceae
F0332, Candidatus Saccharimonas, and Haemophilus were all
underrepresented in the hospitalized population. CONCLU-
SION: This is a proof of concept that a combined omic analysis
can be used to stratify patients independently from COVID-19.
Keywords: Metabolome; Microbiota; CHI3L1; COVID-19
Introduction

The SARS-CoV-2 pandemic has drastically impacted
on hospitals’ beds and clinical practice. The choice

of whether keeping a patient under treatment at hospital
or discharge and treat them at home is at the discretion of
the clinicians. It would be important for clinical and
resource optimization purposes to predict who really needs
Abbreviations used in this paper: AUC, area under the curve; CHI3L1,
chitinase 3-like-1; CI, confidence interval; COVID-19, coronavirus dis-
ease 19; DT, decision tree; ELISA, enzyme-linked immunosorbent assay;
ESI, electrospray ionization; FDR, false discovery rate; IgG, immuno-
globulin G; LR, logistic regression; PCA, principal component analysis;
PTX3, pentraxin 3; RFE, recursive feature elimination; SVM, support
vector machine.
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to remain at the hospital or be sent home without risks for
the patient. SARS-CoV-2 transmission occurs primarily from
liquid droplets entering contact with nasal and buccal mu-
cosa (https://apps.who.int/iris/handle/10665/333114).
Hence, these sites are the ones that most likely contribute
to protecting from or facilitate the infection. SARS-CoV-2 en-
ters the host via binding to the angiotensin-converting
enzyme 2,1 after proteolytic processing of the spike pro-
tein.2 Many factors may contribute to infection at mucosal
sites, including the metabolic output of the microbiota and
the saliva.

During SARS-CoV-2 pandemic, we have learned that
machine learning approaches may help stratify the patients
and the use of multiomic approaches has proven useful to
assess vaccine efficacy.3 Differences in the plasma metab-
olome have been shown to predict coronavirus disease 19
(COVID-19) disease with an accuracy >74% and a sensi-
tivity and specificity >75%, but not the clinical outcome.4

Two pathways have been shown to be particularly
discriminative: the tryptophan-nicotinamide pathway which
is linked to inflammatory signals and to microbiota meta-
bolism and the level of cytosine, shown to be pivotal in cell
metabolism in the context of SARS-CoV-2 infection.4 In
another study, the serum lipidomics and metabolomics
allowed to predict COVID-19 patients from healthy in-
dividuals, highlighting the impact that the infection has
overall on individuals’ metabolism.5 In this case, an alter-
ation of ketone bodies and redistribution of lipoprotein size
were observed which are consistent with liver damage.5 In
addition, the perturbation of the metabolism of serum tri-
glycerides and free fatty acids, especially arachidonic acid
(area under the curve [AUC] ¼ 0.99) and oleic acid (AUC ¼
0.98), correlated with the severity of the disease.6 The
serum anthranilic acid belonging to the kynurenine pathway
also had a poor prognostic value in COVID-19 and was
correlated with high interleukin-10 and -18 levels. Another
study also clearly demonstrated that it was possible to
assign 16 of 19 COVID-19 patients on the basis of plasma
metabolome and proteomics.7 They found a strong signa-
ture of innate immune cell dysregulation, including cytokine
and complement system as well as a pronounced metab-
olomic suppression. Similarly, another study identified a
mixture of 10 metabolites capable of distinguishing COVID-
19 patients from the healthy population (AUC ¼ 0.975).
They found that COVID-19 plasma lipidomics resembled
that of monosialodihexosyl ganglioside–enriched exo-
somes.8 However, there have been no studies capable of
distinguishing COVID-19 inpatients from outpatients.

Saliva metabolites can be the consequence of diet, host,
or microbial metabolism. The salivary microbiota has been
found to be altered in COVID-19 patients.9 In particular,
Prevotella salivae and Veillonella infantium were charac-
teristic of the COVID-19 patients, whereas Neisseria per-
flava and Granulicatella elegans were predominant in
controls. However, there are no data on the saliva
metabolome and whether it correlates with the
microbiome.
In this study, we analyzed the saliva metabolome and the
serum of 50 COVID-19 patients (25 inpatients and 25 out-
patients) and compared it with that of 270 healthy
individuals having previously been exposed or not to SARS-
CoV-2. We identified 9 metabolites that partly separated the
populations of inpatients and outpatients. In addition, two
of them (myo-inositol and 2-pyrrolidineacetic acid) when
coupled to serum chitinase 3-like-1 (CHI3L1), an inflam-
matory protein shown to stimulate the expression of SARS-
CoV-2 receptor angiotensin-converting enzyme 2 and to
correlate with the severity of COVID-19,10 allowed us to
distinguish completely the two groups. We then correlated
these 9 metabolites with differentially represented salivary
microbiota taxa and identified the microbiota members
positively or negatively associated with these metabolites.
Results
Metabolomic Profiles of COVID-19 Differently
Exposed Individuals

We analyzed the saliva of 320 subjects, of which 50 were
COVID-19 patients and 270 were either SARS-CoV-2–naïve
healthy subjects (n ¼ 180, immunoglobulin G [IgG] <12) or
SARS-CoV-2–exposed individuals (IgG �12AU/mL, n ¼ 90)
who had been either asymptomatic/paucisymptomatic (n ¼
30) or symptomatic (n ¼ 58) and who recovered from
symptoms. Among the COVID-19 patients, 25 were hospi-
talized (inpatients) and 25 remained at home (outpatients).
We collected their saliva and serum as closely as possible to
SARS-CoV-2 nasal swab positivity. The characteristics of the
COVID-19 patients are described in Tables 1 and 2.

