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Motif discovery problem is crucial for understanding the structure and function of gene expression. Over the past decades,
many attempts using consensus and probability training model for motif finding are successful. However, the most existing motif
discovery algorithms are still time-consuming or easily trapped in a local optimum. To overcome these shortcomings, in this paper,
we propose an entropy-based position projection algorithm, called EPP, which designs a projection process to divide the dataset
and explores the best local optimal solution.The experimental results on real DNA sequences, Tompa data, andChIP-seq data show
that EPP is advantageous in dealing with the motif discovery problem and outperforms current widely used algorithms.

1. Introduction

Motif discovery problem is an issue of discovering short sim-
ilar nucleotide segments with a common biological function,
which is crucial for understanding the structure and function
of gene expression. Quickly and accurately locating motif is a
challenging problem in computational biology.

A challenge of motif discovery problem is described as
follows [1]: find a motif of length 𝑙 in 𝑡 gene sequences.
Each sequence is 𝑛 nucleotides long and contains one motif
instance with up to dmutations to the true motif.

Over the past decades, numerous algorithms have been
proposed to identify motifs in several to dozens of promoter
sequences from coregulated or homologous genes [2]. These
algorithms can be divided into two categories: One is exact
algorithms, which use consensus sequences to represent
motifs [3]. Recent exact algorithms mainly concentrate on
pattern-driven algorithms [4–8]. They scan all sequence
patterns of length 𝑙 with an initial search space of O(4l)
and report all possible solves. These pattern-driven based
algorithms are able to deal with larger amount of sequences
like ChIP-seq data [2, 9]. However, they are exponential-time
algorithms that need a great deal of time to search for the
larger l and inefficient for handling dozens of sequences.

The other category is approximate algorithms, which use
the position weight matrixes (PWMs) to represent motifs

[10]. The approximate algorithms commonly establish prob-
ability training model and score a statistical measure to
identify biological signals from background. A particularly
successful class of approximate algorithms is developed based
on Gibbs sampling [11] and MEME [12]. MEME finds motifs
by optimizing the PWMs using the Expectation Maximiza-
tion (EM), which still defines three types of motif discovery
sequence model: OOPS, ZOOPS, and TCM, corresponding
to one occurrence per sequence, zero or one occurrence
per sequence, and zero or more occurrences per sequence,
respectively. The probability training algorithms have been
widely used due to its simplicity and stability. The primary
advantage of approximate algorithms is the speedy runtime
andminimal memory consumption. Random Projection [13]
is a projection-based approximate algorithm which projects
all substrings of length 𝑙 into the buckets by hashing and then
derives the consensus sequences to select some valid buckets.
VINE [14] is a graph-based motif discovery algorithm which
finds motif by clustering cliques in a 𝑡-graph. APMotif [15]
applies Affinity Propagation to cluster and then employs an
effective EM refinement to search for optimal motifs. How-
ever, the performances of these algorithms strongly depend
on the starting positions, which cause the convergence easy
to fall into local optimum, and the training iteration executes
much slower when the width of motif increases in the larger
data.
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Figure 1: The process of calculating the PFM. (a) The input sequences. (b) The aligned substrings. (c) The count matrix. (d) The position
frequency matrix.

In order to overcome these shortcomings, in this paper,
we propose an entropy-based position projection algorithm
for motif discovery, named EPP. We design a projection
method to divide the dataset into candidate subsets by
utilizing the relative entropy in each position of motif. Then,
EPP filters the candidate subsets and refines the subsets by
searching all the possible instances. We consider intramotif
dependency in statistics model and calculate the average log-
likelihood ratio to combine the short motif. Our algorithm
can apply to OOPS, ZOOPS, and TCM sequence model
through the threshold setting. Experimental results on real
DNAsequences, Tompadata, andChIP-seq data demonstrate
that EPP is advantageous to deal with the motif discovery
problem and outperforms current widely used approximate
algorithms.

2. Materials and Methods

2.1. Notations. Given an input set of sequences S = {𝑆𝑖 |𝑖 = 1, 2, 3, . . . , 𝑡} over the alphabet Σ, the length of sequence𝑆𝑖 is 𝑛𝑖, the length of the motif to be discovered is 𝑙, and
the number of mutations allowed is 𝑑. The substring, 𝑥𝑖𝑗 =(𝑠𝑖𝑗, 𝑠𝑖,𝑗+1, . . . , 𝑠𝑖,𝑗+𝑙−1), starting at position 𝑗 of the 𝑖th sequence
is defined as an 𝑙-mer. For sequence 𝑠𝑖, there are 𝑛𝑖−𝑙+1
substrings of length 𝑙. Let set X be the set of all the substrings
of S. 𝑞 is the projection position. Here, |Σ| = 4 for DNA
datasets and |Σ| = 20 for the protein sets.

