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Abstract

Our goal was to investigate the neuroprotective effects of galantamine in a mouse model of 

blast-induced indirect traumatic optic neuropathy (bITON). Galantamine is an FDA-approved 

acetylcholinesterase inhibitor used to treat mild-moderate Alzheimer’s disease. We exposed one 

eye of an anesthetized mouse to repeat bursts of over-pressurized air to induce traumatic optic 

neuropathy. Mice were given regular or galantamine-containing water (120 mg/L) ad libitum, 

beginning immediately after blast and continuing for one month. Electroretinograms and visual 

evoked potentials were performed just prior to endpoint collection. Histological and biochemical 

assessments were performed to assess activation of sterile inflammation, axon degeneration, and 

synaptic changes. Galantamine treatment mitigated visual function deficits induced by our bITON 

model via preservation of the b-wave of the electroretinogram and the N1 of the visual evoked 

potential. We also observed a reduction in axon degeneration in the optic nerve as well as 

decreased rod bipolar cell dendritic retraction. Galantamine also showed anti-inflammatory and 

antioxidant effects. Galantamine may be a promising treatment for blast-induced indirect traumatic 

optic neuropathy as well as other optic neuropathies.
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1. Introduction

Eye injuries affect approximately 2.4 million people every year. (Feist and Farber, 1989) 

Between 2000 and 2010, 186,555 eye injuries occurred worldwide in military hospitals. 

(Andreotti et al., 2001) Further, up to 40% of monocular blindness is due to ocular trauma. 

(Aghadoost, 2014) Damage to the optic nerve and retina, resulting in permanent visual 

deficits, occurred in > 60,000 Veterans with blast-induced traumatic brain injury (TBI) 

between the years of 2000–2011. (Weichel et al., 2009) Additionally, up to 5% of patients 

experiencing head trauma will also develop traumatic optic neuropathy (TON). (Steinsapir 

and Goldberg, 2011; Kumaran et al., 2014) Some of the most common ocular blast injuries 

include, but are not limited to, hyphema, retinal detachments, retinal edema, TON, and loss 

of visual field. (WHO, 2018) In cases of direct TON, anatomical disruption of the optic 

nerve occurs from a projectile penetrating the optic nerve or avulsion. Indirect TON (ITON) 

results from force transmission to the optic nerve from a distant site without overt damage 

to the surrounding tissue. (Warner and Eggenberger, 2010; Singman et al., 2016) Patients 

with ITON can experience severe vision loss, and while some experience limited recovery, 

they never return to baseline. (Singman et al., 2016; Burke et al., 2019) Corticosteroids or 

observation alone are the current standards of treatment for patients with ITON. (Volpe and 

Levin, 2011)

Our lab has developed a model of blast-induced ITON (bITON), utilizing a repeat blast 

paradigm in order to simulate repeat injuries most often seen in military populations. 

(Bricker-Anthony et al., 2014; Hines-Beard et al., 2012) This model induces extensive 

axon degeneration in the optic nerve at two weeks after injury, as well as a decrease in the 

amplitude and an increase in the latency of the visual evoked potential (VEP). (Bernardo

Colon et al., 2018) It causes an increase in reactive oxygen species (ROS), and secondary 

activation of the IL-1 pathway, both of which contribute to axon degeneration and vision 

loss. (Bricker-Anthony et al., 2014; Hines-Beard et al., 2012) Finally, we detected rapid loss 

of cells in the ganglion cell layer at two days after injury without further progression out to 

30 days after injury. (Bernardo-Colón et al., 2019)

Altered levels of neurotransmitters, such as acetylcholine and GABA, occur in several 

neurodegenerations. (McKee and Robinson, 2014) For example, in Alzheimer’s Disease, 

decreased levels of acetylcholine correlates with disease progression. (Francis, 2005; 

Giacobini et al., 1989) Notably, we detected caspase-1 immunolabeling in the cholinergic 

amacrine cells after single blast injury. (Bricker-Anthony et al., 2014) One of the treatments 

for mild to moderate Alzheimer’s disease, as well as other myopathies and peripheral 

neuropathies, is the FDA-approved compound, galantamine. (Lilienfeld, 2002; Durães et 

al., 2018) Galantamine has multiple modes of actions: it increases acetylcholine via mild 

inhibition of acetylcholinesterase, it increases GABA release via allosteric modulation of 

the nicotinic acetylcholine receptor (α7nAChR), and it has been shown to protect neurons 

against glutamate-induced neurotoxicity. (Lopes et al., 2013) Previous studies have also 

shown that galantamine can have antioxidant properties; galantamine treatment reduced 

ROS and increased cell viability after exposure to hydrogen peroxide (Ezoulin et al., 

