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Mucociliary clearance is an essential airway defense mechanism dependent
predominantly on the proper ciliary function and mucus rheology. The crucial role of
cilia is evident in `a variety of respiratory diseases, as the ciliary dysfunction is associated
with a progressive decline in lung function over time. The activity of cilia is under
supervision of multiple physiological regulators, including second messengers. Their
role is to enable a movement in coordinated metachronal waves at certain beat
frequency. Ciliary function can be modulated by various stimuli, including agents from
the group of beta2 agonists, cholinergic drugs, and adenosine triphosphate (ATP). They
trigger cilia to move faster in response to elevated cytoplasmic Ca2+ originated from
intracellular sources or replenished from extracellular space. Well-known cilia-stimulatory
effect of Ca2+ ions can be abolished or even reversed by modulating the
phosphodiesterase (PDE)-mediated breakdown of cyclic adenosine monophosphate
(cAMP) since the overall change in ciliary beating has been dependent on the balance
between Ca2+ ions and cAMP. Moreover, in chronic respiratory diseases, high ATP levels
may contribute to cAMP hydrolysis and thus to a decrease in the ciliary beat frequency
(CBF). The role of PDE inhibitors in airway cilia-driven transport may help in prevention of
progressive loss of pulmonary function often observed despite current therapy.
Furthermore, administration of selective PDE inhibitors by inhalation lowers the risk of
their systemic effects. Based on this review we may conclude that selective (PDE1, PDE4)
or dual PDE inhibitors (PDE3/4) increase the intracellular level of cyclic nucleotides in
airway epithelial cells and thus may be an important target in the development of new
inhaled mucokinetic agents. Further research is required to provide evidence of their
effectiveness and feasibility regarding their cilia-modulating properties.

Keywords: ciliary beat frequency, mucociliary clearance, calcium, nucleotides, phosphodiesterase,
phosphodiesterase inhibitors, inhaled drug delivery
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INTRODUCTION

During last decades, a cilium has emerged as a key player in
numerous physiological and developmental processes. Ciliary
dysfunction results in a broad range of clinical diseases limiting
the quality of patient´s life even despite an appropriate therapy.
Therefore, cilia have become an important focus of interest in
respirology. The exact mechanisms responsible for their motility
and regulation have been elucidated recently, and the
involvement of cyclic nucleotide (cAMP, cGMP) signaling in
amplifying the Ca2+-dependent movement of motile cilia has
been confirmed as one of the most important (Zagoory et al.,
2002; Kogiso et al., 2017). This explains why inhibition of
phosphodiesterases (PDEs), enzymes responsible for
degradation of cAMP and cGMP, represents one of the targets
for pharmacological modulation (Mokry et al., 2008) and
improvement of ciliary dysfunction.
CILIA

Cilia are microtubule-based organelles that have diverse motility
and sensory functions. Although nearly all of cilia possess
sensing role and transmit extracellular signals into intracellular
biochemical responses, only some of them are able to move.

Motile cilia perform rotary motion or create wave-like planar
beating based on the presence or absence of a central pair of
microtubules surrounded by nine microtubule doublets of
Frontiers in Pharmacology | www.frontiersin.org 2
axoneme. Rotary motion additionally requires the absence of
radial spokes (Shinohara et al., 2015). Adenosine triphosphate
(ATP) as a source of energy is essential for the ciliary motion
during which dynein motor proteins generate sliding movement
between adjacent microtubules. Motile cilia were primarily found
on ciliated epithelium lining the respiratory tract, fallopian tubes,
brain ventricles, and the spinal cord. Except of their involvement
in motility, all motile cilia play also sensory functions (Andrade
et al., 2005; Teilmann et al., 2005; Lorenzo et al., 2008;
Wodarczyk et al., 2009; Shah et al., 2009).

Immotile cilia (known also as “primary cilia”) act as sensory
organelles of the cell, and their crucial role can be observed in
various ciliopathies including retinal degeneration, anosmia,
deafness, hepatobiliary, pancreatic cyst, and many others (Hou
et al., 2002; Ward et al., 2003; Kulaga et al., 2004; Cano et al.,
2006; Murga-Zamalloa et al., 2010; Grati et al., 2015).

Cilia can be classified into four basic types (Figure 1): motile cilia
with a central pair of microtubules (9 + 2), motile cilia without a
central pair of microtubules (9 + 0), non-motile cilia with a central
pair of microtubules (9 + 2), and non-motile cilia with absent
central pair of microtubules (9 + 0) (Falk et al., 2015).