2.2. Motif Representation. Generally, a motif can be drawn
from a multinomial distribution [16], 𝐹 = (𝑓1𝑘, . . . , 𝑓𝑤𝑘,. . . , 𝑓𝑙𝑘) (𝑘 ∈ Σ), where 𝑓𝑤𝑘 represents the probability of
nucleotide 𝑘 preference at the 𝑤th position of the motif and𝑓0𝑘 represents the background probability of nucleotide 𝑘.
The position frequency matrix (PFM) F can be obtained by
calculating the frequency of each nucleotide 𝑘 (𝑘 ∈ Σ) at each
aligned site:

𝑓𝑤𝑘 = 𝑁𝑤𝑘 + 𝜀∑𝑘∈Σ𝑁𝑤𝑘 + 4𝜀 , (1)

where𝑁𝑤𝑘 is the count of an observed nucleotide 𝑘 at position𝑤 and 𝜀 indicates the pseudocounts to deal with the zero
frequencies. Figure 1 describes how to calculate the PFM
through the input sequences.

Information content (IC) is a measure to rank the motif
conservation [17]. Motifs with higher IC represent they have
more specific binding preferences. Suppose we have a motif

built from thePFMof the selected substrings; the information
content of the 𝑤th position of the motif is defined as

𝐼𝑤 = ∑
𝑘∈Σ

𝑓𝑤𝑘 log(𝑓𝑤𝑘𝑓0𝑘 ) . (2)

Due to the independence of the positions of the motif, the
information content of motif is

𝐼 = 𝑙∑
𝑤=1

𝐼𝑤. (3)

The IC can be used to rank motifs with the same length
l. However, some researches indicate that the commonly
multinomial distribution model may be too simplistic in
identifying the binding motifs, while some positions of TF
binding motif exert an interdependent effect on binding
affinities of TFs [18, 19]. To provide a better result of motifs
identification, a more sophisticated model that involves
the intramotif dependency should be considered. Intramo-
tif dependency considers that the frequency of nucleotide
combinations spanning several positions deviates from the
expected frequency under the independentmotif distribution
[20]. For example, if the frequency of two nucleotides, “GT,”
in a pair of positions ismuchhigher or lower than the product
of frequency of “G” in the first position and the frequency of
“T” in the second position, we infer that these two positions
are dependent. Therefore, the log-likelihood of nucleotides 𝑠𝑖
and 𝑠𝑖+1 is

𝑝 (𝑠𝑖, 𝑠𝑖+1) = log
Φ𝑖,𝑖+1 (𝑠𝑖, 𝑠𝑖+1)Φ0 (𝑠𝑖, 𝑠𝑖+1) , (4)

where Φ𝑖,𝑖+1 represents the probability of the nucleotide pair
at 𝑖th and (𝑖 + 1)th position of the motif and Φ0 represents
the background probability of the nucleotide pair. Then, the
conditional probability of the substring 𝑥 is

𝑝 (𝑥 | 𝐹)
= log

∑𝑙𝑤=1∑𝑘∈Σ 𝑓𝑤𝑘 ⋅ ∑𝑙−1𝑤=1∑𝑘1,𝑘2∈ΣΦ𝑤,𝑤+1 (𝑘1, 𝑘2)𝑝0 (𝑥) , (5)

where 𝑝0(𝑥𝑖𝑗) is the joint probability under the corre-
sponding background distribution 𝑓0. In this paper, we use
the third-order Markov model to characterize the back-
ground sequence and improve the sensitivity and speci-
ficity of identifying motifs. The probability of the substring
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𝑥 (𝑠𝑖𝑗, 𝑠𝑖,𝑗+1, . . . , 𝑠𝑖,𝑗+𝑙−1) in the background under a third-
order Markov model is

𝑝0 (𝑥) = 𝑝 (𝑠𝑖) 𝑝 (𝑠𝑖+1 | 𝑠𝑖) 𝑝 (𝑠𝑖+2 | 𝑠𝑖,𝑠𝑖+1)
⋅ ⋅ ⋅ 𝑝 (𝑠𝑖+𝑙−1 | 𝑠𝑖+𝑙−2, 𝑠𝑖+𝑙−3, 𝑠𝑖+𝑙−4) . (6)

So the information content can be represented as

𝐼 = avg∑𝑝(𝑥 | 𝐹) log(𝑝 (𝑥 | 𝐹)𝑝0 (𝑥) ) . (7)

Based on the substring statistical significance represen-
tation, we present a novel entropy-based position projection
algorithm (EPP). EPP aims to solve the motif identification
problem and make a good trade-off between accuracy and
efficiency, which is detailedly described as follows.

EPP Algorithm

Step 1 (the cluster projection process). Since the random ini-
tial state contains toomuch noise information, how to choose
a good initial state to make refinement quickly converge to
a local optimal solution becomes essential. Obviously, the(𝑛𝑖 − 𝑙 + 1)𝑡 ways of selecting the l-mers from all substrings to
constitute the initial state are too large. Here, we designed a
cluster projection method to initialize the parameters:(1) Draw all the substrings from dataset S to form a new
set X, X = {𝑥𝑛 | 𝑛 = ∑(𝑛𝑖 − 𝑙 + 1)}, where 𝑥𝑛 represents an𝑙-mer.(2) Calculate the relative entropy of each position in the
set X:

𝐻𝑤 = ∑
𝑘∈Σ

𝑓𝑤𝑘 log(𝑓𝑤𝑘𝑓0𝑘 ) , (𝑤 = 1, . . . , 𝑙) . (8)