2008; Romero et al., 2010) and protected rat cortical neurons against oxidative stress after 

exposure to synthetic amyloid β (Melo et al., 2009) It also has been shown to decrease 
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inflammation in a stroke model of rats, by preventing an increase IL-1β levels. (Furukawa et 

al., 2014) Additional studies have shown that galantamine can protect retinal ganglion cells 

in a rat model of glaucoma. (Almasieh et al., 2013; Almasieh et al., 2010)

We hypothesized that galantamine would be protective in our model of bITON. Here, 

we show that oral galantamine, given after bITON, mitigates visual function deficits and 

axon degeneration in the optic nerve, and that it does so while modulating acetylcholine, 

glutamate, ROS, and IL-1 levels.

2. Methods

2.1. Mice

Anesthetized C57Bl/6 J mice (Jackson Labs, Bar Harbor, ME) were exposed to two repeat 

bursts (0.5 s apart) of 15 psi air directed at the left eye once a day for three days in a 

row. Sham mice were exposed to everything except the air pressure due to a barrier placed 

between the eye and the barrel of the paintball marker, as previously described. (Hines

Beard et al., 2012; Bernardo-Colon et al., 2018; Bernardo-Colón et al., 2019) Galantamine 

sham and blast mice were given 120 mg/L of galantamine in their water, which was changed 

every 72 h (TCI America, Boston, MA). Control mice were given normal water ad libitum 

for one month, while galantamine-treated mice drank galantamine-containing water for 

one-month post-injury. Average daily water intake for a laboratory mouse is 4 ml, thus we 

estimate that the mice consumed 480 micrograms galantamine per day for 30 days. This 

equates to an average dose of 15.3 mg/kg, based on the average weight of a C57Bl/6 male 

mouse of 31.4 g. While previous studies administered galantamine intraperitoneally at 1–5 

mg/kg, (Shimizu et al., 2015; Kita et al., 2014; Noda et al., 2010) it is important to note that 

because galantamine is delivered orally, the dose is higher. Experimental procedures were 

performed in accordance with the Use of Animals in Vision and Ophthalmic research and an 

approved Vanderbilt University Institutional Animal Care and Use Committee protocol.

2.2. Electroretinograms (ERG) and VEPs

Mice were dark-adapted overnight, dilated with 1% tropicamide for 10 min, and 

anesthetized with 20/8/0.8 mg/kg ketamine/xylaxine/urethane according to previously 

published methodology. (Bernardo-Colon et al., 2018) Mice were placed on the heated 

surface of the ERG system to maintain body temperature. Corneal electrodes with integrated 

stimulators were placed on eyes lubricated with Genteel drops using the Celeris system 

(Diagnosys LLC, Lowell, MA). Subdermal platinum needle electrodes were placed in the 

snout and back of the head at the location of the visual cortex. A ground electrode was 

placed in the back of the mouse. For VEPs, mice were exposed to 50 flashes of 1 Hz, 0.5 

cd.s/m2 white light. To collect ERGs, electrodes were placed on lubricated corneas were 

placed. Mice were then exposed to 15 flashes of 1 Hz, 1 cd.s/m2.

2.3. Western blot

Single retinas were homogenized and sonicated in lysis buffer and centrifuged. Sample 

buffer was added to the supernatant just prior to use. Known amounts of protein (10 to 

20 μg) or protein ladder were loaded into each well of an SDS-polyacrylamide gel. The 
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Bio-Rad mini-trans blot cell system and mini protean pre-cast gels at 4–20% were used 

(Hercules, CA). Loading control was GAPDH (rabbit; 1:1000; ab9485, Abcam, Cambridge, 

MA). The protein was transferred onto nitrocellulose using the Bio-Rad trans blot turbo 

transfer system (Hercules, CA), probed with anti-SOD2 (rabbit; 1:1000; ab13533; Abcam), 

probed with secondary antibody (alkaline phosphatase-conjugated AffiniPure Goat Anti

Rabbit IgG; 1:1000; cat #133466; Jackson ImmunoResearch Laboratories) and alkaline 

phosphatase was used for band detection. Band density was quantified by scanning the blot 

using an EPSON scanner and Adobe Photoshop to convert to grayscale and invert the image. 

Each band was selected with the same frame and set measurements were used to obtain the 

grey mean value for each. (Bernardo-Colon et al., 2018)

2.4. High-performance liquid chromatography (HPLC)

2.4.1. Tissue extraction—The brain sections were homogenized, using a tissue 

disruptor, in 100–750 ul of 0.1 M TCA, which contained 10−2 M sodium acetate, 10−4 

M EDTA, and 10.5% methanol (pH 3.8). Ten microliters of homogenate was used. Then 

samples were spun in a microcentrifuge at 10,000 g for 20 min. The supernatant was 

removed for biogenic monoamines analysis.