First, we used a data set which comprised a total of 720
compounds of known identity (named biochemicals). After
normalization to sample osmolality, log transformation, and
imputation of missing values, if any, with the minimum
observed value for each compound, Welch’s two-sample t-
test was used to identify biochemicals that differed signifi-
cantly between experimental groups. A summary of the
numbers of biochemicals that achieved statistical signifi-
cance (P � .05), as well as those approaching significance
(.05 < P < .10), is shown in Table A1.

We first carried out a principal component analysis
(PCA) to obtain a high-level view of metabolomic data
sets. With this approach, we reduced the dimensionality
of the data while retaining most of the explained variance
of the data set, allowing us to visually assess similarities
and differences between samples. PCA of the global
metabolite profiling data of saliva samples between all
groups did not reveal clear separation of any specific
group (Figure A1A) even when the COVID-19 patients
were analyzed against the rest of the population
(Figure A1B). This is likely due to that the variance
associated with the first two components being 45.6%.
We can assume that the metabolome of individuals with
IgG positivity, as they had fully recovered from the dis-
ease (none of them was nasal swab positive at the time of

https://apps.who.int/iris/handle/10665/333114


Table 1. Inpatients’ Clinical Data

Symptoms or clinical manifestations at hospitalization (yes ¼ 1 ¼ 0)

WHO ordinal
scale (from

0 to 8)

Inpatients

Days

between

symptom

onset and

sample

collection

Days between

sample

collection and

hospitalization Age Sex Fever

Low-

grade

fever Headache Cough

Sore

throat

Muscle

pain Asthenia

Anosmia/

dysgeusia

Gastrointestinal

symptoms Conjunctivitis Dyspnea

st

in Tachycardia Pneumonia Others

Day

0

Day

1

Day

7

Day

13/

14

3 12 2 56 M 1 0 0 1 0 0 0 0 0 0 1 0 1 0 3 3

23 Around
10

3 75 F 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 3

15 60 1 42 F 0 1 0 1 0 0 0 0 0 0 1 0 0 0 2 3

16 3 1 41 M 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 3

6 Around
10

1 76 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

8 14 1 51 M 1 0 0 1 0 0 0 0 0 0 1 1 0 0 4 4 3

1 18 3 41 M 0 1 0 1 0 0 0 0 0 0 1 0 0 0 3 3 3

4 1 0 72 M 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 4 3

19 33 3 76 M 1 0 0 1 0 0 0 0 0 0 1 0 0 0 3 3 3

5 1 0 44 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3

13 Around
10

0 65 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3

12 3 1 73 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3

18 Around
10

2 69 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3

17 24 13 85 M 1 0 0 1 0 0 0 1 0 0 0 0 0 1 3 3 3 3

21 4 3 89 F 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3

22 Around
10

3 52 M 1 0 0 0 0 0 1 0 0 0 0 0 0 1 3 3 3 4

2 Less than
5

1 86 M 1 0 0 1 0 0 0 0 0 0 1 0 0 0 4 4 4 4

10 2 1 92 F 0 0 0 0 0 0 0 0 1 0 1 0 0 1 4 4 3 3

24 Around
10

1 100 F 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 3 3 3

9 21 14 90 M 1 0 0 0 0 0 0 0 0 0 1 0 0 0 4 4 4 4

20 Less than
5

4 40 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3

14 Less than
5

1 74 F 0 0 0 0 0 0 0 0 0 0 1 0 0 1 4 4 4 3
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saliva testing), returned to a normal status. We then
considered the possibility that the outpatients were
somehow confounding the analysis of the COVID-19
population. Thus, we analyzed the population of COVID-
19 inpatients vs the outpatients and the rest of the
population. Even if analyzed separately, the three pop-
ulations were still not distinguishable on a PCA
(Figure A1C). Then, we analyzed only the groups of
hospitalized vs nonhospitalized patients. As shown in
Figure 1A, the two groups tended to separate, but there
was no clear distinction of the two groups.
Nine Metabolites Distinguish the COVID-19 Pop-
ulation in Inpatients vs Outpatients

As the groups of COVID-19 inpatients and outpatients
did not clearly separate, we considered the possibility that
the amount of analyzed metabolites was diluting the infor-
mation and hindering the separation. We thus used a ma-
chine learning approach to evaluate whether we could
pinpoint some metabolites characterizing the two pop-
ulations. As the hospitalized inpatients had an average age
much higher than that of the other group (68.2 yo, std: 17.9
vs 41.4 yo, std: 9), to exclude age-related metabolite dif-
ferences, we generated a model based on a training set of
80% of hospitalized patients (n ¼ 20) and 5 patients age-
matched randomly sampled from each class of the
nonhospitalized patients to match the same number of
hospitalized patients (n ¼ 20). The other observations were
inserted in the test set. We then performed an iterative
bootstrap version based on the recursive feature elimina-
tion (RFE) algorithm,11 where feature ranking could be
evaluated by the number of times each feature was selected
in a single iteration of the RFE algorithm. The first 9 features
of the ranking were selected for further steps. These fea-
tures clearly distinguished the populations of COVID-19
patients hospitalized (inpatients) from those who
remained at home (outpatients). However, when we deeply
analyzed the discriminating features, we found that 4 of 9
could be artifacts of dietary differences, possibly related to
the hospitalization itself (caffeine-derived metabolites such
as paraxanthine and theobromine) or to comorbidities, such
as diabetes or obesity, such as sweeteners (acesulfame and
erythritol) (Figure A2).