(3) Select the position 𝑞 of the maximum relative entropy
as the projection position, 𝑞 = argmax𝑤=1,...,𝑙{𝐻𝑤}. The
collection set X is divided into four subsets through the
projection process: the first subset 𝑋1 contains all the 𝑙-mers
of appearing base “A” in position 𝑞. Similarly, the subsets𝑋2, 𝑋3, and𝑋4 contain all the 𝑙-mers of appearing bases “C,”
“G,” and “T” in position 𝑞, respectively.(4)We set two thresholds max size and min size to check
the size of the subsets {𝑋1, 𝑋2, 𝑋3, 𝑋4}. For example, if |𝑋1| <
min size, we abandon 𝑋1. That is, 𝑋1 is too small to contain
enough motif instances, which means a transcription factor
cannot be combined with sufficient sequences; if |𝑋1| >
max size, the subset has much unnecessary background
noise, the algorithm should be back to (2), and we find a
new projection position to further divide 𝑋1; if min size ≤|𝑋1| ≤max size, we consider 𝑋1 is qualified and store it into
a candidate set {𝑐𝑚}.The setting of max size andmin size will
be described in next section.

Figure 2 shows an example of the cluster projection
process. Figure 2(a) describes the set X derived from S; we
choose the fifth position for projection. Figure 2(b) shows the
four subsets divided from X; the fifth positon of each subset
is the observing letters “A,” “C,” “G,” and “T,” respectively.

Then, we calculated relative entropy and chose the second,
the third, and the fourth position of each subset to project.
After several projection processes (Figure 2(c)), we obtain a
candidate set {𝑐𝑚} as shown in Figure 2(d).

In the worst case, the maximum number of candidate
subsets is 𝑛/min size 𝑛 is the number of all substrings (𝑙-
mer). However, in practice, the number of candidate subsets
will be much less than this number, such that when the
number of substrings is 105, the number of candidate subsets
is ultimately only a few hundred.

Step 2 (filter the candidate set). The candidate set {𝑐𝑚} is
constituted by a series of cluster subsets which form by the
similar substrings of the same letters at several positons.
However, the candidate set still contains the useless subsets
made up by the background. It will cost a lot to refine these
background subsets and it is necessary to filter them.

Because the projection process calculates the relative
entropy to choose the position, it can measure the statistical
significance but cannot reflect the complexity of substrings.
In order to evaluate the complexity of each subset, we employ
the common single-string score [21] as another measure.

𝐽 (𝑚) = (14)
𝑙∏
𝑘∈Σ

( 𝑙
∑𝑙𝑤=1 𝑓𝑤𝑘)

∑𝑙𝑤=1 𝑓𝑤𝑘 . (9)

So we filter each subset of {𝑐𝑚} by computing the complexity
function (9) and the content information (7) as follows:(1) Calculate the complexity score of each subset in {𝑐𝑚},
denoted by 𝐽(𝑚):

𝐽 (𝑚) = 1|𝑚| ∑𝐽 (𝑚) , (10)

where |𝑚| represents the cardinality of {𝑐𝑚} and 𝜑𝐽 represents
the radius of complexity.

𝜑𝐽 = max (󵄨󵄨󵄨󵄨󵄨max (𝐽 (𝑚) − 𝐽 (𝑚))󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨min (𝐽 (𝑚) − 𝐽 (𝑚))󵄨󵄨󵄨󵄨󵄨) .
(11)

(2)Calculate the content information of each class in {𝑐𝑚 },
denoted by 𝐼(𝑚):

𝐼 (𝑚) = 1|𝑚| ∑𝐼 (𝑚) . (12)

Similarly, let 𝜑IC be the radius of IC:

𝜑IC = max (󵄨󵄨󵄨󵄨󵄨max (𝐼 (𝑚) − 𝐼 (𝑚))󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨min (𝐼 (𝑚) − 𝐼 (𝑚))󵄨󵄨󵄨󵄨󵄨) .
(13)

(3) For each candidate subset in {𝑐𝑚}, if it satisfies󵄨󵄨󵄨󵄨󵄨𝐽 (𝑚) − 𝐽 (𝑚)󵄨󵄨󵄨󵄨󵄨 > 𝜑𝐽&& 󵄨󵄨󵄨󵄨󵄨𝐼 (𝑚) − 𝐼 (𝑚)󵄨󵄨󵄨󵄨󵄨 > 𝜑IC, (14)

this subset is considered qualified and saved into G = {𝐺V}.



4 BioMed Research International

...GATAGGGCTTTCTGAGCTCTCCTCCCCCT...

...ATAGTTATTGCCATCCTTTAGCATTGGTT...

GGCGTGT
GCGTGTT
CGTGTTT
GTGTTTC

AGTCTAT
GTCTATT
TCTATTT

GCATTGG
CATTGGT
ATTGGTT

TAGGAAA
TTTTAGG
AGTGATT
ACCCAGA

TAGCATT

GTTTCCC
ATTTCCT
TAGTCTA
AGGGCTT

CCATCCT

TTTAGGA
AAAAGTG
AAGTGAT
CCCAGAA

TATTGCC

GGCGTGT
AAAGTGA
CTAATTT
GTTATTG

AGCATTG

...A...G... ...C...G... ...G...G... ...T...G... ...A...T... ...C...T... ...G...T... ...T...T......A...C... ...C...C... ...G...C... ...T...C......A...A... ...C...A... ...G...A... ...T...A...

(a)

(b)

(c)

(d)

...

