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A B S T R A C T

Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the
challenge of drug resistance, which imposes economic and medical burdens. Natural compounds,
particularly secondary metabolites from medicinal plants, present promising avenues for over-
coming cancer drug resistance due to their diverse structures and essential pharmacological ef-
fects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and
target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy
alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents.
The molecular properties supporting ligand interactions are thoroughly examined, providing a
robust theoretical foundation. The review concludes by discussing methods including quantitative
structure-activity relationships and molecular docking, offering insights into screening potential
candidates. Current trends in clinical treatment, contributing to a holistic understanding of the
multifaceted approaches to address cancer drug resistance are also outlined.

1. Introduction

Cancer is rising as a global health problem, and in 2020, nearly million new cases and 10.0 million deaths [1,2]. According to the
World Health Organization, cancer ranks second among the most common causes of death in the world [3]. Although many novel and
promising combinations of therapies for cancer treatment have been developed in the past decades, chemotherapy is still a frontline
choice in case surgery and radiation therapy cannot be applied. The cost of chemotherapy is estimated to be about $100,000 annually
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on average for each patient [4]. Several chemotherapeutic drugs such as 5-fluorouracil [5], methotrexate [6], cisplatin [7], and
doxorubicin [8] are widely used in clinical practice. Also, many studies have continuously searched for new potential chemical
compounds in cancer treatment based on previously popular chemical structures such as platinum-based [9] and pyrazole heterocycle
[10]. Noteworthy, a new chemotherapy drugs research and development process requires a lot of time and money, averaging 7.3 years
and costing 648.0 million dollars [11].

Parallel to these outstanding achievements and restless efforts, the emergence of cancer drug resistance has become a challenge for
contemporary medicine. Since cancer is a heterogeneous disease with the abnormal division of cells and cell growth with very
accelerated speed, it makes diagnosis and treatment increasingly difficult. Under the influence of pharmacokinetic factors, some drugs
are inhibited by the metabolism of the body’s cytochrome P450 enzyme system [12], thereby reducing drug concentrations and
creating conditions for developing resistance. In addition, the body itself has a signaling mechanism that activates the creation of
detoxifying enzymes [13]. Under normal conditions, these enzymes are responsible for resisting environmental oxidative stress.
However, this benefits cancer cells by helping them cope with stress [14]. Therefore, it is necessary to understand the mechanism
deeply and seek chemo-sensitizing agents to overcome chemotherapy drug resistance.

Natural compounds are extracted from many sources, the most abundant of which are medicinal herbs [15]. Because of biological
diversity, crude extracts from medicinal herbs often contain novel compounds that are chemically and structurally diverse [16]. This
diversity includes primary metabolites substances with simple and common structures such as amino acids, carbohydrates, fatty acids,
and secondary metabolites substances with complex structures and restricted species distribution [17]. In recent years, medicinal
plants have gained attention as the sources of secondary metabolites for screening towards chemotherapy drug resistance treatment in
vitro, in vivo, and in silico. Currently, more than 30 % of small molecule drugs approved were natural products and their derivatives
[18]. In which, natural compounds account for half of the anti-tumor drugs in chemotherapy including paclitaxel and docetaxel (from
the Taxus genus), teniposide and etoposide (from Podophyllum peltatum) or vincristine and vinblastine (from Madagascar periwinkle)

Fig. 1. An overview of cancer drug resistance mechanisms.
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[19]. It is apparent that isolated compounds from plants can serve as valuable lead compounds for further modification in silico, leading
to semi-synthesis of more potent derivatives, expediting the research and development of novel drug processes.

2. An overview of cancer drug resistance mechanism

Cancer drug resistance might be inquired or acquired by different mechanisms, for instance, increasing efflux through ATP binding
cassette transporters (ABC transporters), activation of DNA repair pathways, reduced cell susceptibility to apoptosis, or inactivation of
cancer drugs by intrinsic and acquiredmechanisms [20,21]. Fig. 1 illustrates a brief view of drug resistancemechanisms in cancer cells.

2.1. Drug efflux

The ABC transporter superfamily, including several transmembrane proteins carrying substrates outside the cells, protects cells by
eliminating toxins, anticancer drugs, and other endogenous metabolites [22]. The best-known proteins in this family include MDR1
(encoded by the ABCB1 gene), also called P-glycoprotein (P-gp), multidrug resistance-related protein (MRP1, ABCC1), and breast
cancer-related protein (BCRP, ABCG2) [23]. The anticancer agents such as daunorubicin, doxorubicin, camptothecin, tamoxifen,
teniposide, etoposide, cisplatin, cytarabine, mitoxantrone act as substrates for ABC transporters [24–26] resulted in increasing the
drug efflux and a significant decrease in concentrations of active ingredients in cancer cells [27]. ABC transporter’s inherent or ac-
quired overexpression is the crucial reason for the drug resistance phenomenon in cancer treatment by barring sufficient drug
accumulation, thereby avoiding the cytotoxicity or apoptotic effects [28].

2.2. Cell signaling pathway

Two critical signal transduction pathways in cellular processes are the PI3K (phosphoinositide 3-kinase)/AKT(protein kinase B) signal
transduction pathway and the Ras/Raf/MEK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) pathway or
also known as the Ras/Raf/MAPK (mitogen-activated protein kinase) pathway [29,30].

These pathways transmit signals from the extracellular environment to the cell nucleus to regulate gene expression for cell growth,
division, and differentiation. Fig. 2 demonstrates the cascade of these two signaling pathways. The interactions of cellular signaling
pathways can result in regulation of cell cycle progression and apoptosis. It has been established that these signaling pathways play
vital roles in tumor formation metastasis, are frequently dysregulated in cancer, and contribute to drug resistance [31,32]. In the
PI3/AKT pathway, activation of these cascades promotes cellular survival and proliferation, leading to apoptosis down-regulation

Fig. 2. The signaling cascades in Raf/MEK/ERK and PI3K/AKT Pathways.
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[33]. It can also modulate drug resistance by regulating the expression of ABC transporters, inhibiting pro-apoptotic proteins, and
activating pro-survival pathways [34]. On the other hand, dysregulation of the MAPK/ERK pathway can lead to overexpression of
anti-apoptotic proteins, promoting DNA repair mechanisms, and decreased drug-induced apoptosis [35]. In particular, approximately
40 % of human cancers exhibit alterations in the Ras/Raf/MAPK pathway, around 10 % are caused by mutations in BRAF, and about
30 % by its upstream activator RAS [36].

Nuclear factor erythroid-2 p45-related factor 2 (Nrf2) is a crucial transcription factor that activates promoter sequence genes for
cellular stress adaptation or antioxidant response elements [37]. Nrf2 serves as a cellular safeguard, protecting cells from DNA damage
caused by reactive oxygen species. Unfortunately, Nrf2 also defends cancer cells against the effects of chemotherapy or radiotherapy
under a similar mechanism [38]. Increased levels of Nrf2 expression have also been demonstrated to stimulate the proliferation of
cancer cells [39,40]. In hepatocellular carcinoma cells, upregulation of the Nrf2 pathway is associated with increased levels of MMP9
and Bcl-xL, which facilitate cancer invasion and inhibit apoptosis [41]. Additionally, Nrf2 reduces apoptosis by overstimulating the
anti-apoptotic protein such as Bcl-2, which contains an ARE sequence in its promoter [42].

2.3. Inhibition of apoptosis

While most of cancer therapies rely on apoptosis activation to damage cancer cells, abnormalities in apoptosis-related proteins
contribute to drug resistance [43]. Fig. 3 demonstrated the signaling pathway of apoptotic cell death. Cancer cells evade apoptosis
through various means, such as upregulating anti-apoptotic proteins such as Bcl-2, AKT, Mcl-1 and downregulating pro-apoptotic
proteins including Bax, Bak, Bad [44]. This phenomenon disrupts mitochondrial apoptosis-induced channel formation, inhibits cy-
tochrome c release, and promotes cancer cell survival [45]. Bcl-2 suppresses the activation of apoptotic signals toward their target
molecules. Increased levels of Bcl-2 prevent cell death induced by various cytotoxins, thereby enhancing the ability to resist DNA

Fig. 3. The signaling pathway of apoptotic cell death.
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damage and cancer drug efficiency [46]. Moreover, abnormal expression of inhibitors of apoptosis proteins is associated with
increased malignancy. For instance, expression apoptosis proteins including BIRC3, BIRC5, BIRC6, and BIRC7 inhibit the caspase
pathway and suppress apoptosis by reducing the catalytic activity of caspases 3, 7, and 9, which play crucial roles in regulating tumor
cell death cycles and chemo-sensitivity [47]. Therapeutic strategies targeting apoptosis mechanisms aim to reduce anti-apoptosis
protein expression and increase pro-apoptosis protein activity, improving cancer cell sensitivity to apoptosis and combating drug
resistance.