We thus proceeded in excluding possible confounding
metabolites (n ¼ 28) such as sweeteners, xanthine metab-
olites, and drugs (such as metformin) (Table A2) and
reanalyzed the data.

After the exclusion of possible confounding metabolites,
the algorithm was run again and 9 metabolites were iden-
tified as classifiers of the two groups (inpatients vs out-
patients). These metabolites included the following:
2-pyrrolidineacetic acid (73 times), 1,3-diaminopropane (70
times), 3-hydroxypyridine (57 times), cyclo(leu-pro) (43
times), myo-inositol (38 times), N,N-dimethyl-5-
aminovalerate (35 times), 3-(3-hydroxyphenyl)propionate
(34 times), pantothenate (28 times), and mannonate* (25



Table 2. Outpatients’ Clinical Data
Symptoms or clinical manifestations (yes ¼ 1; no ¼ 0)

Outpatients

Days between
symptom onset
and sample
collection Age Sex Fever

Low-grade
fever Headache Cough

Sore
throat

Muscle
pain Asthenia

Anosmia/
dysgeusia

Gastrointestinal
symptoms Conjunctivitis Dyspnea

Chest
pain Tachycardia Pneumonia Others

WHO ordinal
scale

30 3 50 F 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

33 3 25 M 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

35 3 28 F 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

36 25 41 F 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 2

37 2 33 M 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1

43 34 30 F 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1

38 30 34 F 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1

39 50 58 M 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1

40 31 43 F 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1

41 38 53 M 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 2

42 2 44 F 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 2

44 3 41 F 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1

45 19 38 F 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1

46 23 53 M 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

47 3 41 F 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 2

48 23 37 F 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1

26 2 39 F 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

27 1 56 M 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1

49 37 50 F 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

50 3 27 M 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1

28 27 39 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

29 31 41 F 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1

31 2 39 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

32 30 48 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

34 31 47 F 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

WHO ordinal scale: 0: uninfected; 1: no limitation of activities; 2: limitation of activities; 3: hospitalized, no oxygen therapy; 4: oxygen by a nasal mask; 5: noninvasive
ventilation of high-flow oxygen; 6: intubation and mechanical ventilation; 7: ventilation þ additional organ support; 8: death.
WHO, World Health Organization.
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Figure 1. Statistical analysis of saliva metabolites characterizing the COVID-19 inpatients vs outpatients, excluding biased
metabolites. (A) PCA of saliva metabolites. The plot shows PC1 and PC2 values of inpatients (n ¼ 25) and outpatients (n ¼ 25).
(B) Boxplots showing the 9 metabolites detected from the feature selection algorithm in inpatients vs outpatients. Box plots
show the interquartile range (IQR), the vertical lines show the median values, and the whiskers extend from the hinge no further
than 1.5*IQR. (C) The PCA biplot of the best 9 metabolites in COVID-19 inpatients and the rest of the population. The
explainable contribution of each metabolite in determining the direction of variance in the PCA space is represented by a solid
line. (D) The PCA biplot of the best 9 metabolites in COVID-19 inpatients and outpatients. The explainable contribution of each
metabolite in determining the direction of variance in the PCA space is represented by a solid line.
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times) (Figure 1B and Table A3). The PCA considering these
9 metabolites improved the separation of the population of
hospitalized COVID-19 patients from the rest of the popu-
lation (Figure 1C) and from the outpatients but not
completely (Figure 1D and Figure A3), and there were still
some subjects who fell in the wrong group, and clinically,
there was no reason to be considered as inappropriately
being hospitalized or not.
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CHI3L1, 2-Pyrrolidineacetic acid, and Myo-inositol
Separate COVID-19 Inpatients From Outpatients

As we found that the nine metabolites could not
completely separate the COVID-19 inpatients from the
outpatients, we evaluated whether the combination of the
9 metabolites with serum features could help further
separating the two groups. We tested 2 serum features:
CHI3L1 and pentraxin 3 (PTX3), which were chosen as they
are prognostic markers of severe disease,10,12 and we
found them to be statistically significantly higher in the
inpatient population (Figure 2A–B) than in the outpatients.
In addition, a Pearson correlation matrix clearly showed
that the two serum features (PTX3 and CHI3L1) were
correlated and several metabolites were equally correlated
with each other (Figure 2C). We then applied a decision
tree (DT) learning approach to assess if there were fea-
tures that helped in discriminating the two populations and
found that CHI3L1, but not PTX3, could separate the pop-
ulation into hospitalized individuals (CHI3L1 values >69.3
ng/ml) and outpatients (CHI3L1 values �69.3 ng/ml). As
CHI3L1 was shown to correlate with age and thyroid
cancer,13 we assessed whether its serum concentrations
were linked to age, but we can exclude that differences
were simply related to age (Figure A4). However, the
separation based on CHI3L1 was incomplete as 2 patients
per group were not correctly assigned (Figure 2D). Correct
separation of the two groups was achieved only with the
help of the metabolites and, in particular, of two of the 9
metabolites identified previously (2-pyrrolidineacetic acid
and myo-inositol). A value higher than the 0.442 scaled
intensity value (log transformed) of 2-pyrrolidineacetic
acid characterized the hospitalized population, whereas a
value which was lower or equal to the 1.492 scaled in-
tensity value (log transformed) of myo-inositol character-
ized the outpatients.

To evaluate whether this decision analysis was corrob-
orated by a statistical learning framework, we reanalyzed
the different variables with a support vector machine (SVM)
approach. As shown in Figure 2E–F, the data were strongly
supported by the SVM with 11 support vectors.