......

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

· · · · · ·· · ·

q1 = 5

q21 = 2 q22 = 2 q23 = 3 q24 = 4

{cm}

...GGCGTGTTTCCCTTTTAGGAAAAGTGATT...
...CTAATTTACCCAGAAAGGAAATTTCCTT...
...AGTTAGTCTATTTTTTCATTTATATAGTA...

𝐒

𝐗

𝐒 → 𝐗

Figure 2: The process of cluster projection.

Step 3 (refine the qualified subsets). Assume each qualified
subset 𝐺V corresponds to a motif; the substrings of the
qualified subset should be the motif instances. In fact, we
found that the qualified subset contains several fake motif
instances generated by the background sequences, while
some instances may be missed by the projection and filter
processes and are not in the qualified subsets. Therefore, in
this step, we remove the fake instances and add the missing
ones to refine each qualified subset.

As the previous study [22], we know the instances 𝑀1
and𝑀2 of the same motif should be satisfied 𝐷𝐻(𝑀1,𝑀2) ≤2𝑑, where 𝐷𝐻(⋅) is the function of measuring the hamming
distance between two substrings. For each qualified subset
in 𝐺V, if the substring of the qualified subset satisfies the
hamming distance less than or equal to 2d from the others, we
keep it in the subset; otherwise, we remove it from the subset.
For each fixed 𝑙, the value of 𝑑 is usually set as 𝑑 < 𝑙 = 2.
In this way, the real motif instances must be in one qualified
subset.

Then, we search all the possible instances from X and
add them into 𝐺V. The possible instances should satisfy the
following two conditions. First, the instance 𝑥 satisfies

𝐷𝐻(𝑥, 1󵄨󵄨󵄨󵄨𝐺V
󵄨󵄨󵄨󵄨 ∑𝑔∈𝐺V𝑔) ≤ 2𝑑, (15)

where |𝐺V| is the cardinality of 𝐺V and 𝑔 represents one
instance in 𝐺V. Second, adding the instance 𝑥 increases the
information content (7) of 𝐺V. These limiting conditions
greatly reduce the search space, and we can obtain the
refinements for each qualified subset after removing and
adding the substrings. In addition, if the qualified subset is
too small (less than min size), it indeed does not make sense
to contain the real motif instances. We will not refine the
small qualified subset and drop it.

Step 4 (predict the longer motif). See each qualified subset
as a seed, its PWM can be computed by the steps above,
while the corresponding motif with high information content
can also be calculated. However, the qualified subsets may
represent the similar motifs with a few letters varying as
previous studies [23, 24]. In order to eliminate redundant
motif information and expand the short motif to form
longer motif, we combine the similar motifs having the
long common-overlap segments by utilizing a metric of
computing the average log-likelihood ratio (ALLR) [25]:

ALLR (𝑥1 [𝑤1] , 𝑥2 [𝑤2])
= ∑𝑘𝑁𝑤2𝑘 ln (𝑓𝑤1𝑘/𝑓0𝑘) + ∑𝑘𝑁𝑤1𝑘 ln (𝑓𝑤2𝑘/𝑓0𝑘)∑𝑘𝑁𝑤1𝑘 + 𝑁𝑤2𝑘 , (16)
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Input: the dataset S, motif length 𝑙.
Output: the motifs set 𝐶
(1) X ← all the substrings length 𝑙 from S
(2) {𝑐𝑚} ← 0 // the candidate set
(3) {𝐺V} ← 0 // the qualified set
(4) 𝑞𝑢𝑒𝑢𝑒 ← X
(5) WHILE queue is not empty DO
(6) 𝑐 ← DEQUENE(queue)
(7) IF |𝑐| <min size
(8) abandon c
(9) IF min size ≤ |𝑐| ≤max size
(10) {𝑐𝑚} ← 𝑐
(11) IF |𝑐| >max size
(12) select position 𝑞 in 𝑐
(13) {𝑐(𝑥𝑎𝑞=A𝑖 ), 𝑐(𝑥𝑎𝑞=C𝑖 ), 𝑐(𝑥𝑎𝑞=G𝑖 ), 𝑐(𝑥𝑎𝑞=T𝑖 )} ← 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐)
(14) ENQUENE{𝑐(𝑥𝑎𝑞=A𝑖 ), 𝑐(𝑥𝑎𝑞=C𝑖 ), 𝑐(𝑥𝑎𝑞=G𝑖 ), 𝑐(𝑥𝑎𝑞=T𝑖 )}
(15) For each 𝑐𝑚do
(16) IF |𝐽(𝑚) − 𝐽(𝑚)| > 𝜑𝐽 && |𝐼(𝑚) − 𝐼(𝑚)| > 𝜑IC
(17) {𝐺V} ← 𝑐𝑚
(18) For each 𝐺V do
(19) IF 𝐷𝐻(𝑥, 𝑔) > 2𝑑
(20) remove 𝑥 from 𝐺V
(21) IF 𝑥 can increase 𝐼 = avg∑𝑝(𝑥 | 𝐹) log(𝑝(𝑥 | 𝐹)/𝑝0(𝑥))
(22) add 𝑥 into 𝐺V
(23) evaluate the PWMΘV and 𝐼V.
(24) combine the similarly 𝐺V
(25) add 𝑥motif formed by ΘV of top 𝐼V to C.
(26) return C