2.4. DNA damage repair

Genotoxic stresses during metabolic, physical, or chemical processes contribute to DNA damage and are responsible for genomic
instability [48]. Without proper DNA repair, cell survival and integrity are compromised. In cancer cells, the induction of DNA damage
response protects against genetic instability and promotes tumor growth [49]. DNA damage response involves signal transduction,
cell-cycle checkpoints, DNA repair response, transcriptional regulation, and apoptosis pathway. Current anticancer drugs often have
the mechanism of action as DNA breakage or inhibition of DNA synthesis [50]. This triggers DNA damage repairing during the cell
cycle in response to chemo-drugs to fix DNA damage, significantly reducing drug efficacy.

2.5. Cancer stem cells in chemo-resistance

Cancer stem cells (CSCs), similar characteristics to normal stem cells, were defined as cancer cells with the ability to self-renewal,
which differentiate into various cell types, causing the heterogeneous population of cells in the tumor [51,52]. Different hypotheses
have been proposed to explain the origin of CSCs, but so far, has yet to be specifically explained. CSCs are identified by studying various
surface biomarkers specific to the tumor type, such as CD44+, CD24+, CD133+, Aldehyde Dehydrogenase 1 (ALDH1), Epithelial Cell
Adhesion Molecule, Musashi-1, Sox2, Oct4, Nanog [53]. However, due to the heterogeneous nature of CSCs, their identification re-
quires specifying multiple biomarkers rather than relying on a single specific biomarker [54]. The population of CSCs is rare, with an
incidence of 0.1–2% in tumors of different cancer types [55,56]; however, they are considered a significant cause of progression,
metastasis, and drug resistance [57]. Like non-CSCs, CSCs also develop resistance to cancer drugs through efflux pumps, DNA repair,
dormancy, increased anti-apoptotic proteins, ROS defense, and interactions with the tumor microenvironment [58–60]. Many studies
show that CSCs possess endogenous resistance mechanisms against radiation and chemotherapy much higher than non-CSCs differ-
entiated tumors [55,61,62]. CSCs were also reported to have a superior ability to repair DNA damage compared to non-CSCs [63,64].
Additionally, CSCs are usually quiescent or dormant, thus evading CSCs from therapies targeting rapidly dividing cells [65,66]. The
capacity to differentiate into various cell types enables CSCs to generate progeny that can adapt to and resist treatment therapies,
significantly enhancing the ability to drug resistance of recurrent cancer cells and metastatic relapse [67,68]. Therefore, tumor pro-
gression from CSC exhibits complexity, diversity, and heterogeneity, making it highly challenging to develop effective therapies to
target them.

3. Application of active compounds in medicinal plants in overcoming drug resistance

Active compounds from plants such as alkaloids and flavonoids can interact with single or multiple targets which can help enhance
the sensitivity of cancer cells to therapies, thereby helping to overcome drug resistance. In addition, the combination of two or more
compounds based on different chemical structures can mediate and influence several resistant mechanisms, synergistically reducing
dose required, expanding the therapeutic window, and avoiding the adverse effects of high drug concentrations [69].

3.1. Alkaloids

Alkaloids have been promising metabolites to prevent chemotherapeutic drug resistance in recent years because nitrogen atoms in
alkaloid compounds have been considered necessary in P-gp inhibitors [24,70]. All alkaloids discussed in this section for antidrug
resistance reversal activities have been summarized in Table 1.

Evodiamine is an alkaloid extracted from Evodia rutaecarpa (Juss.) Benth. (family Rutaceae) has an indole structure [71,72]. Ac-
cording to Guo et al., evodiamine could suppress NF-κB activity in the CAL-27 tongue squamous carcinoma cell line in vitro and in vivo.
Additionally, combining evodiamine with gemcitabine enhanced the chemosensitivity of tongue squamous cancer cells, resulting in an
improved treatment response [73]. In studies conducted on oxaliplatin-resistant human colorectal cancer HCT-116 cell line, evodi-
amine demonstrated its ability to suppress MDR by inhibiting ABCG2 expression at concentrations ranging from 0.4 to 1.6 mM, leading
to a remarkable downregulation of NF-κB phosphorylation (p65 and p50) [74]. Moreover, in research on doxorubicin-resistant human
breast cancer MCF-7/DOX cells, Wang et al. revealed that evodiamine could reverse the phenomenon of apoptosis resistance by
inhibiting both the expression of apoptosis inhibitors and the Ras/MEK/ERK pathway cascade without inhibiting P-gp [75]. These
findings highlight the potential of evodiamine in overcoming drug resistance and its significance in cancer treatment.

Harmine, an alkaloid isolated from Banisteriopsis caapi and Peganum harmala L., was discovered as a potential compound to reverse
the gene expression profile induced by TRIB2, a protein known to promote resistance to various anti-cancer drugs. By sensitizing
cancer cells to chemotherapy agents, harmine offers a potential strategy to enhance the efficacy of chemotherapy and overcome
resistance [76]. The synergic activity of harmine and gemcitabine remarkably inhibited the proliferation of pancreatic cancer cells.
This effect was achieved through the induction of apoptosis, with harmine enhancing the apoptotic response triggered by gemcitabine
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Table 1
Alkaloids compounds from medicinal plants with reversing drug resistance.

No. Compounds Medicinal resources Experimental model Mechanisms of overcoming MDR Reference

1 Evodiamine Evodia rutaecarpa
(Rutaceae)

CAL-27 ✕NF-κB pt.; ↓Bcl-2, Bcl-xl [73]
HCT-116/L-OHP cells ↓NF-κB pt. [78]
MCF-7/DOX cells ✕Ras/MEK/ERK pt. [75]

2 Harmine Banisteria caapi
(Malpighiaceae)
Passiflora foetida L.
(Passifloraceae)

U2OS-TRIB2 cells ✕PI3K/mTOR pt. [79]
PaCa cells ✕AKT/mTOR pt. [80]

3 Piperine Piper nigrum
(Piperaceae)

Caco-2 cells, CEM/DOX 5000
cells, MCF-7/DOX cells,
MDCK-MDR1 cells

↓P-gp, MRP1, BCRP [81–85]

4 Matrine Sophora flavescens
(Leguminosae)

MCF-7/DOX cells ↓PI3K/AKT pt. [86]
UBC cells ↑ apoptosis; ↓fibronectin,

vimentin, Bcl-2, caspase-3, p-AKT,
p-PI3K; ↓ VEGF/PI3K/Akt pt.

[87]

NCI-H520/PTX25 cells ↑sensitivity [88]
MCF-7/DOX cells ↓ P-gp, MRP1, p-AKT, Bcl-2 [89]

5 Oxymatrine Sophora flavescens
(Leguminosae)

K562/A02 cells ↓ P-gp [90]
HCT-8/5-FU cells ✕ NF-κB pt. [91]

6 Berberine Coscinium fenestratum
(Menispermaceae)

A549 cells
K562/DOX cells

↓P-gp, MRP [92,93]

HEK293 cells ↓BCRP [94]
MCF-7/MDR cells ↓AMPK-HIF-1α-P-gp pt. [95]
CD44+/CD24- breast CSCs ↓ABCC1 and ABCG2, ↑apoptosis [96]

7 Tetrandrine Stephania tetrandra
(Menispermaceae)

K562/A02 cells ↓MRP7 [97]
Hep-2 cells ↓MDR1, RGS10, ↑HTRA1 [98]
SKOV3/PTX cells ✕β-catenin/c-Myc/Cyclin D1 pt. [99]
A2780/PTX cells ✕P-gp, ↑endocytosis [100]
U2OS cells ✕ NF-κB pt. [101]

(continued on next page)
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in these cells. Specifically, harmine significantly suppressed the AKT/mTOR signaling pathway involved in gemcitabine resistance
mechanisms of pancreatic cancer cells [77].