2.4.2. Biogenic amine analysis using HPLC-ECD—Biogenic amine concentrations 

were determined in the Vanderbilt University Medical Center Hormone Assay & Analytical 

Core utilizing an Antec Decade II (oxidation: 0.65) electrochemical detector operated at 

33 °C. Twenty microliter samples of the supernatant were injected using a Water 2707 

autosampler onto a Phenomenex Kintex C18 HPLC column (100 × 4.60 mm, 2.6um). 

Biogenic amines were eluted with a mobile phase consisting of 89.5% 0.1 M TCA, 10−2 M 

sodium acetate, 10−4 M EDTA and 10.5% methanol (pH 3.8). Solvent was delivered at 0.6 

ml/min using a Waters 515 HPLC pump. HPLC control and data acquisition were managed 

by Empower software. Isoproterenol (5 ng/mL) was included in the homogenization buffer 

for use as a standard to quantify the biogenic amines.

2.4.3. Biogenic amine analysis using LC/MS—Biogenic amines were determined in 

the Vanderbilt University Medical Center Hormone Assay & Analytical Core by a highly 

sensitive and specific liquid chromatography/mass spectrometry (LC/MS) methodology 

following derivatization of analytes with benzoyl chloride (BZC). Five microlitersμ of either 

tissue extract or microdialysis fluid was added to a 1.5 mL microcentrifuge tube containing 

20 μL acetonitrile. Ten microliters each of 500 mM NaCO3 (aqueous) and 2% BZC in 

acetonitrile was added to each tube. After 2 min, the reaction was stopped by the addition 

of 20 μL internal standard solution (in 20% acetonitrile containing 3% sulfuric acid) and 40 

μL water. The samples were then ready for LC/MS analysis. LC was performed on a 2.0 × 

50 mm, 1.7 μm particle Acquity BEH C18 column (Waters Corporation, Milford, MA, USA) 

using a Waters Acquity UPLC. Mobile phase A was 15% aqueous formic acid and mobile 

phase B was acetonitrile. Samples were separated by a gradient of 98–5% of mobile phase 

A over 11 min at a flow rate of 600 μL/min prior to delivery to a SCIEX 6500+ QTrap mass 

spectrometer.
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2.4.4. Protein assay—Protein concentration was determined by BCA Protein Assay Kit 

(Thermo Scientific). Ten microliters of tissue homogenate was distributed into 96-well plate 

and 200 μl of mixed BCA reagent (25 ml of Protein Reagent A is mixed with 500 μl of 

Protein Reagent B) was added. The plate was incubated at room temperature for two hours 

for the color development. A BSA standard curve was run at the same time. Absorbance 

was measured by the plate reader (POLARstar Omega), purchased from BMG Labtech 

Company.

2.5. Multiplex cytokine ELISA

We performed a mouse multiplex mouse cytokine/chemokine magnetic bead panel for IL-1α 
and IL-1β, loading 25 μl of sample per well. Samples were tested in duplicates and results 

were averaged. We performed the ELISA according to manufacturer directions (cat #: 

MCYTOMAG-70 K, Millipore, Burlington, MA).

2.6. Immunohistochemistry

Eyes (n = 40) were preserved in 4% paraformaldehyde, cryoprotected in 30% sucrose 

overnight at 4 °C and embedded in tissue freezing medium (Triangle Biomedical, Durham, 

NC). Ten-micron thick sections were collected in round on a cryostat (Fisher, Pittsburgh, 

PA). Each slide had representative sections from the entire eye. Slides were rinsed with 

PBS and incubated at room temperature in normal donkey serum (NDS; 0.05%) in 0.1 

M phosphate buffer with 0.5% bovine serum albumin and 0.1% Triton X-100 (phosphate 

buffer plus Triton X-100 [PBT]) for 2 h. The slides were incubated overnight at 4 °C in 

primary antibody (see Table 1 below) in PBT, then rinsed with PBS and incubated with 

their appropriate secondary antibody (donkey anti-rabbit, donkey anti-mouse or donkey 

anti-goat 488 or 594; Life Technologies, Carlsbad, CA) for 2 h at room temperature. Then, 

slides were rinsed in PBS, mounted in Vectashield Mounting medium with DAPI (DAPI; 

Vector Laboratories, Burlingame, CA) or Fluoromount-G (Southern Biotech, Birmingham, 

AL). Slides were imaged on a Nikon Eclipse epifluorescence microscope (Nikon, Melville, 

NY) or an Olympus FV-1000 confocal microscope. All images were collected from the 

same retinal region with identical magnification, gain and exposure settings. Fluorescence 

intensity was quantified via ImageJ. A rectangle was selected around the region of interest, 

channels were split for multiple antibodies, threshold was adjusted, noise was de-speckled 

and fluorescence intensity was measured. Fluorescence intensity was normalized to sham 

mice. Each experimental group included 5 eyes.