Algorithm 1

where 𝑓0𝑘 is the background frequency of base 𝑘 and𝑁𝑤1𝑘/𝑁𝑤2𝑘 and 𝑓𝑤1𝑘/𝑓𝑤2𝑘 are the count and frequency of
base 𝑘 at the 𝑤1th/𝑤2th position of 𝑥1/𝑥2. Since the length
of predicted motifs may be different, we use the minimum
distance betweenmotifs among all possible overlaps ofmotifs𝑥1 and 𝑥2 that the aligned segment is 6. Thus, we calculate
the similarity score of 𝑥1 and 𝑥2 by (17), where 𝑙𝑠 denotes the
length of the segment:

sim (𝑥1, 𝑥2)
= max
𝑤1,𝑤2

(𝑙𝑠−1∑
ℎ

ALLR (𝑥1 [𝑤1 + ℎ] , 𝑥2 [𝑤2 + ℎ])) . (17)

Suppose the number of motifs to find is 𝑢; when a new
motif is found, we first check whether there is a similar motif.
If the similar motif exists, we combine them and obtain the
longer motif; if the similar motif does not exist, we keep the
new motif and replace the motif with minimum information
content. In this way, we ensure the 𝑢 motifs are different
which are also have the information contents as high as
possible. In practice, we finally combine and generate at least
20 top information content motifs as the outputs.

The whole algorithm of EPP is described in Algorithm 1.
In Step 1, lines (1) to (14), we make the projections to

obtain candidate sets; then lines (15) to (17) are the step to
filter candidate sets to get the qualified subsets; lines (18) to

(23) are the step to refine each qualified subset; at last, lines(24) to (26) are the step to combine the similar motifs and
output the results.

3. Results and Discussion

The parameters we can get from the input dataset include
the number of sequences 𝑡 and the length of each sequence𝑛𝑖 (𝑖 = 1, . . . , 𝑡); the motif length 𝑙 is known (6–30 bps). Based
on these parameters, we draw the set X and then start the
projection process. The times of projection and the number
of the candidate subsets are depending on the parameters of
max size and min size. We hope that the candidate subsets
containing the true motif have the motif instances as more as
possible and have less influence by the background. Thus, for
different sequence models, the parameters of max size and
min size are flexibly setting in this way. For the OOPS model
(one occurrence of motif instance per sequence), we take
max size = t andmin size = 3𝑡/4; for theZOOPSmodel (zero-
or one-motif occurrences per dataset sequence), the number
of motif instances is less than the number of sequences
and we take max size = 𝑡 and min size = t/2; for TCM
(two-component mixture) model, there are zero or more
nonoverlapping occurrences. Generally, we take max size =
3t/2 and min size = 𝑡.

We first use six real DNA datasets to test the performance
of our algorithm, including CREB, CRP, MEF2, MYOD, SRF,
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Table 1: The information of six DNA datasets.

Datasets 𝑡 𝑛 𝑙 𝑧 𝑧 avg
CREB 17 200 8 19 1.12
CRP 18 105 18 23 1.28
MEF2 17 200 10 17 1
MYOD 17 200 6 21 1.23
SRF 20 200 10 36 1.8
TBP 95 200 7 95 1

and TBP [26–28]. These datasets contain the sequences of
different species, inwhichmotif length varies from6 to 18 and
the number of motif instances is from 17 to 95. Note that, in
CREM and CPR datasets, some sequences have two motifs,
and in MYOD and SRF datasets, the number of motifs is
more than two in some sequences.Using these datasets to test,
we can check the performance and stability of our algorithm
in different species. And the site information tagged in the
dataset can help us have a better performance analysis and
compare with other algorithms. The information of the six
datasets is shown in Table 1.

Where 𝑡 represents the sequence number, 𝑛 is the
sequence length, 𝑙 is themotif length, 𝑧 is the number ofmotif
instances in the dataset, and 𝑧 avg is the average number of
motif instances in each sequence.

We compare EPP algorithm with the widely used algo-
rithms, MEME [10], GAME [29], VINE [14], and APMotif
[15]. In order to achieve a fair comparison, we use the same
motif length for each dataset and use the prior information
as less as possible. We choose groups of different initiate
sites for multirunning MEME because of the sensitive with
initiate conditions. For the genetic-based algorithm GAME,
the results are influence by the random seeds; thus, we run
the algorithm 20 times and take the average. In each run, the
search quantity of motif sets of GAME is 3 × 107.

In order to evaluate the performance of the algorithms,
we employ an evaluation method mixing the nucleotide level
and the site level [30]. That is, if the predict sites and the real
sites are shifting in three bases, it is a true instance.We employ
three measures, Precision, Recall, and 𝐹 score [31], which are
defined as follows:

Precision = |correct motif ||motif found| ,
Recall = |correct motif ||ture found| ,
𝐹 score = 2 × Precision × Recall

Precision + Recall
.

(18)

Here, Precision represents the probability of predicted
instances which is influenced by false positive instances.
Recall represents the probability of true positive instances.
And 𝐹 score is a measure which makes a balance between
Precision and Recall, which reduces the influence of false
positive. A high 𝐹 score means the algorithm has good
performance in both Precision and Recall.