Piperine is a piperidine alkaloid in Piper nigrum L. (family Piperaceae) [106]. In a study on Caco-2 and CEM/DOX 5000 cell lines,
piperine strongly inhibits their efflux from the MDR cell lines and simultaneously increases the intracellular accumulation of the
fluorescent P-gp substrates [81]. In previous research, the expression levels of ABCB1, ABCC1, and ABCG2 genes in tumor cells were
lowered when exposed to piperine [82]. Remarkably, the reverse resistance to doxorubicin by 32.16 and 14.14-folds on
doxorubicin-resistant MCF-7/DOX have seen at a concentration 50 μM of piperine [82]. Zhou et al. also confirmed that piperine could
reverse MDR in MCF-7/DOX cells with a reversal fold of about 25 when treated with 50 μM combined with DOX [85]. Li et al. sug-
gested that piperine powerfully enhanced docetaxel accumulation in MDCK-MDR1 via inhibited P-gp and CYP1B1 gene expression
[85]. The prevention development of breast cancer cell tamoxifen resistance through probably inhibited P-gp expression was reported
[107].

Matrine is an active component of piperidine alkaloid extracted from Solanum dulcamara L. (family Solanaceae). Liao et al.
confirmed that matrine could downregulate expressions of fibronectin, vimentin, Bcl-2, caspase-3, p-AKT, p-PI3K, vascular endothelial
growth factor (VEGF), and VEGF receptor 2 [87]. Luo et al. discovered a reversal of paclitaxel resistance of matrine in the
NCI-H520/PTX25 cell line with a reversal rate of about 1.74 [88]. Matrine reduced the expression of P-gp, MRP1, p-AKT, and Bcl-2
proteins via modulating the PI3K/AKT signaling pathway by decreasing cell phosphorylation of AKT level [86]. At the 0.2 mg/mL
concentration, matrine may increase 3.56 times of the intracellular accumulation concentration of doxorubicin in MCF-7/DOX [86].
Another piperidine alkaloid, oxymatrine is found in Sophora flavescens aiton (family Leguminosae), was observed to partly reverse the
MDR in the K562/A02 leukemia cell lines by 2.62 times, could decrease the expression of P170 from 90.22 % to 44.24 %, and inhibit

Table 1 (continued )

No. Compounds Medicinal resources Experimental model Mechanisms of overcoming MDR Reference

8 Solanine Solanum dulcamara
(Solanaceae)

K562/DOX cells ↓MRP1 [102]
Jurkat cells ↓Bcl-2, ↑BaX, ↑apoptosis [103]

9 Capsaicin Capsicum annuum
(Solanaceae)

Caco-2 cells
CEM/DOX 5000 cells

↓P-gp [81]

T24-GCB cells ↓ABCC2, DCK, and TKs [104]
CCA cells ✕5-FU-induced autophagy [105]

Note: ↓: downregulate, ✕: inhibit, ↑: increase, pt.: pathway, ADR: Adriamycin, Bcl-2: B-cell lymphoma-2, BaX: Bcl-2-associated X, CAL-27: tongue
squamous carcinoma cell, L-OHP: oxaliplatin, HCT: human ileocecal adenocarcinoma, MCF: human breast cancer, UBC: Urothelial bladder cancer,
DOX: Doxorubicin, U2OS: Osteosarcoma, mTOR: mammalian target of rapamycin, TRIB2: Tribbles homologue 2, PaCa: pancreatic cancer, AKT: ,
Caco-2: Human colorectal adenocarcinoma cells, MDCK: Madin-Darby canine kidney, MDR1: Multi-Drug Resistance 1, P-gp: P-glycoprotein, BCRP:
Breast Cancer Resistance Protein, PI3K: Phosphoinositide 3-kinases, NCI- H520: Lung cancer cells, PTX: paclitaxel, HCT: Human colon cancer cell, 5-
FU: 5-Fluorouracil, HEK: Human embryonic kidney, A549: human non-small cell lung cancer cells, K562: leukemia cell lines, AMPK: 5′AMP-activated
protein kinase, RGS10: G-protein signaling 10, HTRA1: high-temperature requirement protein A1, SKOV3: Human ovarian cancer cell line, T24-GCB:
The gemcitabine resistant UCC cell line, CCA: Cholangiocarcinoma.
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the efflux pumping of anti-cancer drugs out of the cell [90]. Moreover, with the treatment of 50 μg/mL concentration of oxymatrine,
the IC50 value of doxorubicin in the K562/A02 cell line significantly decreased (from 34.9 ± 0.21 μg/mL to 13.3 ± 0.21 μg/mL) [90].
In the 5-FU-resistant colon HCT-8/5-FU subline cancer cell model of Liang et al. oxymatrine (≥2 mg/mL) exhibited tumor cell inhi-
bition [91]. This observation indicates that oxymatrine effectively reversed the resistance of HCT-8 cells to 5-FU, attributing to the
inhibition of the NF-κB signaling pathway and regulating tumor cell epithelial-mesenchymal transition.

Berberine is a well-known isoquinoline alkaloid isolated from numerous families of medicinal plants, particularly Menispermaceae,
Rutaceae, Ranunculaceae, and Berberidaceae, with species such as Coscinium fenestratum, Coptis chinensis, Mahonia nepalensis, and
Berberis wallichiana, and Phellodendron amurense [72,108]. Much research has reported berberine as a promising bioactive herbal
ingredient to overcome cancer chemo-resistance. For instance, berberine, both 0.5 μg/mL and 4 μg/mL concentrations, significantly
increased the retention of Rhodamine 123 dye, an assay to evaluate the MDR, suggesting inhibition of P-gp and/or MRP efflux property
in the A549 human non-small cell lung cancer cells due to the prolonged intracellular retention of the chemotherapeutic drugs,
particularly 5-FU, camptothecin, and paclitaxel [92]. On doxorubicin-resistant human leukemia cell lines (K562/DOX) research,
berberine showed a 1.5-fold reduction in IC50 at the nontoxic dose, <1 μM, which exposed the improvement effect on
doxorubicin-induced apoptosis. Berberine inhibits the efflux activity of P-gp and increases the intracellular accumulation of DOX in
K562/DOX [93]. Moreover, berberine demonstrated significant inhibition of BCRP transport. Remarkably, at 50 μM concentration
berberine, the mitoxantrone accumulation on wild-type and ABCG2-overexpressing human embryonic kidney HEK293 cell lines were
164.3 ± 13.0 % and 108.9 ± 0.8 %, respectively; the methotrexate membrane vesicular transport was 28.4 ± 0.6 % compared with
control using rapid filtration technique [94]. In addition, Pan et al. investigated the chemosensitivity effect of dosage-based berberine
on MCF-7 multi-drug resistance cell line; the results illustrated that low-dose berberine can render drug-resistance breast cancer cells
more susceptible to doxorubicin in via the AMPK-HIF-1α-P-gp pathway. On the other hand, high-dose berberine directly induces
apoptosis through the AMPK-p53 pathway with the independence of hypoxia-inducible factor 1-alpha (HIF-1α) expression in vitro and
in vivo [95]. Additionally, Qian et al. demonstrated that berberine enhanced the intracellular concentration and retention of doxo-
rubicin in tumor cells via inhibiting the efflux ABC transporters function and reducing the drug efflux rate in MCF-7/DOX cells in vitro
[109]. Berberine encapsulated in liposome was studied to directly deliver the compound to mitochondria of CD44+/CD24-breast
CSCs, causing the produced dose-dependent apoptosis ranging from 1 to 50 μM [96]. In conclusion, berberine is a promising compound
used to prevent cancer drug resistant.