Structure of Cilia
Motile cilia of airway epithelial cells contain a central pair of
single microtubules surrounded by nine peripheral microtubule
pairs (9 + 2) and protein complexes necessary for ciliary beating,
such as axonemal dynein arms and radial spokes (Verhey et al.,
2011). The dynein arms are generally classified into two distinct
groups according to the number of heavy-chain motor units. The
FIGURE 1 | Structure of cilia viewed in cross-section and cilia distribution based on the motility in the body. Motile cilia with/without a central pair of microtubules (9
+ 2/9+0), immotile cilia with/without a central pair of microtubules (9 + 2/9+0).
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first group with the inner dynein arms is often situated along the
axonemal lengths, although several “minor dyneins” were found
near the ciliary base probably due to their role in bend initiation.
The second group of the outer dynein arms is required to restart
backward motion of cilium and change the ciliary beat pattern
associated with increase of calcium levels in response to different
signals (King, 2016). So, the change in the ciliary beat frequency
(CBF) is dependent on the outer dyneins.

Normal ciliary ultrastructure can be visualized using a
transmission electron microscopy (TEM). High-speed digital
video analysis has improved measurement and quantification
of CBF, while improvements in air–liquid interface culturing
techniques have led to development of in vitro models to
investigate mucociliary clearance.

Ciliar Motility
The cilia of the airways beat in a highly coordinated and
synchronized fashion across multiple ciliated cells. At the basal
conditions the low CBF is dependent on the dynein ATPase
activity of the axoneme with ability of cilia to increase it in the
response to various stimuli (Ma et al., 2002). Calcium (Ca2+)–
calmodulin complex could be considered as the key regulator of
CBF linked with both nucleotides, cAMP (cyclic adenosine
monophosphate) and cGMP (cyclic guanosine monophosphate),
in the process of ciliary stimulation, although cAMP can also play
a role in Ca2+-independent manner (Zagoory et al., 2002). In this
cross-talk the cyclic nucleotides are essential for Ca2+ to be
effective since disruption of nitric oxide (NO)–cGMP–protein
kinase (PK) G pathway at any of the steps in the presence of
high Ca2+ concentration eliminates its action (Schmidt and
Salathe, 2011). Ca2+ is generally released from intracellular
sources by inositol-3-phosphate (IP3) following stimulation of
certain membrane receptors (e.g., purinergic P2Y2, cholinergic
M1 and M3) or is transported from extracellular space via ion
channels that mediate influx of Ca2+ to the ciliary cells (Schmidt
and Salathe, 2011).

Ciliary response to “second messengers” is usually biphasic.
During the initial phase the rise in CBF mediated viamuscarinic
receptors is Ca2+–calmodulin-dependent and mainly regulated
by PKG. The second phase of CBF enhancement is induced by
acetylcholine (Ach) with a sustained moderately elevated CBF,
requiring PKG activation. However, this phase is controlled
predominantly by axonemal PKA in a Ca2+-independent
manner (Sanderson and Dirksen, 1989; Lansley et al., 1992;
Kultgen et al., 2002; Zagoory et al., 2002; Schmid et al., 2007).
Most enzymes and precursors involved in the ciliary motility are
located at the base of the ciliary axoneme close to their site of
action targeting phosphorylation and efficient regulation of the
ciliary beating (Stout et al., 2007).

CBF can be considered as one of the crucial factors
determining the rate of mucociliary clearance in daily life since
even small frequency reduction (beats/s) may have clinical
significance when considering clearance of secretions over
hours. Furthermore, despite the normal CBF, the efficacy of
mucociliary clearance is dependent also on the proper ciliary beat
Frontiers in Pharmacology | www.frontiersin.org 3
pattern. This is well documented in patients with primary ciliary
dyskinesia (PCD) (Jorissen et al., 2000).

Cilia in Mucociliary Clearance
Mucociliary clearance belongs to the group of defense
mechanisms in the airways. In pathological conditions
associated with CBF slowing (e.g., respiratory infection), the
cough and the other antibacterial defense mechanisms can
temporarily substitute it (Feldman et al., 2002; Bailey et al.,
2012). Therefore, drug combinations of cough suppressants and
agents with negative effects on the ciliary beating in the airways
could be considered as unsuitable with strong clinical
significance, as they negatively influence also reserve defense
mechanism. Similarly, less risk for exacerbations of chronic
bronchitis or chronic obstructive pulmonary disease (COPD)
has been recently confirmed in patients taking mucolytics
probably due to reduced mucus viscosity making it easier to
expectorate (Poole et al., 2019). Mucolytics provide also
additional direct cilio-stimulatory and bronchodilator effects
without impact on the cough sensitivity, anti-inflammatory
(Pappova et al., 2017; Frañová et al., 2019), antioxidant
(Miyake et al., 1999) or immunomodulatory properties, in
addition to the ability to reduce bacterial adhesiveness (Braga
et al., 1999, Pappová et al., 2018).

The overall effect of mucociliary clearance is dependent on the
proper ciliary function determined by the ciliary beat frequency,
on the ciliary pattern, and on the optimal airway surface hydration
state involving the presence of an airway surface layer (ASL). ASL
is responsible for mechanical trapping of inhaled particles and
pathogens by mucous component and for facilitating ciliary
beating in presence of the periciliary layer. These facts have been
confirmed in primary and secondary ciliary dyskinesia or cystic
fibrosis. The former is related to the ciliary dysfunction as a
consequence of defects in the ciliary structure based on the genetic
mutations or inflammatory mediators and pH of the cilia
environment, respectively (Rossman et al., 1984; Bisgaard and
Pedersen, 1987; Clary-Meinesz et al., 1998; Gomperts et al., 2007;
Grzela et al., 2013). The latter is caused by impaired epithelium
hydration with highmucus viscosity as a result of mutations in the
cystic fibrosis transmembrane conductance regulator (CFTR)
gene. Over time, ciliary dysfunction leads to recurrent
respiratory infections and consecutive decline in lung functions
leading to decreased quality of patients’ life.