Hence, the combination of one serum biomarker
(CHI3L1) and two metabolites (2-pyrrolidineacetic acid and
myo-inositol) was sufficient to correctly assign the two
populations with an accuracy of 86.4 (90% confidence in-
terval [CI] 80.0–100.0) and area under the receiver char-
acteristic operating curve of 95.2 (90% CI 91.9–100.0),
evaluated in a 10-fold random permutated cross-validation.
The Salivary Microbiota Differs Between COVID-
19 Inpatients and Outpatients

The 9 metabolites that we identified in the analysis can
have several origins. They may derive from the diet, the
microbiota, and mammalian cell metabolism. We thus first
analyzed whether inpatients and outpatients had different
salivary microbiota composition as measured by 16S rRNA
analysis. We found that the microbiota in the two patient
populations (COVID-19 inpatients vs outpatients) was
greatly different. Both the alpha-diversity (evaluated as
Shannon and Chao index) and beta-diversity (principal co-
ordinates analysis) were statistically significantly different
between inpatients and outpatients (Figure 3A–B). When
analyzed at the genus level, there were clear differences
between the two groups as shown by the volcano plot
(Figure 3C and Figure A5). Forty-eight Operational Taxo-
nomic Units (OTUs) differentially characterized the two
populations, and these, except for 3 genera (Corynebacte-
rium 1, Rickettsiales mitochondria, Lactobacillus), were
mostly downregulated in the hospitalized population as
compared with the outpatients. In Figure 3D and Figure A6,
the differentially represented genera in the two groups are
reported.

In the beginning of the pandemic, almost all the patients
were treated with antibiotics which are known to strongly
affect the microbiota.14,15 Indeed, we found that—except for
5—all the inpatients had been treated with antibiotics for at
least one day. Thus, we evaluated whether there were
specific OTUs which were modified between hospitalized
inpatients and outpatients and that were not affected by
antibiotics. As shown in Figure 4A, the group of 5 patients
not treated with antibiotics still had a microbiota composi-
tion which differed greatly from that of the outpatients (P ¼
.01) and partly also with that of antibiotic-treated patients
(P ¼ .044). Eleven taxa were differentially represented in
hospitalized patients not treated with antibiotics vs out-
patients (Figure 4B). Of these 11 taxa, 4 had a similar
pattern also in the other inpatients treated with antibiotics,
thus indicating that these taxa were modified independently
from antibiotic treatment in all our COVID-19 hospitalized
inpatients. Among these strains, we found Corynebacterium
1 to be overrepresented in the hospitalized population,
whereas Actinomycetaceae F0332, Candidatus Saccha-
rimonas, and Haemophilus were all underrepresented in the
inpatient population (Figure 4C). Candidatus Saccharimonas
is an obligate epibiont of the Actinomyces odontolyticus
strain XH001.16 We found that A odontolyticus strain XH001
was not affected in the two patient populations, confirming
that XH001 does not depend on Candidatus Saccharimonas
for its growth (Figure A7). These results show that the
COVID-19 inpatients and outpatients have a different sali-
vary microbiota composition.
2-Pyrrolidineacetic Acid and Myo-inositol Corre-
late With Specific Microbiota Genera

Finally, we analyzed whether there was a correlation
with the differentially represented taxa of the salivary
microbiota and the 9 metabolites differentiating the two
populations. We thus carried out each pairwise combination
of microbial genus relative abundances and the 9 metabolite
intensities with at least one significant correlation (false
discovery rate [FDR] <0.05) for downstream analysis and
representation. The correlation coefficients of the 9 selected
metabolites vs the microbial abundances were then
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represented by a heatmap with hierarchical clustering. As
shown in Figure 5A, as per metabolite correlations, the
genera could be separated into 3 clusters. Interestingly, the
4 antibiotic-independent genera that we found to be either
downregulated (Haemophilus, Actinomycetaceae F332, Can-
didatus Saccharimonas) or upregulated (Corynebacterium 1)
in COVID-19 inpatients vs outpatients belonged, respec-
tively, to cluster 1 or cluster 3. We then confirmed this
finding in a spearman correlation analysis between the 4
genera and the 9 metabolites or CHI3L1. We found that each
one of the taxa was associated positively or negatively with
the 9 metabolites, but one bacterium in particular (Candi-
datus Saccharimonas) correlated with both myo-inositol and
2-pyrrolidineacetic acid in an opposite way (Figure 5B). It
was inversely correlated with myo-inositol and positively
with 2-pyrrolidineacetic acid. Interestingly Candidatus Sac-
charimonas was also negatively correlated with CHI3L1,
whereas the latter was positively correlated with Coryne-
bacterium 1 (Figure 5C). These results indicate that there is
a correlation between the salivary microbiota and the me-
tabolites that characterize the populations of COVID-19 in-
patients and outpatients.
Conclusion