Table 2 shows the results of MEME, GAME, VINE,
APMotif, and EPP. It can be seen that EPP has a good
performance of Precision on MYOD (0.78) and SRP (0.95).
MEME has a high Precision on CREB (0.93), MEF2 (0.93),
and TBP (0.83). VINE has a high Precision on CRP (0.94). In
the respect of Recall, our algorithm performs well on CREB
(0.90), CRP (0.79), MEF2 (0.94), and SFR (0.97). APMotif
has the same Recall (0.94) on MEF2 with EPP. And VINE
performswell onMYOD(0.86) andTBP (0.87).On the aspect
of Precision and Recall, we can see that EPP has relatively
small influence by the background. In the predicted instances,
the true motif instances occupy a larger proportion. So on
the aspect of 𝐹 score, our algorithm has the best performance
among the five algorithms; only APMotif has the same value
onMEF2.The comparison of Precision, Recall, and 𝐹 score is
shown in Figure 3; we can find EPP has a stable performance
on the average and performs well than the current widely
used motif finding algorithms.

Table 3 shows the amount of subsets and the 𝑙-mers
in each step, including the total 𝑙-mers, the thresholds of
min size and max size, the amount of candidate subsets and
qualified subsets, the 𝑙-mers in the qualified subsets, and
the reducing number of 𝑙-mers. We can see that the our
algorithm eliminates most of the candidate subsets by the
projection step and the filter step; only dozens of subsets need
to be refined. Meanwhile, the amount of 𝑙-mers has a great
reduction, which is more than 90%. Such as TBP dataset, the
amount of 𝑙-mers reduces by 99% and only two subsets need
the refinement.

The running times of the datasets testing above are shown
in Table 4. We implement EPP and APMotif in MATLAB
under Windows. GAME is implemented in C under Linux.
MEME and VINE are implemented through the website ver-
sion. It is unfair to compare these algorithms implemented in
different software, especially compared with website version.
But the running time can explain that our algorithm can find
the motifs in a reasonable and acceptable time. We report
the computational time in the same experiment environment
(2.67GHz CPU and 4G memory). From Table 4, we can see
that GAME and APMotif are obviously slower than EPP.The
web version MEME and VINE are faster than EPP for most
datasets. However, MEME needs to run several times for the
different start points and VINE is a heuristic algorithm which
will be slow with the data size increasing. EPP has the best
time efficiency for TBP data because of the reduction of 99%
redundant information.

Besides the six real DNA datasets, we also use the Tompa
data to test our algorithm. Tompa data is a standard data
for evaluating new design motif finding method, including
three types of data: Real, Generic, and Markov. Here, we
select Real data which contains 52 groups of real promoter
sequences extracted from TRANSFAC database and involves
four species: Drosophila melanogaster (dm), Mouse (mus),
Human (hm), and Saccharomyces cerevisiae (yst). It should be
noted that some datasets of Tompa only have one sequence,
such as dm02r and dm06r. Not each sequence contains the
motif, such as dm01r, hm06r, hm11r, mus07r, and yst01r. And
for most of the Tompa datasets, each sequence contains more
than one motif, like hm08r, hm10r, mus11r, yst03r, and yst05r.
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Table 2: The comparison of MEME, GAME, VINE, APMotif, and EPP on six DNA datasets.

Datasets MEME GAME VINE APMotif EPP
P R F P R F P R F P R F P R F

CREB 0.93 0.68 0.78 0.68 0.79 0.73 0.72 0.80 0.76 0.70 0.84 0.76 0.74 0.90 0.81
CRP 0.89 0.67 0.76 0.79 0.78 0.78 0.94 0.70 0.80 0.86 0.72 0.78 0.83 0.79 0.81
MEF2 0.93 0.82 0.88 0.82 0.80 0.81 0.88 0.88 0.88 0.84 0.94 0.89 0.84 0.94 0.89
MYOD 0.60 0.28 0.38 0.48 0.48 0.48 0.47 0.86 0.61 0.60 0.52 0.56 0.78 0.68 0.82
SRF 0.74 0.89 0.81 0.70 0.92 0.80 0.92 0.94 0.93 0.88 0.90 0.89 0.95 0.97 0.96
TBP 0.83 0.69 0.76 0.78 0.77 0.77 0.74 0.87 0.80 0.72 0.80 0.76 0.82 0.81 0.82
Average 0.82 0.56 0.73 0.72 0.77 0.74 0.78 0.84 0.81 0.77 0.79 0.78 0.83 0.85 0.85
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Figure 3: The accuracy comparison of MEME, GAME, VINE, APMotif, and EPP. (a) Precision comparison. (b) Recall comparison. (c) 𝐹
score comparison.



8 BioMed Research International

Table 3: The subsets and 𝑙-mers amount of EPP.

Datasets Total 𝑙-mers [min size, max size] The number of
candidate subsets

The number of
qualified subsets

The 𝑙-mers in
qualified subsets

Reducing amount
of 𝑙-mers

CREB 3294 [15, 19] 66 4 65 98%
CRP 1584 [16, 24] 31 5 104 98%
MEF2 3247 [9, 17] 176 33 335 90%
MYOD 3315 [17, 23] 55 6 111 97%
SRF 3820 [20, 30] 73 13 310 92%
TBP 18430 [80, 95] 32 2 175 99%

Table 4: The computational time comparison.