Secondary ciliary dyskinesia includes acquired defects of
ciliary movement, which can be caused by viral or bacterial
infection or by air pollutants. This may be evident in lung
diseases such as bronchial asthma, and COPD. However, a
direct relationship between ciliary dysfunction with
ultrastructural abnormalities and disease severity was observed
only in asthma subjects (Thomas et al., 2010). In COPD studies,
controversial results were confirmed with the CBF discrepancy in
response to cigarette smoke (Zhou et al., 2009; Cohen et al., 2009,
Yaghi et al., 2012; Yaghi and Dolovich, 2016). Different CBF
values related to the cilia length shortening due to autophagic
mechanisms were also found by some researchers (Lam et al.,
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2013). Furthermore, the uncoordinated cilia function is not
typical for moderate to severe stages of COPD, and the
number of non-ciliated cells well correlates with the severity of
the disease (Yaghi et al., 2012).
CHRONIC OBSTRUCTIVE PULMONARY
DISEASE

Chronic obstructive pulmonary disease (COPD) is a common,
preventable, and treatable disease associated with chronic
inflammation of the lung parenchyma and peripheral airways.
This leads to persistent respiratory symptoms and progressive
airflow limitation usually caused by significant exposure to
tobacco smoke and airborne pollutants (GOLD Pocket
Guide, 2019).

The pharmacotherapy of COPD is strictly individualized
based on the disease severity, drug efficacy, drug tolerance,
patient preferences, comorbidities, and potential drug
interactions. Bronchodilators and anti-inflammatory
medications are one of the cornerstones of COPD
management. They reduce clinical symptoms, prevent the
development of airflow limitation, lower the risk and severity
of exacerbations, and improve the patients’ quality of life and
exercise tolerance. Despite the relative effectivity of these agents,
severe or very severe stages of the disease (FEV1 post-
bronchodilator less than 50% predicted) can sometimes
developed probably due to progression of inflammatory process.

Long-term inhaled treatment with corticosteroids (CS) in
association with long-acting beta2 agonists (LABA) reduce but
do not eliminate acute exacerbations of COPD. Methylxanthines
have been accepted as being effective drugs for the treatment of
COPD possessing both anti-inflammatory and bronchodilator
activity in the same molecule. But findings about their non-
selective mechanisms responsible for their relatively
unfavourable safety profile have led to the development of
novel therapeutic drugs with more selective properties.

PDE/PDE Inhibitors and COPD
The discovery of phosphodiesterase isoenzymes (PDEs) along
with increased understanding of their different function based on
the tissue/cell specificity was a driving force for the development
of PDE selective inhibitors for the treatment of various diseases
including COPD. Up-to-date, 11 isoenzymes families of PDEs
have been recognized (PDE1 - PDE11), of which PDE3 and
PDE4 are the major cAMP-hydrolyzing enzymes identified in
the smooth muscle. They are involved in the airway smooth
muscle tone regulation and inflammatory cell activity. PDE1 and
PDE5 are responsible for the cGMP-hydrolytic activity in airway
and vascular smooth muscle (Torphy et al., 1993).

Roflumilast, the first selective PDE4 inhibitor approved for
the therapy of COPD, is an anti-inflammatory agent that
improves lung function in patients with moderate to severe
COPD and reduces the risk of moderate to severe
exacerbations when add on to bronchodilators (SABA, LABA),
or inhaled CS. Although it is generally well tolerated, systemic
Frontiers in Pharmacology | www.frontiersin.org 4
effect of the drug is associated with the risk of diarrhea, nausea,
weight loss, headaches, and suicide limiting its use and inhaled
form if this drug with more favorable safety profile would be
of benefit.

It is well known that most recommended drugs for COPD are
given by inhalational route (GOLD Pocket Guide, 2019). It
provides several significant advantages over systemic
administration: lower effective dose than with systemic
delivery, higher concentration of the drug reached in the
airways, direct local delivery of the drug avoiding the systemic
circulation and first pass effect in the liver. The benefits of local
administration include fewer and less severe adverse effects,
more selective actions, and direct interaction of the drug with
ciliary epithelium. This makes the mucociliary clearance more
efficient in removing of excess mucous from the lungs during
pathological conditions, especially in case the drug has cilio-
stimulatory properties.