Another isoquinoline alkaloid having the property of reverse MDR in vitro and modulated P-gp mediated drug efflux is tetrandrine.
Tetrandrine could inhibit MRP7 overexpression in leukemic cell line K562/A02multidrug resistance cells and increase anticancer drug
concentration in the cells [97]. To clarify, the results of Cheng et al. showed that after administration of 1 μmol/L tetrandrine, the
mRNA level of MRP7 in K562/A02 cells decreased to 2 %. The protein level of MRP7 decreased by 53.2, the protein level of P-gp
decreased by 58.47 %, and the accumulation of daunorubicin significantly increased by 94.32 % [97]. Additionally, Li et al. confirmed
that tetrandrine could reverse 2.22 times the MDR of human laryngeal cancer (Hep-2) cells by significantly lowering the IC50 value of
vincristine in Hep-2 variant cells, downregulating the mRNA and protein expression of MDR1 and RGS10, and upregulating expression
of HTRA1 in Hep-2 variant cells [98]. Jiang et al. found that tetrandrine could reduce paclitaxel-resistant SKOV3 cells (SKOV3/PTX) by
inhibiting the β-catenin/c-Myc/Cyclin D1 signaling pathway [99]. Thus, the synergistic effects targeting P-gp inhibition, enhanced
endocytosis, and intracellular sequential drug release have been proved as a potential treatment for chemo-resistant cancer [110]. The
combination of paclitaxel and tetrandrine exhibits the highest cytotoxicity against A2780/PTX cells [100]. Therefore, the synergistic
effects targeting P-gp inhibition, enhanced endocytosis, and intracellular sequential drug release have been proved as a potential
treatment for chemo-resistant cancer [100]. Tetrandrine was suggested to prevent multidrug resistance by inhibiting P-gp over-
expression via NF-κB signaling in osteosarcoma cell lines [101]. Among Vietnamese traditional medical plants, tetrandrine could be
found on Stephania tetrandra S. Moore (family Menispermaceae).

Solanine is a steroidal alkaloid, a primary chemical constituent of Solanum dulcamara L. (family Solanaceae). Yi et al. reported that
solanine inhibited doxorubicin-resistant human myelogenous leukemia cell line K562, sensitized K562 cells with doxorubicin, and
increased intracellular doxorubicin accumulation [102]. This could result from the downregulation of MRP1 expression via the JNK
signaling pathway [102]. Furthermore, solanine significantly increased the chemosensitivity to doxorubicin on the Jurkat cells by
modulating the mRNA levels of Bcl-2 and Bcl-2-associated X protein (Bax) revealed by Western blot analysis [103].

Capsaicin is a primary alkaloid from Capsicum annuum L. (family Solanaceae), a common spice pepper. Capsaicin significantly
blocked the efflux of fluorescent P-gp substrates from MDR cell lines and enhanced their intracellular accumulation [81]. Capsaicin
decreased ABCC2, DCK, and TKs expression in gemcitabine resistance bladder cancer cells by increasing intracellular retention of
gemcitabine [104]. Moreover, Hong et al. demonstrated that capsaicin inhibits 5-FU-induced autophagy by enhancing 5-FU-induced
sensitivity to cholangiocarcinoma cells [105].

Several distinctive structural features of alkaloids have a decisive role in anticancer drug resistance, including regulating P-gp
inhibitory activity [24]. The heterocycle containing the basic nitrogen atom, preferred along with the carbonyl group, can form
conventional hydrogen bonds with an amino group derived from the protein backbone of a potential target for cancer treatment. These
protein-ligand interactions can be observed in evodiamine and harmine, as the indole nitrogen is particularly adept at interacting with
multiple cancer targets, including ERK-1 pocket intermediate [111], DNA topoisomerase I [112], and mammalian DNA methyl-
transferases 3B [113]. Despite their low specificity and high toxicity, unique chemical scaffolds of certain alkaloids have the potential
for further modification to inhibit cell signaling and apoptosis pathways. These included matrine derivatives with modifications in
L-shaped conformation for Hsp90 inhibition [114], D-ring substitution for PI3K/AKT pathway inhibition [115], or solanine with
modifications in cholestane structure for the K562 cell line or sugar moiety alteration for cytotoxicity [116]. The benzodioxol-like
structure – which consists of two neighboring oxygen atoms forming hydrogen bond acceptor pharmacophores for P-gp inhibition
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[117] – can be found in piperine, berberine, tetrandrine, and capsaicin, which all have been previously demonstrated to be effective in
P-gp inhibitory action for chemotherapeutic accumulation [118–120]. Table 1 depicts the structures of certain alkaloids known for
their capability to inhibit cancer drugs resistance. The structure can also be recognized within some natural flavonoids in the following
section.

3.2. Flavonoids

Flavonoids are a diverse class of natural polyphenolic compounds found abundantly in plants, with over 8000 identified and re-
ported compounds. Flavonoids possess a flavan nucleus structure and can be classified into seven subclasses: flavonols, flavones,
isoflavones, anthocyanidins, flavanones, flavanols, and chalcones (Fig. 4) [121]. Flavonoid metabolites exhibited several bioactive
properties, such as antioxidant [122], antibacterial [123], antimicrobial [124], anti-inflammation [125], anti-diabetic [126],
anti-aging [127], cardiovascular protective effects [128], and anti-cancer [129]. The most prominent among these benefits is their
ability to re-sensitize conventional chemotherapeutics to resistant cancer cells and reverse drug resistance via different pathways
[130–132]. Table 2 summarizes all the flavonoids discussed in this review for anti-chemotherapy drug resistance ability.

Quercetin exhibits promising potential in overcoming cancer drug resistance by targeting resistance factors, enhancing drug
accumulation within cancer cells [133], and significantly reducing drug efflux [134]. Particularly, quercetin has been found to inhibit
the nuclear translocation of YB-1, resulting in reduced P-gp expression in doxorubicin-resistant MCF-7 cancer cells [135]. In the
research of Borska et al., quercetin synergistically increased the cytotoxicity and inhibited the growth of the parental and P-gp
expressing cells along with downregulation of the ABCB1 gene [136]. Furthermore, quercetin has been shown to downregulate the
expression of pro-caspase-3, Mcl-1, Bcl-2, and Bcl-XL, thereby inhibiting the growth, migration, and invasion of human prostate cancer
cells through the VEGF/AKT/PI3K pathway [137]. Quercetin with a concentration of 75 μM inhibited the proliferation of CD133+
colon CSCs and significantly enhanced the CSCs’ sensitivity to doxorubicin, as reported by Atashpour et al. [138]. The ability to
enhance apoptosis of quercetin were also reported in CD44+/CD24-breast CSCs [139] and CD44+/CD133+ prostate CSCs [140].
Another dietary flavonol, fisetin, was reported that the combination therapy of fisetin and sorafenib against HeLa cells effectively
interfered with the apoptosis signaling pathways in vitro and in vivo [141]. Research by Pal et al. also reported that sorafenib enhanced
the apoptosis activity mediated by fisetin in BRAF-mutated melanoma cells by activating mitochondrial-dependent caspase-3
apoptotic signaling by suppressing MAPK, PI3K, and VEGF expression [142].

Within the flavone subclass, apigenin, known for its natural sedative properties, has demonstrated the ability to inhibit several
oncogenic factors, including epidermal growth factor receptor (EGFR), hypoxia-inducible factor 1 (HIF-1), and glucose transporter
protein type 1 (Glut1). Together with gefitinib, apigenin effectively decreases Bcl-2 expression, increases Bax expression, and in-
activates AMPK signaling in EGFR L858R-T790M-mutated H1975 lung cancer cells [143]. Erdogan et al. reported that the combination
therapy of 15 μM apigenin and 7.5 μM cisplatin for 48 h led to the up-regulation and down-regulation of mRNA expressions of
caspase-8, apoptotic protease activating factor-1 (Apaf-1), and p53 in the anti-apoptotic Bcl-2 in CD44+ prostate cancer stem cells
[144]. Furthermore, co-treatment with cisplatin and apigenin resulted in the dephosphorylation of PI3K and AKT and the inhibition of
NF-κB expression. Li et al. demonstrated that after the addition of apigenin, the tumor suppressor p53 was activated, which repressed
the CDDP-induced growth in CSCs. Therefore, apigenin can enhance anti-tumor effect of cisplatin in non-small cell lung cancer [145].
According to a study by Tang et al., luteolin flavone was discovered that luteolin acts as a potent small-molecule inhibitor of Nrf2. It
effectively reduced Nrf2 mRNA levels by 34 % when co-treated with actinomycin D for 30 min and 43 % at 1.5 h in human lung
carcinoma A549 cells [146]. Luteolin also increased apoptosis, activated ATR/Chk2/p53 signaling pathways, and inhibited the NF-κB
signaling pathway in breast cancer mitoxantrone-resistant cells, reported by Rao et al. [147]. A study by Hong et al. showed that
luteolin increased apoptosis and downregulated EGFR, the PI3K/AKT/mTOR signaling pathway; hence, erlotinib-resistant tumor cells
were more sensitized to erlotinib [148]. Additionally, mice treated with luteolin and cisplatin exhibited a reduction in tumor mass. In
combination with molecular docking, Mediratta et al. have identified that luteolin is highly complementarity with CD73, one of the
novel immunotherapeutic targets that is excessively expressed on tumors. In addition, luteolin, quercetin, and paclitaxel in a

Fig. 4. The structures of seven subclasses of flavonoids.
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Table 2
Flavonoids compounds from medicinal plants with reversing drug resistance.