Datasets MEME GAME VINE APMotif EPP
CREB 1.52 134.00 4.82 71.23 17.52
CRP 0.60 391.04 2.61 97.04 8.91
MEF2 2.01 113.25 7.37 135.83 21.91
MYOD 2.25 96.08 8.25 68.36 30.27
SRF 2.12 223.56 10.11 147.29 28.28
TBP 39.05 786.32 55.53 280.43 10.83

Motifs are difficult to identify for the weak conservation in
Tompa data. Thus, we select a part of the datasets to test,
which are dm01r, dm02r, dm03r, dm04r, dm05r, and dm06r
in Dm species; mus01r, mus03r, mus05r, mus06r, mus11r, and
mus12r in Mus species; hm01r, hm07r, hm08r, hm10r, hm17r,
hm22r, hm23r, and hm24r in Hm species; yst01r, yst02r,
yst03r, yst04r, yst05r, yst06r, yst08r, and yst09r in Yst species
(Figure 4). We use the measure based on the nucleotide level
to evaluate the performance, because the number of motifs
and the length of motifs are different in each sequence.

𝑁PC = 𝑛TP(𝑛TP + 𝑛FP + 𝑛FN) , (19)

where 𝑛TP (true positive) represents the real sites in the
predicted sites; 𝑛FP (false positive) are the fake sites in the
predicted sites; 𝑛FN (false negative) represents the fake sites
that do not predict. We also choose MEME as the reference
algorithm to compare the performances. The length of motif
ranges from6 to 30 bps, andwe output the best result. Figure 3
is the results of EPP and MEME. We can see that both EPP
and MEME are hard to find the motifs in the one sequence
data sets, such as dm02r and dm06r. For the datasets dm03r,
dm04r, and dm05r, some sequences have several motifs
but some sequences have no motif; for example, the third
sequence of dm05r contains 9 motifs. This motif distribution
makes it difficult to identify. Thus, both EPP and MEME
have poor effect for the Dm spices. For the Hm spices, one
notable feature is that the length of motifs changes a lot; for
example, the motifs of hm01r range from 7 to 56 bps. We
use the fixed motif length as before which can only predict
a part of segment overlapping with the true motif. However,
for the data motif length changing relatively small, like hm17r
(10–17 bps), both EPP and MEME have the best results. And
EPP has a higher accuracy than MEME in the Hm spices. For
the Mus and the Yst data, most of the datasets contain less
than 10 sequences (expect mus11r, yst03r, yst08r, and yst09r),

Table 5:The performance coefficient of MEME, VINE, and EPP on
the synthetic datasets.

Datasets Algorithm
Width Con MEME VINE EPP
Short Low 0.32 0.24 0.32
Middle Low 0.88 0.72 0.90
Long Low 0.98 0.88 0.98
Short High 0.91 0.96 0.98
Middle High 0.98 0.99 0.99
Long High 1 1 1

and most of the sequences have multiple motifs of different
lengths. From the experiment results, we find that EPP and
MEME have their own advantages for these two species.

Through the experiments above, we can see the existing
algorithmshave poor performance onTopmadata [32].How-
ever, the different algorithms can complement and reinforce
each other. For example, for the data mus06r, yst05r, and
hm10r, EPP can have an effective prediction but the accuracy
of MEME is worse. In recent research, the algorithm like
Ensemble which merges the results of different algorithms
can improve the accuracy effectively [33]. Moreover, the
same results of the different algorithms can also enhance the
prediction.

In order to show the effect of our algorithm, we also test
the synthetic datasets which contain the low and high conser-
vation positions. The synthetic datasets are generated under
the following six combinations of three perspectives: (1)
motif width: short (8–10 bp),middle (14–16 bp), and long (19–
21 bp); (2) sequence length: 600 and number of sequences: 20;(3)motif conservation: low and high. For each combination,
we sample 10 datasets which are generated randomly and
embedded with the instances of a random motif. Specifically,
in the high conservation aspect, the dominant nucleotide is
generated with 0.91 probability on each position of the motif
instance (while all other three nucleotides are generated with
0.03 each). In the low conservation aspect, only 60 percent of
the positions in the motif instances are as highly conserved
as those in the previous high conservation aspect, while the
rest 40 percent of the positions are lowly conserved, where
the dominant nucleotide is generated only with probability
0.55 (while all other three nucleotides are generated with 0.15
each) in every instance.

Table 5 shows the performance coefficient (NPC) of
MEME, VINE, and EPP. From the results, we can see that
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Table 6: Results of the mouse embryonic stem cell data.