Thus, mucus hypersecretion and chronic productive cough as
the two characteristic features of COPD suggest the airway ciliary
dysfunction and indicate the need for improvement of ciliary
motility in the severe stages of this disease. At present, there are
no specific therapies available to correct the ciliary dysfunction
and the empiric treatment helps only to manage the
consequences of dysfunctional cilia. Therefore, inhalational
route of administration and focusing on mechanisms
ameliorating the ciliary beating frequency (e.g., increased
intracellular concentrations of cyclic nucleotides caused by
PDE inhibition) might be of huge benefit (Milara et al., 2012;
Kogiso et al., 2018; Zuo et al., 2018).
PDE AND CILIARY MOTILITY

The activity of PDE proteins is dependent on cell type. In the
human airway epithelial cells PDE4 activity is predominantly
expressed in addition to lesser PDE1, PDE3, and PDE5 activity
(Table 1) (Wright et al., 1998). The airway smooth muscle
(ASM) human cells express both PDE3 and PDE4 enzymes
(Beute et al., 2018). As described above, activity of PDE leads
to relatively flexible changes in intracellular cAMP
concentrations, which are involved in direct modulation of
calcium mediated contractions of microtubular apparatus. As
described in an older study by Tamaoki et al. (1989), the
phosphodiesterase inhibition by 3-isobutyl-1-methylxanthine
and the adenylate cyclase stimulation by forskolin led to
increase in CBF in a dose-dependent manner and were
TABLE 1 | PDE families expressed in ciliary epithelia with their selective inhibitors
and references of papers describing modulatory effects on ciliary motility.

PDE
family

Preference to
cAMP or cGMP

Selective
inhibitor

Ciliary motility modulation

PDE1A Both 8MmIBMX Kogiso et al., 2017
PDE3 Both Milrinone Cervin and Lindgren, 1998
PDE4 cAMP Rolipram,

Roflumilast
Cervin and Lindgren, 1998; Wohlsen
et al., 2010; Milara et al., 2012

PDE5 cGMP Zaprinast Cervin and Lindgren, 1998
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accompanied by the increases in intracellular concentrations of
cAMP. These results suggest that cAMP may accelerate
mucociliary clearance through the activation of ciliary motility
and that intracellular cAMP levels appear to be an important
determinant for the lung mucociliary transport functions
(Tamaoki et al., 1989). Similar results were observed by
Schmid et al. (2006), who described dose-dependent, albeit
similar and simultaneous increases in cAMP and ciliary beat
frequency caused by forskolin administration on human airway
epithelial cells. Therefore, an inhibition of PDEs, either non-
selective or selective to mostly expressed isoforms in the airways,
might be potentially useful in the modulation of CBF, either
directly by changing the cAMP levels in cilia, or indirectly by
influencing the allergic or other inflammation (Beute
et al., 2018).

Chronic treatment with PDE inhibitors seems to have
stronger effect on the ciliary beating since they do not directly
increase the generation of cAMP, but decrease its breakdown.
Therefore, their stronger action is expected in more progressed
disease stages.

Non-Selective PDE Inhibitors
There are several older studies focused on involvement of cyclic
nucleotides in sperm ciliary impairment. Non-selective inhibitors
of PDEs produce marked stimulation of cAMP dependent
motility, but not all of them have equal efficacy. Caffeine was
demonstrated to have a dose-dependent action with benefit at low
tomoderate doses in some human studies, whilst high-dose led to
detrimental effects (Levin et al., 1981; Moussa, 1983; Jiang et al.,
1984). Pentoxifylline (PTX), a potent vasodilating agent
recommended for the treatment of leg pain caused by chronic
occlusive arterial disease of the limbs, was studied as an artificial
spermmovement enhancer (Słoczyńska et al., 2013; Aifantis et al.,
2019). Its effect on spermmotility was confirmed in several in vivo
studies with significantly increased sperm motility in men with
oligoasthenoteratozoospermia (OAT) or in vitro studies during a
vitrification program without adverse effects on sperm DNA or
chromatin integrity (Stanic et al., 2002; Moslemi Mehni et al.,
2014; Nabi et al., 2017). However, the results of PTX treatment in
terms of assisted reproductive technologies outcomes are not
consistent. This is due to the treatment failure of PTX in
improvement of ejaculate parameters including the motility
(Maier et al., 1994). In in vitro conditions, PTX significantly
enhanced the viability of sperm of infertile OAT males with no
significant effect on its motility (Ghasemzadeh et al., 2016).

Theophylline has been confirmed to have a protective impact
on sperm motility during freezing procedures (Ebner et al., 2011;
Gorji et al., 2018). However, teratogenic potential of
methylxanthines is a limiting factor of their clinical use in
improving sperm motility and fertilizing ability (Fujii and
Nishimura, 1969; Tucci and Skalko, 1978; Friedman et al.,
1979; Basnet et al., 2017). Moreover narrow therapeutic index
and non-selective mechanism of action with high risk of systemic
adverse effects favors other drugs over methylxanthines.