In this study, we applied a multiomic approach to identify
markers that are able to distinguish the inpatient from the
outpatient COVID-19 population. We focused on the saliva, a
site where the virus is detected for a long time and can be
infected via the oral epithelium,17-19 and analyzed both the
metabolome and microbiota. Changes in the composition of
the gut microbiota20-22 and mycobiota,23 as well as naso-
pharyngeal24,25 and lower airway microbiota,26 have been
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observed in COVID-19 patients, with similar restoration
times in both the nasal and gut microbiota composition.27 In
addition, a change in the microbiota correlated with a change
in fecal metabolome,21 and the microbiota has been shown to
control the host glycosaminoglycan heparan sulfate through
the activity of glycosidases, and this correlated with viral
adhesion and infectivity.28 Hence, both the microbiota and its
metabolome may participate to increase the risk of SARS-
CoV-2 infection and its subsequent clinical outcome. During
the peak of the pandemic, the hospitals were tremendously
under pressure and the decision to whether hospitalize the
patients or not was at the discretion of the clinicians. How-
ever, in many cases, it was very difficult to predict what
would be the outcome for an individual patient. Here, we
evaluated whether there were metabolites characteristic of
either one or the other population. We applied a machine
learning approach to identify those metabolites which better
separated the 2 COVID populations. In our first attempt, we
found that 4 of the 9 metabolites best differentiating the two
populations comprised several diet-related metabolites,
including caffeine-derivedmetabolites (such as paraxanthine
and theobromine) more abundant in outpatients and
sweeteners (acesulfame and erythritol) more abundant in
inpatients. As the hospitalized patients were not exposed to
caffeine and tended to use sweeteners that could have been
associated with their comorbidities (obesity, diabetes), we
decided to repeat the analysis and exclude these and other
diet-related metabolites. In the second round, we identified
another set of metabolites based on how many times they
were selected in a single iteration of the RFE algorithm:
2-pyrrolidineacetic acid, 1,3-diaminopropane,
3-hydroxypyridine, cyclo(leu-pro), myo-inositol, N,N-
dimethyl-5-aminovalerate, 3-(3-hydroxyphenyl)propionate,
pantothenate, and mannonate*. The pathways leading to the
generation of these metabolites are known except for 2-
pyrrolidineacetic acid, 3-hydroxypyridine, and cyclo(leu-
pro) which are xenobiotics. However, the pyrrolidine ring
of 2-pyrrolidineacetic acid can be linked to polyamine and, in
particular, putrescine catabolism (Figure A8). 2-
pyrrolidineacetic and 1,3-diaminopropane (also generated
by polyamine catabolism) were found to be significantly
more abundant in the outpatient population (Table A3) and
to positively correlate with 2 taxa (Haemophilus and Candi-
datus Saccharimonas) all downregulated in the inpatient
population. 1,3-diaminopropane was also negatively corre-
lated with Corynebacterium 1 which was highly represented
in the inpatient population. These results indicate that the
polyamine metabolism may be affected during COVID-19
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progression. Polyamines, and in particular putrescine, have
been shown to facilitate coronavirus replication, attachment,
and entry into cells,29 whereas 1,3-diaminopropane in-
terferes with the replication of the Semiki Forest virus (a
highly replicative RNA virus).30 Thus, the finding that 1,3-
diaminopropane together with other putrescine-derived
metabolites is higher in outpatients and is discriminative of
the inpatient and outpatient populations may suggest that
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these metabolites contrast viral replication or attachment,
presumably via the degradation of putrescine. Their reduc-
tion may render the host more susceptible to viral infection.

Candidatus Saccharimonas, previously called TM7, is
found in low abundance in healthy individuals.31,32 It has an
ultrasmall size (between 200 and 300 nm)16 and is an
obligate epibiont of the A odontolyticus strain XH001.16

Interestingly, TM7 controls the growth of XH001, suggest-
ing a parasitic relationship,33 but it also gives a survival
advantage to XH001 by inhibiting Tumor Necrosis Factor-
Alpha (TNF-a) expression in macrophages, thus affecting its
detection and elimination by phagocytes.16 It is likely that
the absence of TM7 has positive and negative effects on
XH001, and this results in no changes in XH001 abundance,
consistent with our observation. However, as TM7 controls
the production of TNF-a by macrophages, its absence may
favor the production of TNF-a in inpatients, which could
contribute to increased inflammation.

By applying a DT and an SVM approach, we found that 2-
pyrrolidineacetic acid with myo-inositol and serum CHI3L1
could completely distinguish the inpatient from the outpa-
tient population. Interestingly, previously, it was shown that
serum amounts of CHI3L1, age, and other factors were
predictive of more severe COVID-19.10 In our cohort, we
show that CHI3L1 levels were elevated in hospitalized pa-
tients compared with age-matched healthy individuals and
that together with the two abovementioned metabolites
could also distinguish outpatients from inpatients with
nonfatal COVID-19. 2-pyrrolidineacetic acid can be acquired
from plants (in particular Tussilago farfara, tobacco leaves,
and flower heads of several Arnica spp, such as montana,
chamissonis, amplexicaulis, and sachalinensis, and green tea
leaves), whereas the pyrrolidine ring, as mentioned previ-
ously, may also derive from the catabolism of putrescine.
Hence, it is difficult to identify the exact source of 2-
pyrrolidineacetic acid. Its precise activity is also unknown,
and we cannot exclude that deriving from putrescine
catabolism its presence may rather signify the elimination of
a molecule involved in viral entry.