2.7. Optic nerves

Optic nerves were post-fixed in glutaraldehyde followed by embedding in Resin 812 

and Araldite 502 (cat # 14900 and 10,900, Electron Microscopy sciences, Hatfield, PA) 

according to previous published protocols. (Hines-Beard et al., 2012; Bernardo-Colon et 

al., 2018; Shimizu et al., 2015; Kita et al., 2014) Leica EM-UC7 microtome was used to 

collect 1 μm-thick sections. Sections were then stained with 1% paraphenylenediamine and 

1% toluidine blue and were imaged on a Nikon Eclipse Ni-E microscope using a 100× 

oil immersion objective (Nikon Instruments Inc., Melville, NY). The optic nerves were 

montaged into a 5 × 5 image using the Nikon Elements software. We used the Counting 
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Array and Better Cell Counter plugins to ImageJ, which creates a grid of nine squares 

overtop the montaged optic nerve. We manually counted healthy and degenerating axons, 

which are color-coded by the plugins. The grid accounts for 20% of the optic nerve cross

sectional area to avoid bias, and we multiplied these numbers by 5 to estimate total and 

degenerating axons within the nerve.

2.8. Acetylcholinesterase activity assay

Activity of AChE in the retina was measured using Acetylcholinesterase Colorimetric Assay 

Kit according to manufacturer’s directions (ab138871, Abcam, Cambridge, MA).

2.9. Experimental design and statistical analysis

Western blot data was normalized to loading controls. Data were analyzed using GraphPad 

Prism (La Jolla, CA). All experimental groups were compared to each other using a one-way 

ANOVA and the Tukey post-hoc test. All groups are shown (mean ± SEM).

3. Results

3.1. Oral galantamine reached bioactive levels in the mouse retina

To determine if galantamine entered the retina and was active, we quantified 

acetylcholinesterase activity (Fig. 1A) and acetylcholine levels (Fig. 1B). Interestingly, 

control bITON retinas had a slight, but statistically significant increase in 

acetylcholinesterase activity in comparison to control shams, 0.48 ± 0.03 U/mg (mean ± 

SEM) and 0.42 ± 0.01 U/mg, respectively (p < .05; Fig. 1A). Acetylcholinesterase activity 

was decreased in both galantamine sham (0.28 ± 0.01 U/mg) and galantamine bITON (0.34 

± 0.08 U/mg) groups, as compared to its control, p < .001 for both galantamine groups (Fig. 

1A). Interestingly, there is also a statistically significant increase in acetylcholinesterase 

activity between galantamine-sham and galantamine-bITON mice, p < .05.

The levels of retinal acetylcholine in mice treated with galantamine was greater than controls 

(Fig. 1B). Acetylcholine levels were 11.0 ± 1.2, 13.0 ± 3.6; 23.8 ± 10.0, and 30.0 ± 17.2 

ng/mg respectively for sham, bITON, galantamine sham, and galantamine-bITON groups 

(Fig. 1B). Total choline levels remained unchanged in all four experimental groups (Fig. 

1C).

Previous studies have elucidated that galantamine can modulate glutamate levels. We 

detected a 2.07-fold increase in glutamate levels in retinas from bITON mice as compared 

to those from control sham mice (p < .0001; Fig. 1D). In contrast, levels of glutamate in 

galantamine-treated mice were similar to control sham levels. To determine if galantamine 

modulated glutamate levels by affecting glutamate production or recycling, we performed 

immunohistochemistry and quantification of fluorescence for a marker of glutamine 

synthetase (GLAST) and a marker for glutamate transporter 1 (EAAT). No differences in the 

total fluorescence of either of these markers in the retina were detected (data not shown).
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3.2. Galantamine treatment mitigates bITON-induced reduction in the ERG

We assessed retinal function by ERG, and observed no difference in the amplitude or latency 

of the a-wave, indicating that our model of bITON does not affect the photoreceptors (Fig. 