Similarly to sperm cilia, tracheal ciliary epithelium is
controlled by intracellular cAMP levels. In a recent animal
study was confirmed that the ciliary beat frequency in tracheal
Frontiers in Pharmacology | www.frontiersin.org 5
epithelial cells is significantly higher, when ovalbumin-sensitized
guinea pigs were treated with systemic theophylline at the dose of
10 mg/kg/day (Kazimierová et al., 2015). This suggests direct
involvement of PDE inhibition in ameliorating the impaired
defense mechanisms caused by sensitization and challenging the
animals with ovalbumin, used to mimic the asthma-like
conditions (airway hyperresponsiveness associated with
eosinophilic inflammation). However, this study did not reveal
the exact involvement of PDE inhibition in direct influence on
cilia or indirect effects caused by anti-inflammatory and
immunomodulation action of theophylline. Therefore, selective
PDE inhibitors responsible for inhibiting single PDE isoforms
expressed in ciliary epithelial cells need to be tested.

Selective PDE1 Inhibitors
The experimental study of Kogiso et al. (2017) has recently
confirmed the expression of PDE1A by immune-electron
microscopy methods in the cilia and the cell body of lung airway
ciliary cells. Ca2+/calmodulin-dependent PDE1A was detected on
the nine doublet tubules ring and outside the ring in the lung airway
cilium, where the outer dynein arm functions. PDE1A modulates
CBF in lung cells in a Ca2+ dependent manner (Figures 2A, B).
PDE1A inhibition induced by low intracellular Ca2+ enhances CBF
due to cAMP accumulation (Kogiso et al., 2018).

PDE1C isoformwas found in themitochondria of cell body, but
not in the cilia. Similar results were observed in motile sperms of
mice (Vasta et al., 2005) as well as in human spermatozoa (Lefievre
et al., 2002), where a new isoform of PDE1A was detected.

Despite of these observations, there is currently only limited
data about efficacy of PDE1 inhibitors in respiratory diseases.
Vinpocetin, a selective PDE1 inhibitor used for increasing
learning and memory due to its vasodilating effect in cerebral
circulation caused by cGMP increase, was shown to have mild
antitussive and bronchodilating action in healthy and ovalbumin
sensitized guinea pigs (Mokry and Nosalova, 2011). However, no
information about its effects on CBF is available.

Selective PDE4 Inhibitors
As mentioned above, the airway smooth muscle (ASM) human
cells as well as epithelial cells express PDE4 enzymes (Beute et al.,
2018; Mokry et al., 2018). This is consistent with the findings of
in vitro experiments showing that ASM human cells are
primarily sensitive to cilostamid (PDE3 inhibitor), while both
ASM cells and human non-polarized bronchial epithelial
(16HBE 14o) cells are responding to PDE4 inhibition by
roflumilast. Moreover, selective PDE4 inhibition was found to
induce an effective reversion in the CBF down-regulation
induced by cigarette exposure in ex vivo conditions under
which expression of both PDE3 and PDE4 enzymes is
dominant (Milara et al., 2012; Zuo et al., 2018). Furthermore,
LABA enables roflumilast (selective PDE4 inhibitor) ability to
stimulate CBF in cigarette smoke exposed cells, while roflumilast
itself does it only in limited manner, as demonstrated by Schmid
et al. (2015). They showed that roflumilast can rescue smoke-
induced mucociliary dysfunction by reversing decreased cystic
fibrosis transmembrane conductance regulator (CFTR) activity,
augmenting airway surface liquid volume, and stimulatingCBF, the
May 2020 | Volume 11 | Article 609
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A

B

FIGURE 2 | (A): CBF down-regulation by PDE1A in presence of Ca2+ ions. (B) Involvement of PDE1A inhibition in CBF increase (CBF, ciliary beat frequency;
PDE1A, phosphodiesterase 1A; cAMP, cyclic 3′, 5′-adenosine monophosphate; Orai, calcium release-activated calcium channel involved in T-lymphocytes
activation; STIM1, stromal interaction molecule 1 - calcium sensor in endoplasmic reticulum).
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latter particularly in combination with formoterol. Of the 11 PDE
families, PDE3 and PDE4 have been shown to regulate cAMP-
stimulated CFTR, thus PDE4 inhibitors can potentiate the effect of
CFTRcorrectors due to regulationof ion andwater transport across
epithelia (Blanchard et al., 2014). Workman and Cohen (2014)
examined 229 substances based on their effects on CBF. Among
PDE4 inhibitors, roflumilast, roflumilast-N-oxide, and ibudilast
increased CBF, whereas theophylline as a non-selective PDE
inhibitor decreased it, probably due to antagonistic action on
adenosine A2B receptors (Allen-Gipson et al., 2011). Furthermore,
most of tested glucocorticosteroids and anticholinergics led to
decrease of CBF, suggesting a benefit of co-administration of
PDE4 inhibitors with these groups of drugs to prevent worsening
of expectoration in COPD patients (Workman and Cohen, 2014).