Myo-inositol is produced from glucose in eukaryotic cells
and in someprokaryotic cells,34 but it is not a sugar and canbe
acquired from several foods (particularly from grains). Myo-
inositol can be used as a carbon source by several microor-
ganisms,35 and we found it to be negatively correlated with
Candidatus Saccharimonas. Interestingly, myo-inositol is
administered to preterm babies at risk of respiratory distress
syndrome36 for its capacity to improve lung surfactant
properties.37 Hence, it is not surprising that it is elevated in
inpatients who have a more severe disease, but none of them
succumbed from the COVID-19. In addition, TNF-a signifi-
cantly reduces intracellular myo-inositol accumulation and
its metabolism, resulting in the alteration of endothelial
cellular function.38 It may be possible that the reduction of
Candidatus Saccharimonas may favor TNF-a production in
inpatients, leading to a reduction of intracellularmyo-inositol
and its extracellular accumulation, butmore in-depth analysis
is required to ascertain this possibility.
In summary, our data indicate that the analysis of serum
CHI3L1 and salivary myo-inositol and 2-pyrrolidineacetic acid
can distinguish COVID-19 inpatients from outpatients, thus
allowing avoiding unnecessary hospitalization. It is also clear
that some metabolites correlate with bacteria that are found
to be enriched or lost in hospitalized COVID-19 patients,
suggesting that their representation may be related to bacte-
rial taxa. Our study has some limitations. First, we excluded
some metabolites because they may be related to diet differ-
ences rather than to COVID-19, even though some of these
metabolites may still be important for the clinical outcome.
For instance, erythritol that we found to be more represented
in inpatients has been shown to enhance the virulence of
some pathogens39; by contrast, caffeine metabolic products
(theobromine, paraxanthine) that are all higher in outpatients
have anti-inflammatory effects40 and thus may be beneficial to
prevent the hyperinflammatory response observed in severe
COVID. Second, as COVID-19 patients were commonly treated
with antibiotics, we had only 5 untreated subjects to assess
the antibiotic-independent differences of microbiota compo-
sition between inpatients and outpatients. There could be
other genera that characterize the two populations and that
we were unable to pinpoint. Third, as our study was aimed at
understanding the difference between inpatients and out-
patients and the latter were kept at home, we could not follow
the evolution of markers’ characteristics of late responses
such as interleukin 6 or IgG, and we focused on early markers’
characteristics of the early response (CHI3L1 and PTX3).
Fourth, the number of patients was limited, but we tried to
mitigate this issue by adopting validation computational
techniques and theoretical bounds that are indeed devised to
deal with a limited number of observations, and we remark
how the final decision three-model feature is only a two-layer
deep tree, resulting in a rather low-complexity final classifier.
Moreover, to support results on the separability of classes at
each split, we train an SVM on the corresponding variable to
estimate the “width of the margin” between the two clouds of
points. Although our machine learning approach was designed
to overcome the age-related bias, we cannot completely
exclude that it might still affect our analysis. Nevertheless, we
think that this report opens to new omic and machine
learning approaches to take an informed decision on whether
discharging a patient or not. This report is a proof of concept
to show the power of a combined omic strategy on a biological
fluid, the saliva, which is very easy to obtain, to stratify pa-
tients and to assign them to specific groups useful also for
other pathologies and purposes.
Materials and Methods
Study Design

We analyzed metabolomic samples (saliva) from 320 sub-
jects, of which 50 were COVID-19 patients (25 were treated at
home—outpatients and 25 hospitalized—inpatients) and 270
were either SARS-CoV-2–naïve healthy subjects (IgG <12 AU/
mL, n ¼ 180) or SARS-CoV-2–recovered individuals (IgG �12
AU/mL, n ¼ 90). Among SARS-CoV-2–recovered individuals,
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n ¼ 30 were asymptomatic/paucisymptomatic and n ¼ 58
were symptomatic. Symptoms of 2 individuals were not
recorded. All recovered from symptoms at the time of the
sample collection. SARS-CoV-2–naïve healthy subjects (IgG <12
AU/mL, n ¼ 180) included people with IgG �3.8 (n ¼ 90) and
people with IgG titers between the level of positivity (12 AU/
mL) and the limit of detection of antibodies (3.8 AU/mL) whose
meaning is not clear (3.8 < IgG <12 AU/mL, n ¼ 90), and for
this reason, in our analyses, we preferred to keep this group
separate from the one of subjects with IgG �3.8. We excluded
that this population represented individuals in the initial pha-
ses of an infection as all of them were negative for SARS-CoV-2
nasopharyngeal swab.41 Demographic data of healthy controls
are reported in Table A4. These observational cohort studies
were conducted at Istituto Clinico Humanitas and approved by
the Institutional Review Board of Istituto Clinico Humanitas.
Samples were collected from Humanitas group health care
employees and administrative staff (ClinicalTrials.gov
NCT04451577) (individuals aged �18 years) and from
COVID-19 patients (ClinicalTrials.gov NCT04552340) (patients
who underwent to a swab or bronchoalveolar lavage test for
the presence of SAR-CoV-2 infection, aged �18 years). All
participants signed an informed consent. All the COVID-19
patients’ information is shown in Table 1 and Table 2. Even
though we collected samples over the course of the disease, in
this study, we analyzed data from a single time point as close as
possible to symptom occurrence. In particular, for COVID-19
patients and nonhospitalized employees who were SARS-Cov-
2 positive (outpatients), we collected the saliva and serum as
closely as possible to SARS-CoV-2 nasal swab positivity.

The primary outcome of this study was to evaluate the
metabolomic profile of SARS-CoV-2 patients that required
hospitalization with respect to the rest of the sample popula-
tion. We analyzed also the salivary microbiota and CHI3L1 and
PTX3 levels in the blood of inpatients and outpatients. No po-
wer analysis was performed to calculate the sample size. No
randomization was performed.