2A,B). However, the amplitude of the b-wave (bmax) of the ERG was decreased after bITON 

(Fig. 2A,C). Control shams had a mean bmax of 203.3 ± 7.4 μV, while control bITON had 

a mean bmax of 100.6 ± 11.6 μV, p < .001. Additionally, bITON mice had a longer b-wave 

latency than the control sham mice: 41.3 ± 12.1 ms as compared to 54.6 ± 9.3 ms, p < .0001 

(Fig. 2A, D). The b-wave is generated primarily by the rod bipolar cells, thus these data 

suggest that these cells are affected by bITON. Galantamine treatment after bITON partially 

protected the bmax and the b-wave latency (Fig. 2C, D). The mean bmax in galantamine 

sham and galantamine-treated bITON mice was 190.8 ± 37.7 μV and 158.8 ± 48.0 μV, 

respectively, with p < .05 between the galantamine-treated groups (Fig. 2C). The latencies of 

the b-wave in galantamine sham and bITON mice were 40.5 ± 8.2 ms and 45.2 ± 10.2 ms, 

respectively, with no statistically significant difference between them (Fig. 2D). Importantly, 

there was a statistically significant difference between the control bITON group and the 

galantamine-treated bITON groups for both b wave amplitude and latency (p < .0001 and p 
< .00001, respectively).

3.3. Galantamine treated mice retain synaptic overlap in the OPL after bITON

We performed immunohistochemical analysis to explore the morphological basis for the 

ERG b-wave changes. We co-labeled retina cross-sections with anti-PKCα, a marker for 

rod bipolar cells, and anti-synaptophysin, a marker for the photoreceptor ribbon synapse. In 

control sham mice, the rod bipolar cells extend dendrites up to the photoreceptor terminals 

(Fig. 2E). In contrast, in control bITON mice, the rod bipolar cell dendrites were retracted 

toward their cell bodies (Fig. 2E). The rod bipolar cell dendrites of both sham and bITON 

mice treated with galantamine looked similar to normal sham mouse retinas (Fig. 2E). In 

an effort to quantify changes in dendritic overlap with the photoreceptor synaptic terminals, 

we quantified the extent of double-labeling of the two antibodies. Importantly, galantamine

treated bITON mice had a mean overlap that was comparable to the two sham groups: 

the mean overlap was 54 ± 2% for galantamine-bITON, sham mice, mean overlap for 

control-sham was 62 ± 3%, and mean overlap for galantamine-sham mice was 59 ± 3%. 

There was no statistically significant difference between any of the groups (Fig. 2F). In 

contrast, after bITON, mean overlap of anti-PKCα and anti-synaptophysin decreased to 41 ± 

5% (p < .05, in comparison to either sham group or galanamine-bITON group).

In order to check the other major synapse at the outer plexiform, we also co-immunolabeled 

with anti-synaptophysin and anti-calbindin-D, a marker for horizontal cells (Fig. 2G). There 

was a marked decrease in calbindin-D immunolabeling after bITON, which prevented 

visualization of changes in horizontal cell morphology. bITON mice that were treated 

with galantamine had preserved calbindin labeling. As expected, we quantified a significant 

difference in overlap in calbindin-D and synaptophysin between sham and bITON mice: 

sham mean overlap was 59 ± 2% and bITON mean overlap was 42 ± 4%, p < .05 (Fig. 2H). 

Galantamine preserved the horizontal cell and ribbon synapse double labeling: galantamine 

sham mean overlap was 59 ± 2%, and galantamine bITON mean overlap was 53 ± 5% (Fig. 

2H). There was no statistical difference between the either of the galantamine groups.
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3.4. Galantamine treatment mitigated axon degeneration after bITON

Representative micrographs of optic nerve cross-sections from control sham, control bITON, 

and galantamine-treated bITON mice are shown. Control sham and galantamine-treated 

bITON nerves exhibit more axons than the control bITON nerve (Fig. 3A–C). Similar to our 

previous studies, bITON mice had an average of 23,609 ± 1303 axons in the optic nerve 

with p < .0001 in comparison to control shams (52,464 ± 4075 axons).(Hines-Beard et al., 

2012; Bernardo-Colon et al., 2018) Galantamine-treated shams had 52,014 ± 2673 axons, 

and galantamine-treated bITON mice had 48,693 ± 1160 axons (Fig. 3D), both of which 

were comparable to the control sham mice.

3.5. Galantamine treatment mitigated bITON-induced changes in the VEP

In order to assess transmission of the visual signal to the visual cortex, we performed flash 

VEPs (Fig. 3E). Similar to our previously reported findings, the control sham mice had an 

average VEP N1 amplitude of 42.56 ± 6.78 μV while control bITON mice had an average 

amplitude of 21.85 ± 11.86 μV, a nearly 2-fold reduction in amplitude (p < .0001; Fig. 3F). 