Datasets Length Seq. # EPP Weeder
CTCF 11 39601 CCAGAAGAGGGCG TNGCCACCAGGGGGCGCNN
cMyc 9 3422 GCTCGTGGC CGCACGTGGC
Esrrb 11 21644 GGTCAAGGTCA GGTCAAGGTCA
Klf4 10 10872 GGGTGTGGCC GGGTGTGGCC
Nanog 7 10342 CCATTCT CCATTGTCTNNN
nMyc 10 7181 CGCACGTGGC CGCACGTGGC
Smad1 16 1126 CTTTTGTTATTCAAAT CCTTTGTTATGCAAAT
Oct4 15 3775 CATTGTTATGCAAA CTTTGTTATGCAAAT
STAT3 9 2546 TTCCTGGAA TTTCCNGGAA
Sox2 10 4525 TTGTTATGCA CATTGTNATGCAAAT
Tcfcp2l1 11 26907 CCAGCCTAGCC CCGGTTCAAACCGG
Zfx 10 10336 CTAGGCCGCG CGCNAGGCCGCG
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Figure 4: Results of EPP and MEME on Tompa datasets.

all these compared algorithms have good performance on
the high conservation dataset. Among these compared algo-
rithms, EPP has the best results on three high conservation
datasets (0.98, 0.99, and 1), which are higher than the other
three algorithms. For the low conservation datasets, EPP has
the highest accuracies among these compared algorithms.
However, when the width of motif is short, motif instances
are hard to distinguish from the background sequences; the
accuracies of all the compared algorithms are low.

Meanwhile, we also use 12 TFs in mouse embryonic
stem cell ChIP-seq datasets to test our algorithm. ChIP-seq
is a technique coupling chromatin immunoprecipitation

experiment with high-throughput sequencing [34, 35], which
provides dataset of one or two magnitudes larger than a
typical motif discovery dataset and sequences with a high
resolution. Therefore, the tradition motif finding algorithms
are hard to solve ChIP-seq data for the huge calculation. In
order to improve the efficiency of EPP, the original dataset
is equally divided into halves: a training set and a testing
set. We run the projection and filter steps on the training
set to generate the qualified subsets, and then run the refine
step to search the instances and construct longer motifs
on the testing set. Table 6 shows the results of 12 TFs in
mES ChIP-seq datasets discovered by our algorithm with the



10 BioMed Research International

motifs found by Chen et al. with Weeder [36]. It can be seen
that EPP is able to find the motif similar to the published
one.

Chen et al. report a single motif with Weeder. Besides
these primary motifs, our algorithm can find multiple motifs
for each TF using the same datasets. For instance, Oct4
and Sox2 often form a heterodimer that binds a Oct4 motif
located adjacent to a Sox2 motif, called the Sox-Oct motif
[37]. In Sox2 and Oct4 dataset, EPP predicts not only the
Sox-Oct composite motif bound by Sox2 and Oct4 complex
but also the monomer motifs Sox2 (CCATTGTT) and Oct4
(TATGCAAAT). As discussed by Chen et al., Smad1 and
Nanog frequently bind the same regions as Oct4 and Sox2,
which raises a particular difficulty for motif discovery [38].
In Smad1 dataset, our algorithm finds motif “CCTTTGTC,”
which matches a Sox2 motif and demonstrates the frequent
cobinding relationship of Smad1 and Sox2 TFs. Furthermore,
our algorithm was able to find theNanogmotif “CCATCAA,”
which corresponds to an experimentally validated alternative
Nanog motif [39].

In summary, EPP is a competitive algorithm to deal
with motif discovery problem; our method has the following
advantages: (1) the projection which deals with all the
substrings does not miss any information in the data. That is,
this step guarantees each substring may exist in a candidate
subset. (2)The goal of finding motif is to find the substrings
having the maximum IC, and the process of selecting the
projection positon is also a part of maximizing IC. (3) The
size of candidate subsets depends on the thresholds [min size,
max size]. If a candidate subset is too large, it will contain
too much background information. We continue to divide
it; if a candidate subset is too small, the substring in it may
be not enough to represent an effective motif. We abandon
it. In some cases, motif instance may exist in the abandoned
subset, but it still can make up by other subsets containing
the motif instance. In the worst case, the number of the
candidate subsets is n/min size, where n is the number
of all substrings. However, in practice, this number will
drastically reduce. The number of candidate subsets may
be only a few hundred for 106 substrings. (4) There are
often some meaningless DNA segments in real data, such
as duplicate “AAAAAAAAAA” or “CGCGCGCGCG.”These
segments will generate the same duplicate substrings which
cause redundant computation. Through the projection step
of our algorithm, these segments will be very easy to find
and discard.

In addition, the computation complexity of EPP mainly
depends on projection step and refinement step. Suppose the
time of projection is ℎ, in each projection, the computation
complexity of calculating relative entropy is O(nl); then, the
computation complexity of the projection step is O(hnl).
Since the order of magnitude of ℎ and 𝑙 is 10, and 𝑛 is
usually less than 106, the order of magnitude of projection
is about 108. In the refinement, the number of qualified
subsets is about 102 for 106 substrings. the computation
complexity of refinement in each qualified subset is O(nl). So
the order of magnitude of refinement is 108 which is totally
acceptable.

4. Conclusions

We propose a new probability algorithm named EPP for
identifying motifs in DNA datasets. EPP presents a new
entropy-based position projection to divide original dataset
and remove a large amount of redundant information.
Experimental results show that EPP is able to efficiently and
effectively identify motifs in DNA sequences and ChIP-seq
datasets. However, the functions of some motifs are still
unknown; the analysis of motifs in these complex transcrip-
tional regions is needed. In addition, with the increase of data
size, designing the parallel algorithm to handle big data is also
a key issue for the future study.
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[37] A. Reményi, K. Lins, L. J. Nissen, R. Reinbold,H. R. Schöler, and
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