IgG Measure
For the determination of IgG anti-SARS-CoV-2, the Liaison

SARS-CoV-2 S1/S2 IgG assay (DiaSorin, Saluggia (VC), Italy)
was used.42 According to the kit manufacturer, the test dis-
criminates among negative (<15 AU/mL; with 3.8 as the limit
of IgG detection) and positive (�15 AU/mL) subjects. However,
we considered positive subjects with IgG plasma levels �12
AU/mL rather than those with IgG �15 AU/mL, as suggested by
the test manufacturer, based on our previous findings showing
that these two groups behaved very similarly.41

Metabolomic Analysis
Global metabolomic profiling was performed by Metabolon

Inc. In brief, each sample received was accessioned into the
Metabolon LIMS system and was assigned by the LIMS a unique
identifier that was associated with the original source identifier
only. Samples were prepared using an automated MicroLab
STAR system (Hamilton Co). Sample preparation was con-
ducted using methanol extractions to remove the protein
fraction while allowing maximum recovery of chemically
diverse metabolites. The resulting extract was divided into five
fractions: two for analysis by two separate reverse phase ultra
performance liquid chromatography–tandem mass spectros-
copy (RP/UPLC-MS/MS) methods with positive ion mode
electrospray ionization (ESI), one for analysis by RP/UPLC-MS/
MS with negative ion mode ESI, one for analysis by hydrophilic
interaction liquid chromatography/UPLC-MS/MS with negative
ion mode ESI, and one sample was reserved for backup. All
methods used Waters ACQUITY ultra performance liquid
chromatography (UPLC) and a Thermo Scientific Q-Exactive
high-resolution/accurate mass spectrometer interfaced with a
heated electrospray ionization source and Orbitrap mass
analyzer operated at 35,000 mass resolution. The sample
extract was dried and then reconstituted in solvents compatible
with each of the four methods. Each reconstitution solvent
contained a series of standards at fixed concentrations to
ensure injection and chromatographic consistency. Raw data
were extracted, peak-identified, and quality control was done
using Metabolon’s hardware and software. Compounds were
identified by comparison with library entries of purified stan-
dards or recurrent unknown entities that contain the retention
time/index (RI), mass-to-charge ratio (m/z), and chromato-
graphic data (including MS/MS spectral data) for all molecules
present in the library. For each metabolite, the raw values in
the experimental samples were divided by the median of those
samples in each instrument batch, giving each batch and thus
the metabolite a median of one. Batch-normalized data, simply
reflecting the median-scaled raw data, were divided by the
value of the normalizer. Then, each metabolite has been
normalized to osmolarity and was rescaled to have median ¼ 1
(divide the new values by the overall median for each metab-
olite). Data were expressed as a scaled intensity value. Welch’s
2-sample t-test is used to test whether 2 unknown means are
different from 2 independent populations.

Sample Collection and PTX3 Measurement
Venous blood samples were collected in BD Vacutainer

Blood Collection Tubes containing ethylenediaminetetraacetic
acid (EDTA), centrifuged, and stored at �80 �C until use. PTX3
plasma levels were measured by a sandwich enzyme-linked
immunosorbent assay (ELISA) developed in-house, as previ-
ously described,12 by personnel blind to patients’ characteris-
tics. For each sample, two dilutions in duplicate were tested.
The assay has a detection limit of 0.1 ng/mL and an interassay
variability from 8% to 10%.

CHI3L1 ELISA
Human CHI3L1 levels were measured using the DuoSet

ELISA kit (DY2599, R&D systems) as per the manufacturer’s
instructions. Blood was always processed in less than 8 hours
after collection and was kept at 4 �C to avoid nonspecific
release of CHI3L1 from neutrophils.

Absorbance was measured at 450 nm using the Clariostar
Plate reader (BMG Labtech).

Analysis of the Microbiota Composition by 16S
rRNA Gene Sequencing

Before extraction, 200 ml of frozen saliva was thawed and
heat-treated at 56 �C for 30 minutes to inactivate the live SARS-
CoV-2 virus. DNA from saliva was extracted with GNOME DNA
isolation kit (MPBio) following a previously published

http://ClinicalTrials.gov
http://ClinicalTrials.gov
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protocol.43 Briefly, a volume of 200 ml of inactivated saliva was
added to 550 ml cell suspension solution. After addition of 50 ml
RNase Mix and 100 ml cell lysis/denaturing solution, samples
were incubated at 55 �C for 30minutes. ProteaseMixwas added,
and samples were incubated for 2 hours at 55 �C followed by a
mechanical disruption step using 0.1-mm zirconia/silica beads.
Lysates were retrieved, and beadswerewashed three timeswith
400 ml of TENP (50 mM Tris at pH 8, 20 mM EDTA at pH 8, 100
mM NaCl, 1% PVPP - polyvinylpolypyrrolidone) buffer. All
retrieved supernatant was precipitated with isopropanol. The
DNA pellet was resuspended with 400 ml water and incubated
with 100 ml of salt out mixture from the GNOME DNA Kit to
remove impurities. Samples were then precipitated and resus-
pended in water.

DNA quantity and integrity were checked through TapeS-
tation (Agilent Technologies), and sample library preparation
for next-generation sequencing was carried out using the
QIAseq 16S/ITS Region Panels kit (QIAGEN), targeting the
V3V4 hypervariable regions of the bacterial 16S rRNA gene and
the fungal internal transcribed spacer region.