(Bernardo-Colon et al., 2018) The control bITON mice also had a longer VEP N1 latency 

than the control sham mice: 49.34 ± 11.19 ms for bITON as compared to 36.17 ± 7.30 ms (p 

< .0001; Fig. 3G). Regarding the right-shifted latencies of the bITON group, these are due to 

a deficit in axon conductance, possibly due to changes in energetics or in myelination of the 

optic nerve.

Galantamine treatment after bITON resulted in partial retention of both the amplitudes 

and the latencies of the VEP N1 (p < .001 for amplitudes and p < .0001 for latencies as 

compared to control bITON mice) (Fig. 3E–G). Galantamine sham and galantamine-treated 

bITON mice had mean VEP N1 amplitudes of 41.98 ± 7.64 μV and 34.47 ± 8.19 μV, 

respectively, with no statistically significant difference between them (Fig. 3F). Galantamine 

sham and bITON mean N1 latencies were 40.38 ± 5.50 ms and 45.75 ± 2.11 ms respectively, 

with no statistically significant difference between them (Fig. 3G).

3.6. Galantamine mitigated bITON-induced oxidative stress and inflammation

We performed nitrotyrosine immunolabeling and quantified levels of immunofluorescence in 

order to assess the effect of galantamine on oxidative stress in the retina after bITON (Fig. 

4A–F). Nitrotyrosine immunolabeling was nearly absent in control sham retinas (Fig. 4A). 

In the control bITON mice, nitrotyrosine immunolabeling was present specifically in the 

retinal ganglion cell layer (Fig. 4B). The immunolabeling was significantly reduced in the 

galantamine-treated bITON retinas (Fig. 4B, D). To determine which cell type labeled for 

nitrotyrosine, we co-labeled bITON retinas with the neuronal marker, anti-NeuN. We found 

that the anti-nitrotyrosine labeling overlapped with the anti-NeuN labeling in the ganglion 

cell layer (Fig. 4E). We quantified fluorescence in the retinal ganglion cell layer of all 

groups (Fig. 4F). Control bITON mice contained 174 ± 2% more fluorescence than control 

sham mice, p < .0001, and 151 ± 5% more fluorescence than galantamine-bITON mice, 

p < .0001 (Fig. 4F). There was no statistically significant difference in fluorescence levels 

between galantamine sham mice and galantamine-treated bITON mice (Fig. 4F).
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Mitochondrial superoxide dismutase (SOD2) converts the superoxide that is formed as a 

metabolic by-product of oxidative phosphorylation into oxygen and thus is a critical enzyme 

in regulating intracellular ROS levels. Similar to our previously studies, we detected a 59 

± 4% decrease in SOD2 levels at one month after control bITON as compared to control 

shams (Fig. 4G). (Bernardo-Colon et al., 2018) In contrast, SOD2 levels in galantamine

treated sham and bITON mice were comparable to control shams. We detected a statistically 

significant difference (p < .001) between either galantamine-treated group and the control 

bITON group (Fig. 4G).

We detected an increase in the pro-inflammatory cytokines, IL-1α and IL-1β in the control 

bITON retinas, in agreement with our previous findings (Fig. 4H). (Bernardo-Colon et 

al., 2018) bITON retinas had IL-1α mean levels of 17.77 ± 6.41 pg/ml in comparison 

to shams with mean levels of 2.26 ± 0.98 pg/ml, p < .00001. Average galantamine sham 

levels for IL-1α were 6.30 pg/ml ± 3.37 and mean galantamine bITON levels were 5.43 

pg/ml ± 2.26. There was no statistically significant difference between control sham retinas, 

galantamine-treated sham retinas, and galantamine-treated bITON retinas. Similarly, bITON 

resulted in an elevation of IL-1β levels to 9.18 ± 2.4 pg/ml, compared to 4.1 ± 1.9 pg/ml 

detected in control sham retinas (p < .001) (Fig. 4I). In contrast, galantamine-treated sham 

retinas and galantamine-treated bITON retinas contained similar levels of IL-1β: 2.7 ± 1.7 

pg/ml and 2.8 ± 1.4 pg/ml, respectively and were not significantly different from control 

sham retinas.

4. Discussion

In this study, we initiated treatment of galantamine after the last of a 3-day series of blast 

exposures. We previously demonstrated that our bITON model induces axon degeneration 

after only three blasts, which suggests that injury responses started prior to the last 

day of the blasts and the start of galantamine treatment. (Bernardo-Colón et al., 2019) 

We show that oral galantamine given ad libitum reached the retina, where it increased 

acetylcholine levels and decreased acetylcholinesterase activity. This treatment paradigm 

mitigated bITON-induced visual function deficits, axon degeneration in the optic nerve and 

rod bipolar cell dendritic retraction. Further, it moderated oxidative stress, inflammation, and 

glutamate levels.