No. Compounds Medicinal resources Experimental model Mechanisms of overcoming
MDR

Reference

1 Quercetin Allium cepa L.
(Alliaceae)

MCF-7/DOX ↑sensitivity, ↓P-gp [135]
EPG85-257P; EPG85-
257RDB

↓P-gp, ✕growth factors,
↓ABCB1

[136]

PC-3 and LNCaP; ✕growth; ✕VEGF/AKT/PI3K
pt.

[137]

BALB/c nude male mice
injected with PC-3 cells

↓pro-caspase-3, Mcl-1, Bcl-2,
Bcl-xl expression.

[137]

CD133+ colon CSCs ✕proliferation, ↑apoptosis [138]
CD44+/CD24- breast
CSCs

✕proliferation, ↑apoptosis [139]

PC3 and CD44+/CD133+
prostate stem cell

✕proliferation, ✕migration,
G1 cell cycle arrest ↓PI3K/
PTEN, MAPK and NF-κB

[140]

2 Fisetin Panax notoginseng
(Araliaceae)

HeLa cells ↑apoptosis [141]
In vivo athymic nude mice
subcutaneously
implanted with A375 and
SK-MEL-28 cells

↑mitochondrial-dependent
caspase-3 apoptotic signaling;
↓MAPK, PI3K, VEGF
expression

[142]

3 Apigenin Chrysanthemum indicum
(Asteraceae)

H1975 ↓metabolism, ↑apoptosis,
↓EGFR, ↓HIF-1, ↓Glut1, ↓ Bcl-
2, ↓Bax expression,✕5′AMPK
pt.

[143]

Lonicera japonica
(Caprifoliaceae)

PC-3; CD44+ prostate
CSCs

↑caspase 8, ↑Apaf-1, ↑p53
expression; ↓Bcl-2, ↓NF-κB

[144]

A549 and H1299 ↑ p53 [145]

4 Luteolin Asteraceae, Lamiaceae,
Poaceae, Leguminosae,
and Scrophulariaceae
species

A549 ↓Nrf2 [146]
MCF-7/MitoR cell ↑apoptosis, ↑ATR/Chk2/p53,

↓NF-κB
[147]

NSCLC ↓ EGFR, ↓PI3K/AKT/mTOR
pt.,↑apoptosis

[148]

MDA-MB-231 breast CSCs ↓Nrf2, HO-1, Sirt3, and
Cripto-1

[149]

MDA-MB-231 breast CSCs ↓ YAP and Wnt target genes [150]

5 EGCG Camellia sinensis HCT-116; DLD1 GRP78/NF-κB/miR-155-5p/
MDR1 pt., ✕5-FU efflux

[151]

A549/H460/cisplatin
cells

↓AXL receptor tyrosine
kinase, ↓ ALDH1A1; ↓SLUG

[152]

Rat model of breast
carcinogenesis

↑sensitivity PTX, ↑
phosphorylated JNK,
↑apoptosis, ↑GRP78
expression

[153]

Rat model of breast
carcinogenesis

↑apoptosis, ↓VEGF
expression, ↓MMP-2

[154]

CD44+/CD133+ prostate
CSCs

↑capase-3/7, ✕Bcl-2, survivin
and XIAP

[155]

6 Genistein Glycine max HeLa and CaSki cells ↓p-ERK1/2; ↑p53 expression;
↑caspase-3

[156]

Mice treated with
diethylnitrosamine to
induce HCC at 2 weeks of
age

↓phospho-AMPK; ↑phospho-
AMPK promoted apoptosis

[157]

Hepa1-6 ↑apoptosis [158]
HT-29 ↓perilipin-1, ADRP and Tip-47

family proteins expression;
↑apoptosis

[159]

HepG2 ↑apoptosis [160]
HT-29 ↑caspase-3; ↑p38 MAPK;

↑apoptosis
[161]

(continued on next page)
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triplet-drug regimen efficiently reduced the proliferation of human breast cancer cell lines and inhibited paclitaxel-enriched CSCs by
reducing the transcriptional activity of YAP and Wnt. Thus, medications that target CD73, as well as CSCs, have the potential to
overcome treatment resistance and increase the efficacy of chemotherapy [150].

Green tea epigallocatechin-3-gallate (EGCG) is a polyphenol known for its potent antioxidant and chemo-preventive activities,
exhibiting protective effects against experimentally induced cancer [172]. According to Zhang et al., EGCG enhanced the chemo-
therapeutic activity of doxorubicin, cisplatin, and tamoxifen via inhibiting the multiple drug transporters, down-regulating AKT and
mTOR signaling pathways and acting as a receptor tyrosine kinases inhibitor [173]. The co-treated therapy of 50 μMof EGCG and 5-FU
significantly decreased the IC50 values in human colon carcinoma cell line HCT-116 and human colon carcinoma cell line-DLD1, from
40 ± 4.2 μM to 5 ± 0.36 μM and 150 ± 6.4 μM to 11 ± 0.96 μM, respectively [151]. The interaction of EGCG with the
GRP78/NF-κB/miR-155-5p/MDR1 pathway blocked the efflux of 5-FU, enhancing its intracellular accumulation. Kim et al. investi-
gated the effect of EGCG on A549/H460 cisplatin-resistant cells with the treatment of 80 μM EGCG and cisplatin over 24 h [152]. The
results demonstrated that EGCG inhibited AXL receptor tyrosine kinase and reduced ALDH1A1 and SLUG in tumors. In the in vivo
model, the co-administration of EGCG and paclitaxel resulted in higher levels of phosphorylated JNK, increased apoptosis, and induced
GRP78 expression [153]. In a rat model of breast carcinogenesis, the application of EGCG and paclitaxel at the same time showed
increased apoptosis and decreased VEGF expression and MMP-2 activity [154]. EGCG was reported to induce apoptosis in
CD44+/CD133+ prostate CSCs by activating caspase-3/7 and inhibiting the expression of Bcl-2, survivin, and XIAP while also sup-
pressing the self-renewal capacity of CD44+α2β1+CD133+ CSCs isolated from human primary prostate tumors [155].

Genistein, an isoflavone, has been the subject of numerous studies investigating its effects on various types of human cancer.
Research by Liu et al. suggested that combining genistein and cisplatin increased chemotherapeutic effects and dramatically decreased
p-ERK1/2, p52, and Bcl2 expression in HeLa and CaSki cells, compared with cisplatin control group [156]. Furthermore, genistein has
been reported to induce apoptosis in hepatocellular carcinoma (HCC) cancer cells through energy-dependent caspase pathways [157].

Table 2 (continued )

No. Compounds Medicinal resources Experimental model Mechanisms of overcoming
MDR

Reference

7 Hesperidin Citrus sp. (Rutaceae) Gall bladder carcinoma
cells

↓proliferation, ↑ROS,
↑caspase-3

[162]

A549 cells ↓SDF-1/CXCR-4 pt. [163]
A549 and NCI-H358 ↑caspase-3; ↑apoptosis; FGF

and NF-κB
[164]

A2780 ↑apoptosis; ↑caspase-3
expression; anti-growth
arrest-and DNA damage-
inducible gene 153, anti-
CCAAT’ enhancer-binding
protein homologous protein,
glucose-regulated protein 78,
cytochrome c

[165]

Eca109 ✕proliferation, ↓PI3K/AKT
pt.