Dual PDE3/4 Inhibitors
Dual PDE3/4 inhibitors represent another strategy of potential
pharmaco-therapeutic agents for the treatment of respiratory
diseases because of their mixed bronchodilator/anti-inflammatory
effects and enhanced efficacy in a single molecule compared to
inhibition of only PDE3 or PDE4. Their benefit involves efficacy
both in acute and long-lasting bronchodilation along with anti-
inflammatory properties (Singh et al., 2018). Clinical use of a
inhaled bifunctional PDE3/4 inhibitor (ensifentrine/RPL554) in
respiratory diseases is currently limited to a few studies, including
bronchial asthma, in which mixed PDE3/4 inhibition has a
beneficial effect comparable with salbutamol but avoiding
characteristic systemic adverse effects of beta2 agonists (Bjermer
et al., 2019). In a recent study, RPL554 increased CBF in primary
human bronchial epithelial cells, suggesting that RPL554 may
increase mucociliary clearance through stimulation of CFTR and
increasing CBF and, thus, could provide a novel therapeutic option
for, e.g., cysticfibrosis (Turner et al., 2016). Ensifentrinehas recently
entered clinical phase II of drug testing, in order to demonstrate its
benefits as an add-on therapy in patients for the treatment of acute
exacerbations ofCOPDor for the regularmaintenance treatment of
patients either alone, or on top of existing drug classes (Cazzola
et al., 2018). However, at present the most intriguing perspective is
linked to its possible use in the treatment of cystic fibrosis, also
considering the lack of valid therapeutic options for this disease
(Cazzola et al., 2019).
OTHER DRUGS WITH CILIO-
STIMULATORY PROPERTIES
(MUCOKINETICS) USED FOR COPD AND
ASTHMA THERAPY

Beta2 Agonists
The mucokinetic agents may influence mucociliary clearance
directly by acting on the cilia. There is evidence that
bronchodilators SABA and LABA improve beating kinematics
via increase in the CBF in in vitro conditions (Devalia et al., 1992;
Kanthakumar et al., 1994; Frohock et al., 2002; Pappova et al.,
2017). However, in patients with moderate and severe bronchial
asthma, the CBF significantly declines despite treatment with
Frontiers in Pharmacology | www.frontiersin.org 7
long-acting bronchodilators (Thomas et al., 2010). The question is
to what extent the CBF is influenced by direct effect of the drug in
conditions of chronic inflammation and epithelium remodeling.
Kogiso et al. (2018) demonstrated that increase in the intracellular
Ca2+ concentration stimulates PDE1A leading to degradation of
cAMP and to suppression of the procaterol-stimulated CBF
increase. Ca2+ influx represents a motor for PDE1A most likely
via calcium release-activated ion channels (CRAC), whilst Ca2+

released from intracellular stores plays only little or no role
(Zagoory et al., 2002; Goraya et al., 2004; Joskova et al., 2016).
CRAC ion channels belong to the group of store operated ion
channels and become active when Ca2+ intracellular sources are
depleted. It seems that CRAC channel opening is involved in a
dual mechanism: extracellular Ca2+ enables the refilling of
endoplasmic reticulum Ca2+ stores (Prakriya, 2009) with Ca2
+-mediated cilio-stimulatory impact, but also links with cAMP-
dependent PDE1A activities. The overall change in ciliary beating
is dependent on the balance of Ca2+-signal and cAMP-signal
(Kogiso et al., 2018) with dominant response of the latter in
pathological conditions due to the cAMPbreakdown (Figure 2A).
This hypothesis has been confirmed in our experiments with
significant decrease in the CBF during physiological conditions,
when CRAC channel blocker was used, whilst different ciliary
response seen in airway allergic inflammation in ovalbumin-
sensitized guinea pigs (Joskova et al., 2016). Upregulation of
STIM1 and Orai1 proteins, the molecular components of CRAC
ion channels in inflammatory conditions can explain our findings
(Spinelli et al., 2012).Moreover, high levels ofATP associatedwith
tissue damage or inflammation provides a substrate for soluble
adenylyl cyclase (sAC) and generation of more cAMP for being
PDE active to slow down the ciliary beating. This explains
potential benefit of selective PDE1A inhibition in increasing the
CBF (Figure 2B). Furthermore, the closing connexin/pannexin
hemichannels that release ATP and decreasing intracellular Ca2+

levels may also suppress the CBF (Schmid et al., 2014; Shishikura
et al., 2016; Droguett et al., 2017; Zhou et al., 2019).

Similar results were obtained in in vitro studies modelling
COPD; the increase in the CBF induced by beta2 agonist was
abolished by up-regulation of IL-8 in response to cigarette smoke.
Thus, it is likely that smokers may be more resistant to the cilio-
stimulatory effects of beta2 agonists (Allen-Gipson et al., 2004).