After bITON, rod bipolar cells were present, but their dendrites were retracted toward their 

cell bodies (Fig. 2E). This correlates with the decrease in the b-wave amplitude (Fig. 2A, C) 

and increase in the b-wave latency detected after bITON (Fig. 2A, D). Co-immunolabeling 

of nitrotyrosine and NeuN in the ganglion cell layer demonstrates that the cells primarily 

affected by bITON-induced oxidative stress are retinal ganglion cells and possibly displaced 

amacrine cells (Fig. 4E). This is consistent with our previously study showing loss of cells 

in the ganglion cell layer. (Bernardo-Colón et al., 2019) We have performed TUNEL and do 

not detect active cell death in the retina at the post-bITON time-points we have examined 

(data not shown). In contrast, based on the ERG, OCT thickness (data not shown), and 

immunolabeling results, bITON does not cause significant loss of bipolar or amacrine cells. 

We do not detect a difference in overall retinal thickness or in the thickness of any particular 

layer of the retina by OCT (data not shown). In addition, the a-wave and the oscillatory 
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potentials of the ERG are unaltered in our bITON model suggesting that the photoreceptors 

and AII amacrine cells are unaffected (data not shown). Thus, while we cannot discount 

some loss of other retinal neurons, it is likely minimal. In contrast, the right-shifted latencies 

of the VEP of the bITON group (Fig. 3G) suggest a deficit in axon conductance, possibly 

due to changes in axon energetics or myelination in the optic nerve, which again points to 

dysfunction of the RGCs and matches the optic nerve histological findings reported here and 

elsewhere.(Bernardo-Colon et al., 2018; Bernardo-Colón et al., 2019)

In most cases, galantamine treatment resulted in partial protection of the retina. Treating 

earlier after injury may be more effective. There also may be injury pathways activated by 

bITON that are unaffected by galantamine. Further studies are needed to determine how 

long after injury galantamine treatment can be initiated and still be effective. Additionally, 

the decreases in oxidative stress and inflammation in galantamine-treated retinas may be 

an indirect result of galantamine action that prevents secondary axon degeneration and cell 

injury as opposed to a direct action on these pathways.

Detection of elevated glutamate in post-bITON retinas is consistent with reports in other 

models of TBI or blast injury. In a rat TBI study, there was a nine-fold increase in 

extracellular glutamate levels in the brain as compared to control animals. (Guerriero et 

al., 2015) In a model of rat blast injury, glutamate was significantly increased in the 

retina. (Mammadova et al., 2017) Additionally, many preclinical and clinical studies have 

demonstrated altered glutamate production, clearance, and buffering after TBI that results in 

an excess of glutamate. (Guerriero et al., 2015; Tehse and Taghibiglou, 2019) It possible that 

glutamate may play a large role in determining the state of the post-injury CNS. Glutamate 

is the most abundant excitatory neuro-transmitter within the CNS and excess glutamate can 

lead to a massive increase in neuronal activity, increased intracellular calcium, and even 

cell death, i.e. excitotoxicity. Retinal astrocytes and Müller glia play an important role in 

glutamate buffering and clearance. Knockout of the glial protein, EAAT1, in mice exposed 

to TBI exhibit excitotoxic levels of glutamate in comparison to controls. (Dorsett et al., 

2017) Additionally, TBI in rats results in excess glutamate followed by a down-regulation 

in expression of GLAST and EAAT1 in glial cells. (Rao et al., 2002) However, in this 

study, we did not find a difference in the immunohistochemical labeling of GLAST or 

EAAT1 between any of our groups, despite the observed increases in retinal glutamate 

following bITON. Galantamine has been shown to act as a modulator of glutamate-induced 

excitotoxicity by preventing increases in cell death following exposure to NMDA. (Lopes 

et al., 2013) It is feasible that galantamine acted upstream to the mechanism that caused an 

increase in glutamate. This should be explored in future studies.

The positive effect of galantamine on oxidative stress and inflammation in our bITON 

model are in agreement with other reports showing that galantamine has antioxidant and 

anti-inflammatory effects on cells both in culture and in vivo. (Romero et al., 2010; Melo 

et al., 2009) Galantamine treatment reduced IL-1β levels in the brain of a hypoxia-ischemic 

rat model, and protected cortical neurons following injury. (Rao et al., 2002) Additionally, 

galantamine decreased oxidative stress and apoptosis in cortical neurons exposed to 

amyloid-beta peptides and in neuroblastoma cells that were treated with hydrogen peroxide. 