[166]

SGC-7901, MGC-803, and
HGC-27

↑ROS; ↑mitochondrial
pathway

[167]

8 Silibinin Silybum marianum
(Asteraceae)

A2780/DOX ↓ABC transporters expression [168]
A2780/cisplatin-resistant ↓proliferation; ↑apoptosis [169]
T47D cells ↓proliferation [170]
MDA-MB-435/DOX ↑growth effects, ↑apoptosis [171]

Note: ↓: downregulate; ✕: inhibit; ↑: increase; pt.: pathway; MCF-7: human breast cancer; DOX: Doxorubicin; P-gp: P-glycoprotein; PC-3: Human
prostate cancer cells 3; LNCaP: Lymph Node Carcinoma of the Prostate cell line; VEGF: vascular endothelial growth factor; PI3K: Phosphoinositide 3-
kinases; EPG85-257P: Gastric adenocarcinoma cell line; EPG85-257RDB: Gastric adenocarcinoma cell line; HeLa: Human papillomavirus-related
cervical adenocarcinoma cell line; A375: Amelanotic melanoma cell line; SK-MEL-28: Cutaneous melanoma cell line; MAPK: mitogen-activated
protein kinase; H1975: lung adenocarcinoma cell line; EGFR: epidermal growth factor receptor; HIF-1: hypoxia-inducible factor 1; Glut1: glucose
transporter protein type 1; AMPK: 5′AMP-activated protein kinase; Apaf-1: apoptotic protease activating factor-1; NSCLC: non-small cell lung cancer
cell line; AKT: protein kinase B; mTOR: mammalian target of rapamycin; A549: human alveolar epithelial cell line; HCT-116: human colon carcinoma
cell line; DLD1: human colon carcinoma cell line; HCC: hepatocellular carcinoma; HT-29: human colorectal adenocarcinoma cell line; HepG2:
hepatoblastoma cell line; A2780: human ovarian adenocarcinoma cell line; Eca109: human esophageal carcinoma cell line; NCI-H358: human non-
small cell lung cancer cell line; SGC-7901, MGC-803, HGC-27: human gastric cancer cells lines; ROS: reactive oxygen species; DOX: doxorubicin;
T47D: human breast cancer cell line; MDA-MB-435.
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Sanaei et al. found that genistein induced apoptosis in the Hepal-6 HCC cell line during a 24-h treatment, with an IC50 = 20 μM and a
maximum inhibition of cell growth of 52 % [158]. Genistein also affected activated apoptosis in HepG2 HCC cells with a dose of 20 μM
[160]. Combining genistein and daidzein was found to downregulate the expression of Perilipin-1, ADRP, and Tip-47 family proteins,
and vimentin levels cause final apoptosis of human colorectal adenocarcinoma cell line HT-29 [159]. After treatment with genistein,
the apoptosis in HT-29 cells was also reported with a different mechanism by regulating caspase-3 and p38 MAPK signaling pathways
[161].

Hesperidin is a flavanone isolated in various citrus fruits, has been reported for several health properties, including antioxidant
activity, anti-inflammatory, cardiovascular properties, and anticancer [174]. A study on the human gall bladder carcinoma (GBC) cells
showed that hesperidin exposure for 24h with a dose of 200 μM significantly decreased the cell proliferation [162]. Furthermore,
hesperidin induced reactive oxygen species (ROS) generation, nuclear condensation, activated caspase-3, and caused cell cycle arrest
at the G2/M phase in the treated GBC cells [162]. Hesperidin demonstrated the ability to inhibit migration and invasion of non-small
cell lung cancer A549 cells by suppressing the SDF-1/CXCR-4 pathway andmodulating MMP-9, CK-19, and vimentin expression [163].
The FGF and NF-κB signal transduction pathways could be affected by hesperidin, with the upregulation of caspase-3 resulting in
apoptosis in A549 and NCI-H358 cells [164]. Hesperidin was reported to increase the expression of anti-growth arrest- and DNA
damage-inducible gene 153 (GADD153) and anti-CCAAT’ enhancer-binding protein homologous protein in A2780, together with the
cytotoxicity of hesperidin lead it to reduce cells’ viability [165]. Moreover, hesperidin has shown the ability to inhibit proliferation and
induce apoptosis by increasing ROS production in the mitochondrial pathway in gastric and esophageal cancer cells [166,167,175].

Silibinin, a major flavonolignan isolated from Silybum marianum (L.) cypselae, has long been recognized as a natural medicinal
plant for liver disorder treatment [176]. Recent studies have shed light on its potential role as a modulator of drug resistance in cancer.
Dobiasová et al., 2020 reported that silibinin inhibited P-gp ATPase activity and regulated the expression of ABC protein in the
multidrug-resistant ovarian sub-line resistant to doxorubicin (A2780/DOX) cells [168]. The in vitro experiments revealed that silibinin
could restore the sensitivity of A2780-resistant cells to cisplatin and taxol, resulting in suppressed cell proliferation and induction of
apoptosis [169]. Another study by Maasomi et al., 2017 showed that silibinin could impede the proliferation of breast cancer T47D
cells [170]. Compared with the drug alone, the combination of chrysin and silibinin resulted in the down-regulated mRNA levels of
hTERT and cyclin D1 after 48h treatment. Molavi et al. reported that silibinin exerted significant growth inhibitory effects on
chemo-resistant human breast cell lines to doxorubicin and paclitaxel with IC50 ranged from 200 to 570 μM [171]. While dietary
flavones such as apigenin and luteolin show apoptosis-inducing effects in human colon carcinoma cells [177], green tea catechin,
including EGCG, is proven to be highly potent in prostate cancer cells [178]. SAR studies reveal that isoflavones like genistein and
glycosylated derivatives are less active than flavones [179].

Different structural requisites, along with specific substitution patterns, can modify the action mechanism and significantly impact
the activity. Table 2 demonstrates the structural composition of remarkable flavonoids with the capacity to prevent or reverse
resistance to the chemotherapy drug. The carbonylation at C4 and the hydroxyl group at C5 are vital for the capacity to imitate the
adenine moiety of ATP, resulting in P-gp inhibition except for fisetin [180]. Substitution in these 5,7-OH flavone derivatives by
increasing the hydrophobicity also correlated to the decrease of daunomycin efflux activity from leukemia cell line K562/R7, with the
maximum effect of the isoprenylated derivatives even higher than that of cyclosporin A – a potent modulator offered [180]. Research
has observed hydroxylation at C3 in flavone decreases activity for the NorA MDR pump in Staphylococcus aureus [181]. Thus,
methylation of that hydroxyl group shows a higher inhibitory effect in BCRP [182]. The lack of a double bond between positions 2 and
3 in hesperidin and silibinin might not directly affect multidrug resistance and apoptosis induction; however, it serves an essential role
in other therapeutic-related mechanisms, including differentiation induction [183], topoisomerase inhibition [184], and protein ki-
nase inhibition [185].

Fig. 5. The structures of other compounds are reported to have the potential to prevent/reverse cancer drug resistance.
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3.3. Other compounds

Other natural compounds with different structures have been reported with remarkable therapeutic potential outcomes. The
significance of natural compounds in anticancer treatment extends beyond molecular structure diversity (Fig. 5).

3.3.1. Brucein
Brucein is a phytochemical derived from the seeds of Brucea javanica (family Simaroubaceae) [186]. Studies have indicated that

brucein can regulate signaling pathways linked to drug resistance through the MAPK signaling cascade [187,188]. In particular,
brucein can enhance the phosphorylation of the p38 protein in the MAPK pathway, inducing apoptotic signals in pancreatic cancer
cells [189]. Additionally, brucein has been reported that the induction of apoptosis and autophagy is achieved through the upregu-
lation of Bax expression, downregulation of cytochrome C and Bcl-2 expression, and inhibition of MAPK signaling via the activation of
the ROS-dependent pathway [190]. In a dose-dependent manner from 1 μM to 4 μM of brucein, it was also found that brucein
significantly took part in the regulation of protein expression in the PI3K/AKT pathway, reduced cell viability, and inhibited cancer cell
invasion and migration [191].