Libraries were checked through TapeStation 4200 (Agilent
Technologies) and quantified by using MicroPlate Reader Glo-
Max (Promega); libraries were then pooled at equimolar con-
centrations and sequenced on a MiSeq Illumina sequencer; at
least 100.000 paired end reads with a length of 275 bp were
produced per sample. Quality filtering of sequencing reads was
executed with Trimmomatic v0.3944 using the following
parameter: AVGQUAL:30. Sequences of amplification primers
and reads with more than 3 unknown (N) nucleotides were
removed using cutadapt v1.18.45 High-quality and cleaned se-
quences were analyzed using the Qiime2 platform (v2019.7).46

Sequence denoise was performed separately for each
sequencing batch with the qiime dada2 denoise-paired
command setting the following parameters: –p-trunc-len-f
242 –p-trunc-len-r 242, and amplicon sequence variants were
generated. Diversity measures (alpha- and b-diversity indices)
were calculated using the qiime diversity core-metrics-
phylogenetic function with a sampling depth of 23,800 se-
quences. Alpha diversity was evaluated by Chao1 and Shannon
index and represented by the box-and-whisker plot. Commu-
nity dissimilarities (b-diversity) were evaluated by Bray-Curtis
distance and represented by a principal coordinates analysis
plot. Differences of alpha-diversity indices across experimental
groups were evaluated with the Wilcoxon rank-sum test. The
qiime diversity beta-group-significance function was used to
assess differences in the microbiome composition across the
different experimental groups with permutational multivariate
analysis of variance. Q2-feature-classifier, trained on the
SILVA132 99% OTUs, specifically on the V3V4 region, was used
to perform taxonomic classification. Raw taxonomic counts
classified at the genus level were converted into relative
abundances, and bacteria showing different abundance be-
tween the inpatient and outpatient groups were identified us-
ing the Wilcoxon rank-sum test (FDR <0.05). The magnitude of
the change in abundance was expressed as a generalized fold
change47 which is calculated as the mean difference in a set of
predefined quantiles of the logarithmic inpatient and outpatient
distributions (quantiles ranging from 0.1 to 0.9 in increments of
0.1 were used). Spearman correlation of microbes with me-
tabolites and serum CHI3L1 was evaluated using the corr.test
function in the psych (v2.0.9) R package for each pairwise
combination of microbial genus relative abundances and
metabolite intensities, and the features with at least one sig-
nificant correlation (FDR <0.05) were selected for downstream
analysis and representation. The correlation coefficients of the
9 selected metabolites vs the microbial abundances were rep-
resented by a heatmap with hierarchical clustering generated
using the pheatmap (v 1.0.12) R package. Alternatively, corre-
lation coefficients and FDRs were represented by a bubble plot
created with ggplot2 (v3.3.2) R package.
Machine Learning and Statistical Analysis
To properly extract the underlying metabolomic profile that

characterizes each class of patients, a multivariate statistical
analysis was performed both for feature selection and for
discrimination between inpatients and outpatients.

Feature Selection. The feature selection algorithm
was performed with the aim of extracting the combination of
metabolites which could discriminate hospitalized patients in
respect with the rest of the population.

The model has been evaluated on a training set which
comprises the 80% of hospitalized patients (n ¼ 20) and 5
patients age-matched randomly sampled from 270 SARS-CoV-
2–naïve healthy subjects or SARS-CoV-2–recovered individuals
and 25 COVID-19 outpatients (n ¼ 20). The other observations
were inserted in the test set.

The feature selection of the metabolite was performed by an
iterative bootstrap version of the RFE algorithm, where feature
ranking could be evaluated by the number of times each feature
was selected in a single iteration of the RFE algorithm. The first 9
features of the ranking were selected for further steps.

Multivariate Analysis. The best 9 metabolomic fea-
tures were combined together with the PCA algorithm, and the
first 3 principal components were evaluated. The final super-
vised learning model is based on logistic regression (LR), and it
was trained on the 3 principal components of the training set
and validated on the test set. In addition, the probability of the
prediction on the test set was computed with the LR model.

To prevent a bias due to the arbitrary decision of the
training set, the previous steps were repeated several times
changing the train/test set with the aim to evaluate a CI of
prediction for each subject.

Finally, the best probability threshold for the LR model
prediction of belonging in hospitalized or outpatient class was
computed by maximizing the geometric mean (G-mean) of the
receiver operating characteristic curve:

OptThreshold ¼
n
x
��� maxx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPRðxÞ � ð1� FPRðxÞÞ

p � o

Where x is the probability threshold, TPR is the true positive
rate (sensitivity), and FPR is the false positive rate (specificity).

To increase the predictive power of the 9 metabolites to
distinguish inpatients vs outpatients, a multivariate analysis
based on the DT classifier algorithm was performed by
combining metabolites and CHI3L1 and PTX3 values. DT was
chosen to provide an interpretable approach to our data. As DT
is a nonprobabilistic method, we also computed an SVM on
each split of the DT. The strength of the boundaries was
assessed by the number of support vectors required, as well as
classification metrics (accuracy and area under the receiver
characteristic operating curve) in a 10-fold random permutated
cross-validation.
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To mitigate the issue related to the small size of our data
set, validation computational techniques and theoretical
bounds, which are indeed devised to deal with a limited num-
ber of observations, were adopted. In particular, the final LR
model is trained on the first three components of a PCA analysis
ran on the 9 best metabolites. This allows us to lower the
overall complexity of the final model and address possible
multicollinearity problems between features. Besides, the pro-
vided metrics were obtained by adopting a cross-validation
strategy which allows us to gauge the stability of our model’s
performance on different train-test split of the available data.

Second, the final decision 3-model feature is only a 2-layer
deep tree, resulting in a rather low-complexity final classifier.
Moreover, to support results on the separability of classes at
each split, an SVM on the corresponding variable to estimate
the “width of the margin” between the two clouds of points was
trained. In more depth, as SVMs provide a theoretical bound for
the difference between training and test performance which
depends on the number of the support points, class separation
at each decision split by evaluating the number of such points
was assessed. Given the low number of support vectors
(Figure 2E) with respect to the number of subjects of our
cohort, we are confident on the stability of our results.

All authors had access to the study data and had reviewed
and approved the final manuscript.
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