(Ezoulin et al., 2008; Melo et al., 2009)
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Galantamine has been utilized in a variety of neurodegenerative disease models other 

than Alzheimer’s, and has demonstrated protection. Galantamine treatment, via modulation 

of the muscarinic acetylcholine receptors in the retina, has shown to be protective in 

multiple models of glaucoma by promoting retinal ganglion cell survival. (Almasieh et 

al., 2010; Di Polo et al., 2006) Additionally, through its inhibition of acetylcholinesterase, 

galantamine treatment was protective in another model of glaucoma via increasing blood 

flow. (Almasieh et al., 2013) Outside the retina, efferent vagus nerve activity, via the 

cholinergic anti-inflammatory pathway, is responsible for regulation of cytokine production 

via α7nAChR-dependent signaling. (Borovikova et al., 2000) Galantamine is a positive 

allosteric modulator of α7nAChRs, so it is feasible that the protection we detected was due 

to activation of this anti-inflammatory pathway. (Lopes et al., 2013; Texidó et al., 2005; 

Faghih et al., 2007) Overall, our results are comparable with previous studies showing that 

galantamine has antioxidant and anti-inflammatory effects and is neuroprotective.

In conclusion, galantamine treatment given after three days of blasts partially protected 

against visual function deficits, oxidative stress, inflammation and axon degeneration in a 

model of bITON. Future studies are needed to elucidate galantamine’s therapeutic window 

for partial protection following bITON. Additionally, future studies should determine the 

exact mechanism by which galantamine exerts antioxidant and anti-inflammatory effects 

in our model of bITON. Since it is already FDA-approved, it has good pharmacokinetics 

and is safe to use, galantamine should be further studied as a potential treatment for optic 

neuropathies.
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Fig. 1. 
Oral galantamine inhibited retinal acetylcholinesterase activity, increased acetylcholine, 

and decreased glutamate. A) Acetylcholinesterase activity assay. B) Acetylcholine levels 

quantified with HPLC. C) Choline levels quantified with HPLC. D) Glutamate levels 

quantified with HPLC. N = 5 retinas for all groups. *p < .05, **p < .001, ****p < .00001.
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Fig. 2. 
Galantamine mitigated bITON-induced the ERG b-wave deficits and rod bipolar cell 

dendritic retraction. A) Representative ERG waveforms. B) Graphed a-wave amplitudes. 

C) Graphed b-wave amplitudes. D) Graphed b-wave latencies. E) Representative fluorescent 

micrographs of anti-PKC-α (red) and anti-synaptophysin (blue) co-labeling in the outer 

plexiform layer (OPL) of retina sections. F) Quantification of co-localization of anti-PKC-α 
and anti-synaptophysin markers using ImageJ. G) Representative fluorescent micrographs 

of anti-calbindin-D (red) and anti-synaptophysin (blue) co-labeling in the OPL. H) 

Quantification of co-localization of anti-calbindin-D and anti-synaptophysin markers using 

ImageJ. For all ERG data shown, N = 31 for control sham, 28 for control bITON, and 15 

for both galantamine sham and galantamine bITON groups. For all immunohistochemistry 
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shown, N = 5 retinas per group and 2 sections per retina. *p < .05, **p < .001, ****p < 

.00001. Scale bar indicates 100um.
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Fig. 3. 
Galantamine mitigated the VEP deficits and axon degeneration. A-C) Representative 

brightfield micrograph of optic nerves. Scale bar represents 20 μm and applies to all 

micrographs. D) Quantification of total axon counts. N = 5 for all groups. *p < .05. ****p 
< .00001 E) Representative VEP waveforms. F) Graphed VEP N1 amplitudes. For all VEP 

data, N = 15 for control sham, 14 for control bITON, galantamine sham and galantamine 

bITON groups. G) Graphed VEP N1 latencies.
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Fig. 4. 
Galantamine has antioxidant and anti-inflammatory effects. A-D) Representative fluorescent 

micrographs of anti-nitrotyrosine labeling. Scale bar represents 50 μm and applies to all 

images. E) Representative fluorescent micrographs of anti-nitrotyrosine labeling (green), 

anti-NeuN labeling (red), and DAPI (blue). Co-localization of these markers indicated with 

white arrows. F) Quantification of anti-nitrotyrosine fluorescence in the ganglion cell layer 

using ImageJ and compared as a percent of control sham mouse. G) Representative western 

blot of SOD2. H) Quantification of retinal SOD2 levels. N = 5 retinas per group for all 

biochemical analyses. I) Quantification of retinal IL-1α levels. J) Quantification of retinal 

IL-1β levels. N = 5 retinas per group and 2 sections per retina. *p < .05, **p < .001, ***p < 

.0001, ****p < .00001. Scale bar indicates 100um.
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