3.3.2. Brusatol
Another compound derived from the Brucea javanica is brusatol. This compound showed anticancer activity by inducing cell death

via modulating various cell signaling pathways, promoting ROS production, and elevating DNA damage [192–194]. However, the
markable potential of brusatol in overcoming drug resistance is the inhibitory of Nrf2 activation in cancer cells [195]. The study
published by Ren et al. indicated that brusatol suppresses the Nrf2-mediated defense mechanism in lung cancer cells [196]. Later,
much research also reported its ability to regress Nrf2 activity in cells, which induced other signaling pathways and exerted the
growth-inhibitory effects or apoptosis [197,198]. The synergistic effect of brusatol with anticancer drugs showed desirable results.
Compared to treatment alone with either brusatol or gemcitabine, brusatol has been discovered to enhance the effectiveness of
gemcitabine by inhibiting cell growth and inducing apoptosis in human pancreatic cancer cells than others through the suppression of
the Nrf2 pathway when combining 1 μM brusatol and 20 μM gemcitabine for 48 h in treatment [197]. Another study by Yang et al.
provided a new insight into brusatol synergistically enhancing the anticancer efficacy of trastuzumab against HER2 cells by inhibiting
the Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways [199]. Besides the potential of brusatol as a promising sensitizing agent for
cancer treatment, the toxicity of brusatol is a big challenge for clinical research. Brusatol has been indicated with high toxicity at a
lethal dose of 16.2 mg/kg in an acute toxicity assay [200]. It was also found that brusatol nonspecifically inhibits Nrf2 in human
hepatocytes and decreases cell viability in healthy human colonic cells [201,202]. Thus, there is considerable importance in exploring
new derivatives of brusatol with enhanced efficacy and reduced toxicity through structural modifications for potential clinical ap-
plications [203].

3.3.3. Curcumin
Curcumin from Curcuma longa (family Zingiberaceae) is a polyphenolic compound with various pharmacological properties

notably antioxidant, anti-inflammatory, antimicrobial, antitumor, and hepatoprotective activities [204–207]. Soni et al. demonstrated
that curcumin could inhibit the survival of HepG2 and HuT78 cells and modulate the susceptibility of HCC to chemotherapy. Curcumin
inhibited a wide range of genes (monocarboxylate transporter 1, signal transducer and activator of transcription 3 and MDR1) and
protein (hypoxia-inducible factor 1-alpha and hydroxycarboxylic acid receptor 1) that involved chemotherapy resistance [208]. In
addition, curcumin exerts chemo-preventive properties by targeting the cisplatin chemoresistance factors such as Nrf-2, NF-κB, and the
phosphorylation of STAT-3 [209]. Curcumin also showed a remarkable potential for enhanced effects of gefitinib on gefitinib-resistant
NSCLC cell lines H157 and H1299. The combination of curcumin and gefitinib markedly decreased EGFR activity by inhibiting Sp1,
tyrosine kinase receptors, ERK/MEK pathway, and AKT/S6K pathway [210]. In clinical trials, the intention-to-treat analysis showed
that the objective response rate of a combination of curcumin with paclitaxel was superior to that of a paclitaxel-placebo combination
(51 % vs. 33 %, p < 0.01) [211].

3.3.4. Emodin
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of herbal

including Polygonum cuspidatum (family Polygonaceae), Aloe vera (family Acanthaceae) [212,213]. According to Guo et al., combining
gemcitabine and emodin reduced xenograft volume and tumor growth in mice compared to treatment with gemcitabine or emodin
monotherapy. Emodin decreased expression of P-gp, MRP1, and MRP5 led to reduced resistance to gemcitabine in the combination
therapy group [214]. Additionally, emodin can be used as an inhibitor of the PI3K/AKT signaling pathway because of the increasing
inhibitory effect of 5-FU at 12 μg/mL 5-FU plus 9 μM emodin therapy [215]. The proliferation of A549 cells could be promoted by
emodin 1 μM and could be significantly inhibited by emodin>5 μM, so increase the sensitivity of cancer cells to cisplatin by inhibiting
P-gp expression [216].

3.3.5. Gingerol
Gingerols are prominent phenolic compounds found in ginger Zingiber officinale (family Zingiberaceae) and other plants in the

Zingiber genus, including 6-gingerol, 8-gingerol, 10-gingerol, 12-gingerol, 6-shogaol, 8-shogaol [217]. Gingerol has been found to
regulate various signaling pathways in cancer cells, including Signal Transducer and Activator of Transcription 3, β-catenin, EGFR,
VEGFR, MAPK, and pro-inflammatory mediators (TNF-α and COX-2). The efficacy of gingerol in in vitro, in vivo studies, and clinical
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trials has also been reported. According to Lou et al., the combination of 6-gingerol with cisplatin decreased cyclin D1, cyclin A2,
matrix metalloproteinase-9, p-PI3K, AKT, and p-AKT protein expressions and increased P21 and P27mRNA levels. 6-gingerol enhances
the cisplatin sensitivity of gastric cancer cells, and mechanisms involve G1 phase arrest, migration, and invasion suppression via
PI3K/AKT signaling pathway [218]. Liu et al. reported that the bioactive isolated compounds, including 6-gingerol, 10-gingerol, 6-sho-
gaol, and 10-shogaol at the concentration of 100 μM, significantly inhibited docetaxel-resistant human prostate cancer cells growth
and reverse drug resistance protein expression including MRP1 and GSTπ expression [219].

3.3.6. Resveratrol
Resveratrol (3,4′,5-trihydroxystilbene) is a stilbene compound having various pharmacological potentials such as antioxidant,

antimicrobial, antifungal, anti-inflammatory, and anticancer [220–223]. Li Wang et al. demonstrated that resveratrol enhanced the
antiproliferative activity of bestatin by downregulating P-gp expression via suppressing the PI3K/AKT/mTOR signaling pathway. The
IC50 value of bestatin in K562/doxorubicin cells was significantly reduced, and the activation of caspase3 and caspase8 increased,
indicating that resveratrol enhanced bestatin-induced apoptosis [40]. Resveratrol decreased the expression of phosphorylated
Akt-mediated and NF-κB, which is also substantiated by the downregulation of anti-apoptotic factors Bcl-2 and Bcl-XL in non-small cell
lung adenocarcinoma [224]. The study by Shankar et al. reported that resveratrol with a concentration of 10–30 μM caused apoptosis
in CD44+/CD24+/ESA+ pancreatic CSCs [225]. The stem cell maintaining factors such as Nanog and Oct-4, along with anti-apoptosis
proteins of the Bcl-2 family, were also inhibited with the dose of 10–20 μM [225]. The ability to induce apoptosis of resveratrol was
also reported in a CD24-/CD44+/ESA+model of breast CSCs through a FAS-mediated pathway after being treated with 50 or 100 μM
resveratrol [226].

4. Discussion

In recent years, several novel chemical compounds have emerged to support the treatment of multidrug-resistant cancer; however,
they remain behind natural substances in many aspects. These specifically include metalloid and micro-structure compounds, with the
most well-known example being cis-platinum, which has been proven to be effective in the treatment of breast cancer, NSCLC, and
chronic myelocytic leukemia efficient through the mechanism of DNA repair [227], or organosilicon compound namely ALIS 409
showing great potential as a multidrug-resistance reverting agents through inducing apoptosis, delaying tumor growth, and cell
desensitization [228]. These compounds emerge due to their advantages over natural compounds, which are diverse substances with
multi-target effects and synergistic mechanisms of action [229]. While the specific structures of alternative compounds meet diffi-
culties in developing and finding suitable experimental models [230], the structures of particular natural compounds are already
available, and resources need to be centered on optimization through semi-synthesis. Although new compounds with microstructure
have significant advantages in increasing bioavailability and tissue accumulation [231], this advantage can be directly integrated with
natural compounds, including derivatization metals with structurally specific natural-derived ligands [232], or using micro-particles
as a drug delivery system for encapsulating natural molecules [233]. Also, prevalent groups of natural compounds have synergistic
effects in regulating multidrug resistance in combination with chemotherapy found in well-known medication [234,235].