Anticholinergic Drugs
Although it is generally believed that acetylcholine increases CBF
via muscarinic receptors (Wanner et al., 1996; Salathe et al.,
1997; Zagoory et al., 2001), anticholinergic agents exert cilio-
inhibitory effects of different intensities in experimental studies
(Pavia et al., 1979; Wanner, 1986). Muscarinic receptor
antagonists provide benefit in COPD by blocking cholinergic
tone and bronchodilation; however, there is no clinical evidence
about their effect on the ciliary beating in such conditions. M3

receptors are involved in the control of ciliary beat frequency,
whereas M2 receptors play an opposite role and prevent cilia-
excitation initiated by M1 receptors as well as by non-muscarinic
stimuli such as ATP. However, M2 receptors are not detectable in
the epithelial cells and are found only in neighboring cells (Klein
et al., 2009).
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Glucocorticosteroids
In animal studies, chronic inhalation of budesonide significantly
lowered the CBF using a 21-days model of ovalbumin-induced
allergic airway inflammation, whilst non-significant changes of
this parameter have been documented in the 28-days model
(Pappová et al., 2016) despite decreased level of IL-13
determined in bronchoalveolar lavage fluid and significant anti-
inflammatory effect. In patients with COPD, acute inhalation of
beclomethasone dipropionate did not affect mucociliary clearance
rates (Fazio and Lafortuna, 1986; Guleria et al., 2003). There are no
studies and data on the long-term effects of chronic therapy with
corticosteroids on the ciliary beat frequency and mucociliary
clearance. However, a long-term inhalation of steroids in severe
asthmatic patients leads to reduced epithelium damage and
decreased non-ciliated areas in the ciliated epithelium (Lundgren
et al., 1988). This may be consistent with the experimental finding
that cilio-stimulatory effects of LABA increase in presence of
inhaled corticosteroids and the fact that ICS-LABA therapy
significantly reduced the rate of exacerbations (Pappová et al.,
2016; GOLD Pocket Guide, 2019; GINA Pocket Guide, 2019).

Antileukotriens
Leukotrienes C4 and D4 as lipid mediators (products of
arachidonic acid degradation by 5-lipooxygenase) increase the
ciliary beat frequency in human upper airway mucosa in vitro
(Cyrus et al., 1998). Moreover, experimental findings suggest that
LTD4 exerts cilio-excitatory effects in human, guinea pig, and rat
respiratory mucosa with impaired cilia orientation and mucus
production (Joki et al., 1996).

Leukotriene modifiers could contribute to cilio-modulatory
effect due to both time- and dose- dependent cilio-stimulatory
effect of montelukast in human sinonasal epithelial cultures (Uz
et al., 2014); however, these experiments have not been yet
performed in inflammatory conditions.

Drug Excipients and the Ciliary Beating
Frequency
The cilio-inhibitory or cilio-static effect of preservatives and
absorption enhancers used as drug excipients should also be
taken in account. Despite their effectiveness in drug absorption
and prevention of microbial contamination, they may interfere
with mucociliary clearance and ciliary function (Merkus et al.,
2001; Jiao and Zhang, 2019).
CONCLUSIONS

Airway epithelial PDE isoforms could be considered as important
targets for the development of new inhaled mucokinetic agents.
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Their inhibition represents a viable therapeutic approach to
enhance mucociliary clearance in respiratory diseases. The major
mechanisms involved in an overall improvement of mucociliary
clearance in respiratory disease due to PDE1, PDE4 or PDE3/4
inhibitors include:

• increase in the CBF to allow a removal of mucus more
effectively from the lungs (PDE1, PDE4, PDE3/4 inhibitors);

• better epithelium hydration lowering the mucus viscosity
(PDE4, PDE3/4 inhibitors);

• anti-inflammatory effect (PDE4 and PDE3/4 inhibitors);
• bronchodilator effects (PDE3, PDE3/4 inhibitors);
• relatively few systemic adverse effects when delivered via the

inhaled route.

Furthermore, PDE1A inhibitors potentiate the cilia-
stimulatory effects of beta2 agonist mediated by cAMP
accumulation, whilst PDE4 inhibitors become effective in the
presence of LABA to stimulate ciliary beating. This makes the
mucociliary clearance in pathological airway conditions
more effective.

Dual PDE3/4 inhibitors could provide additional benefits and
show more rapid response when taken with beta2 agonist;
however, their cilia-stimulatory effect is probably mediated
predominantly by PDE4 inhibition.

In summary, PDE inhibitors besides their anti-inflammatory
and bronchodilator properties can prevent recurrent infection,
persistent inflammation, and decline in lung functions via direct
cilia-stimulatory response, when cilia dysfunction in lung
diseases has developed. Further research is required to provide
evidence of the effectiveness and feasibility of the inhaled
selective or bifunctional PDE inhibitors with respect to their
cilia-modulating properties.
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Grzela, K., Zagórska, W., Jankowska-Steifer, E., and Grzela, T. (2013). Chronic
inflammation in the respiratory tract and ciliary dyskinesia. Centr. Eur. J.
Immunol. 38, 122–128. doi: 10.5114/ceji.2013.34369

Guleria, R., Singh, T. R., Sinha, S., Padhy, K., Gupta, K., and Pande, J. N. (2003).
Effect of single inhalation of a salbutamol, ipratropium bromide and
beclomethasone on mucociliary clearance in patients with chronic
obstructive airway disease. Indian J. Chest Dis. Allied Sci. 45, 241–246.