Flavonoids and alkaloids are two typical groups of secondary metabolites that have not only standard merits of natural compounds,
such as low levels of toxicity and a variety of implications, but also possess unique chemical structural features - as previously discussed
- allowing them to become a tremendous prospective direction in the utilization of multidrug resistance treatment. It is estimated that
of the approximately 27,000 identified alkaloids and 6000 flavonoids, many of which have been shown to modulate multidrug
resistance by synergistic mechanisms, with extensive studies in the most common cancers, including breast cancer, lung cancer, colon
and rectum cancer, prostate cancer and stomach cancer [236–238]. Nearly all structural subgroups of alkaloids and flavonoids have
molecular families of therapeutic targets; typical examples include isoquinoline alkaloid for two gastric cancer cell lines (SC-M1,
NUGC-3), and two colon cancer cell lines (CT26, COLO 205) [239] or flavanone glycoside for several oncogenes (MDR-1, MRP1, BCRP)
and the PI3K/Akt signaling pathway whose goal purpose is to suppress medication resistance in osteosarcoma cells [240]. Addi-
tionally, models evaluating the activity of natural compounds on Nrf2 in cancer cells are potential testable alternatives against
chemotherapeutic drug resistance. The commonly used model is a luciferase reporter gene transfecting into cancer cell genome as
high-throughput screening model for Nrf2 activity [241]. Besides, the dual function of Nrf2 protecting normal cells and preventing
drug resistance in cancer cell could enhance the therapeutic effects of anticancer drugs without exacerbating side effects.

Natural products have mainly been used for a long time in traditional medicines. Thus, natural compounds tend to have lower
toxicity compared to synthetic drugs, reducing the risk of adverse side effects for long-term use. The diversity of chemical structures of
natural compounds is an accessible source for research. However, purified natural compounds have several limitations besides the
specific advantages. From the beginning, new compound discovery is time-consuming, requiring systematic operation in multiple
steps, including cultivation, harvesting, isolation, and targeted activity assessment [242]; to the constraints of reliance on in vitro and in
vivo results leading to limited clinical translatability [243].

Recently, in silico drug discovery has accelerated due to rapid advancements in computational methods and the accumulation of
publicly available biological data. Crude extracts often contain multiple compounds with complex structures that interact with various
biological targets, potentially leading to broader therapeutic effects. However, isolating pure natural compounds is challenging and
might reduce their pharmacological properties. Despite this, about three-quarters of cancer drugs are derived from natural compounds,
primarily of plant origin. The current essential direction to overcome these challenges is to utilize computational learning approaches
to screen natural compounds and identify leading candidates with high application potential [244]. In silico techniques play a crucial
role in this process by leveraging structural information of either the drug target—structure-based approach or ligands with known

M.H. Nguyen et al. Heliyon 10 (2024) e39229 

14 

https://sciprofiles.com/profile/49487


bioactivity—ligand-based approach to facilitate the identification of promising drug candidates. These approaches fast-track drug
discovery by utilizing existing knowledge on ligand-receptor interactions, structural optimization, and synthesis. Each in silico
approach has unique strengths. Machine learning based screening can efficiently process vast publicly available datasets to identify
potential drug candidates, significantly reducing the time and resources required [245]. Molecular docking provides insights into the
specific molecular targets and pathways affected by these compounds by simulating the interaction between a drug and its target,
offering a detailed understanding of binding affinities and interaction sites [245]. Molecular dynamics goes a step further by simu-
lating the physical movements of atoms and molecules over time, providing a dynamic view of drug-target interactions and helping to
predict the stability and conformational changes of the complexes formed [246]. These approaches collectively enhance our under-
standing of structural sites and modes of action, enabling systematic classification with valuable predictive properties for emerging
targets, such as P-gp in the regulation of multidrug resistance. Subsequently, isolation, semi-synthesis, and synthesis research can
enhance performance and pharmacological effects while reducing toxicity. With advancements in artificial intelligence algorithms,
network pharmacology offers a systems-level understanding of the mechanisms of action of natural products. This novel approach
identifies the bioactivity of natural compounds and their putative molecular targets, predicting molecules’ direct and indirect targets
and confirming the synergistic action of natural compounds. Additionally, these approaches screen for toxicity due to adverse in-
teractions and assess the bioavailability of the compounds. Overall, combining multiple in silico approaches significantly increases the
efficiency of lead compound development, from which appropriate optimization methods can be established [247].

The lead compound taken from the development step is further improved and optimized for clinical properties. The most notable
method is partial or combinatorial chemical fabrication, which has an extensive number of branches that revolve around the char-
acteristic of the lead compound and the clinical improvement of interest. For example, numerous flavonoids can be integrated using
the emerging lipid-based drug delivery system niosome to increase bioavailability and cell accumulation [248,249], whereas chemical
intervention such as alpha-substitution or metal complexation for an acknowledged alkaloid like matrine can enhance clinical
effectiveness compared to employing pure substances [250,251]. Additionally, the use of metabolomics and integration of biosynthetic
pathway alteration may hold the promise of significantly improving efficiency and purity in the identification and isolation of lead
compounds [252,253].

5. Conclusions

In general, secondary metabolites from medicinal plants present promising resources for cancer drug-resistance treatment due to
their diverse structures and noteworthy pharmacological effects. This study has reviewed the research on natural compounds that can
overcome anticancer drug resistance by multiple mechanisms. Despite the advantages of natural compounds, they also have several
drawbacks, including limitations in supply, low concentrations, complex structures, and difficulty in extraction and isolation. In silico
combination strategies are employed to discover new structural framework compounds based on natural compounds, leveraging
advanced computational methods to simulate and predict molecular interactions. Integrating various approaches based on the
structure-activity relationship and reconfirming by in vitro and in vivo assay will boost the drug discovery process from natural sources
in general and medicinal plants in particular.
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EGFR Growth factor receptor
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ERK Extracellular-signal-regulated kinase
GBC Human gall bladder carcinoma
GSK-3 Glycogen synthase kinase 3
HCT Human ileocecal adenocarcinoma
IAP Inhibitors of apoptosis proteins
MAC Mitochondrial apoptosis-induced channel
Maf Musculoaponeurotic fibrosarcoma
MAPK Mitogen-activated protein kinase
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MDR Multidrug resistance
MDR1 Multidrug resistance protein 1
MEK Mitogen-activated protein kinase
MMP Matrix Metalloproteinase
MRP1 Multidrug resistance protein 1
MRP2 Multidrug resistance protein 2
mTOR Mammalian target of rapamycin
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PDK1 PIP3 binds to kinase-1
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PIP2 Phosphatidylinositol 4,5-bisphosphate
PIP3 Phosphatidylinositol 3,4,5-triphosphate
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[122] P. Mucha, A. Skoczyńska, M. Małecka, P. Hikisz, E. Budzisz, Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and
their metal ions complexes, Molecules 26 (16) (2021) 4886–4901, https://doi.org/10.3390/molecules26175377.

[123] F. Farhadi, B. Khameneh, M. Iranshahi, M. Iranshahy, Antibacterial activity of flavonoids and their structure–activity relationship: an update review, Phytother
Res. 33 (1) (2019) 13–40, https://doi.org/10.1002/ptr.6208.

[124] L.G. Sarbu, L.G. Bahrin, C. Babii, M. Stefan, M.L. Birsa, Synthetic flavonoids with antimicrobial activity: a review, J. Appl. Microbiol. 127 (5) (2019)
1282–1290, https://doi.org/10.1111/jam.14271.

[125] X. Wang, Y. Cao, S. Chen, J. Lin, J. Bian, D. Huang, Anti-inflammation activity of flavones and their structure–activity relationship, J. Agric. Food Chem. 69
(26) (2021) 7285–7302, https://doi.org/10.1021/acs.jafc.1c02015.

[126] J. Xiao, Recent advances in dietary flavonoids for management of type 2 diabetes, Curr. Opin. Food Sci. 44 (2023) 100806, https://doi.org/10.1016/j.
cofs.2022.01.002.

[127] X. Fan, et al., Flavonoids—natural gifts to promote health and longevity, Int. J. Mol. Sci. 23 (4) (2022) 2176–2192, https://doi.org/10.3390/ijms23042176.
[128] M. Sanchez, M. Romero, M. Gomez-Guzman, J. Tamargo, F. Perez-Vizcaino, J. Duarte, Cardiovascular effects of flavonoids, Curr. Med. Chem. 26 (39) (2019)

6991–7034, https://doi.org/10.2174/0929867326666181220094721.
[129] E. Hosseinzadeh, A. Hassanzadeh, F. Marofi, M.R. Alivand, S. Solali, Flavonoid-based cancer therapy: an updated review, Anti Cancer Agents Med. Chem. 20

(12) (2020) 1398–1414, https://doi.org/10.2174/1871520620666200423071759.
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