Hou, X., Mrug, M., Yoder, B. K., Lefkowitz, E. J., Kremmidiotis, G., D’Eustachio, P.,
et al. (2002). Cystin, a novel cilia-associated protein, is disrupted in the cpkmouse
model of polycystic kidney disease. J. Clin. Invest. 109, 533–540. doi: 10.1172/
JCI14099

Jiang, C. S., Kilfeather, S. A., Pearson, R. M., and Turner, P. (1984). The
stimulatory effects of caffeine, theophyline, lysine-theophylline and 3-
isobutyl-1-methylxanthine on human sperm motility. Br. J. Clin. Pharmacol.
18, 258. doi: 10.1111/j.1365-2125.1984.tb02466.x

Jiao, J., and Zhang, L. (2019). Influence of Intranasal Drugs on Human Nasal
Mucociliary Clearance and Ciliary Beat Frequency. Allergy Asthma Immunol.
Res. 11, 306–319. doi: 10.4168/aair.2019.11.3.306

Joki, S., Saano, V., Koskela, T., Toskala, E., Bray, M. A., and Nuutinen, J. (1996).
Effect of leukotriene D4 on ciliary activity in human, guinea-pig and rat
respiratory mucosa. Pulm. Pharmacol. 9, 231–238. doi: 10.1006/pulp.1996.0029

Jorissen, M., Willems, T., and Van der Schueren, B. (2000). Ciliary function analysis for
the diagnosis of primary ciliary dyskinesia: advantages of ciliogenesis in culture.
Acta Otolaryngol. 120, 291–295. doi: 10.1080/000164800750001116

Joskova, M., Sutovska, M., Durdik, P., Koniar, D., Hargas, L., Banovcin, P., et al.
(2016). The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency
During Allergic Inflammation. Adv. Exp. Med. Biol. 921, 27–35. doi: 10.1007/
5584_2016_247

Kanthakumar, K., Cundell, D. R., Johnson, M., Wills, P. J., Taylor, G. W., Cole, P. J.,
et al. (1994). Effect of salmeterol on human nasal epithelial cell ciliary beating:
May 2020 | Volume 11 | Article 609

https://doi.org/10.1083/jcb.200409070
https://doi.org/10.1186/1465-9921-13-49
https://doi.org/10.1186/s40360-017-0179-9
https://doi.org/10.1186/s40360-017-0179-9
https://doi.org/10.1172/jci.insight.94888
https://doi.org/10.1111/j.1365-2222.1987.tb02326.x
https://doi.org/10.1111/j.1365-2222.1987.tb02326.x
https://doi.org/10.1016/j.pupt.2019.101814
https://doi.org/10.1096/fj.13-240861
https://doi.org/10.1055/s-0031-1300425
https://doi.org/10.1053/j.gastro.2006.10.050
https://doi.org/10.4155/ppa-2018-0030
https://doi.org/10.1080/13543784.2019.1661990
https://doi.org/10.1016/s0385-8146(98)00010-8
https://doi.org/10.1183/09031936.98.11020330
https://doi.org/10.1002/lary.20223 
https://doi.org/10.1177/019459989811800407
https://doi.org/10.1016/0952-0600(92)90068-r
https://doi.org/10.1113/JP273996 
https://doi.org/10.1016/j.fertnstert.2011.08.041
https://doi.org/10.3390/cells4030500
https://doi.org/10.1159/000194908
https://doi.org/10.1053/rmed.2002.1316
https://doi.org/10.1016/j.pupt.2018.11.006
https://doi.org/10.1152/japplphysiol.00755.2001
https://doi.org/10.2535/ofaj1936.46.4_167
https://doi.org/10.2535/ofaj1936.46.4_167
https://doi.org/10.4103/0300-1652.193857
https://ginasthma.org/wp-content/uploads/2019/04/GINA-2019-main-Pocket-Guide-wms.pdf
https://ginasthma.org/wp-content/uploads/2019/04/GINA-2019-main-Pocket-Guide-wms.pdf
https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-POCKET-GUIDE-FINAL_WMS.pdf
https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-POCKET-GUIDE-FINAL_WMS.pdf
https://doi.org/10.1165/rcmb.2006-0400OC
https://doi.org/10.1016/j.mefs.2017.09.002
https://doi.org/10.1093/hmg/ddv009
https://doi.org/10.5114/ceji.2013.34369
https://doi.org/10.1172/JCI14099
https://doi.org/10.1172/JCI14099
https://doi.org/10.1111/j.1365-2125.1984.tb02466.x
https://doi.org/10.4168/aair.2019.11.3.306
https://doi.org/10.1006/pulp.1996.0029
https://doi.org/10.1080/000164800750001116
https://doi.org/10.1007/5584_2016_247
https://doi.org/10.1007/5584_2016_247
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Joskova et al. Respiratory Cilia and PDE Inhibitors
inhibition of the ciliotoxin, pyocyanin. Br. J. Pharmacol. 112, 493–498.
doi: 10.1111/j.1476-5381.1994.tb13100.x
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