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Abstract

White matter hyperintensities (WMHs) represent the most common neuroimaging

marker of cerebral small vessel disease (CSVD). The volume and location of WMHs

are important clinical measures. We present a pipeline using deep fully convolutional

network and ensemble models, combining U-Net, SE-Net, and multi-scale features, to

automatically segment WMHs and estimate their volumes and locations. We evalu-

ated our method in two datasets: a clinical routine dataset comprising 60 patients

(selected from Chinese National Stroke Registry, CNSR) and a research dataset com-

posed of 60 patients (selected from MICCAI WMH Challenge, MWC). The perfor-

mance of our pipeline was compared with four freely available methods: LGA, LPA,

UBO detector, and U-Net, in terms of a variety of metrics. Additionally, to access the

model generalization ability, another research dataset comprising 40 patients (from

Older Australian Twins Study and Sydney Memory and Aging Study, OSM), was

selected and tested. The pipeline achieved the best performance in both research

dataset and the clinical routine dataset with DSC being significantly higher than other

methods (p < .001), reaching .833 and .783, respectively. The results of model gener-

alization ability showed that the model trained on the research dataset

(DSC = 0.736) performed higher than that trained on the clinical dataset
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(DSC = 0.622). Our method outperformed widely used pipelines in WMHs segmenta-

tion. This system could generate both image and text outputs for whole brain, lobar

and anatomical automatic labeling WMHs. Additionally, software and models of our

method are made publicly available at https://www.nitrc.org/projects/what_v1.
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1 | INTRODUCTION

White matter hyperintensities (WMHs) are areas with abnormally

bright signal in the cerebral white matter, which are commonly seen

on T2-weighted magnetic resonance imaging (MRI) scans. They are

the most widely studied neuroimaging biomarkers of cerebral small

vessel disease (CSVD; Wardlaw, Valdés Hernández, & Muñoz-

Maniega, 2015) and are closely related to various pathological pro-

cesses, including stroke, cognitive decline, and dementia (d'Arbeloff

et al., 2019; Debette & Markus, 2010; Herrmann, Le Masurier, &

Ebmeier, 2008; Yoshita et al., 2006). The impact of the location of

WMHs on various neuropathological processes has been reported in

many studies (Lampe et al., 2019). Some studies have confirmed that

deep WMHs are associated with hypertensive cerebrovascular dis-

ease. WMHs also show a posterior and peripheral distribution pattern

in cerebral amyloid angiopathy (Graff-Radford et al., 2019; Phuah

et al., 2019). In addition, motor and cognitive deficits are associated

with the load and location of WMHs burdens. Periventricular WMHs

are mainly linked to cognitive impairment (Söderlund et al., 2006), and

subcortical WMHs can disrupt specific motor functions according to

location (Kim et al., 2011). Therefore, the segmentation of WMHs

plays an important role in further exploring and understanding the

pathological mechanism among CSVD, cognitive, and motor deficits.

Visual rating by trained experts, such as the Fazekas rating scale

(Fazekas, Chawluk, Alavi, Hurtig, & Zimmerman, 1987), is still the most

widely used method to study WMHs. However, such methods are

time consuming and suffer from significant intra-rater and inter-rater

variability (Commowick et al., 2018). As a result, they are not feasible

in the context of large-scale studies. Besides, such visual rating scales

do not provide regional WMHs volume information. Thus, there is a

need for accurate and automated segmentation of WMHs, which will

contribute to the clinical evaluation and scientific research.

Many approaches have been recently proposed for automatic

segmentation of WMHs. Guerreroa et al. proposed a network called

uResNet which combines the strengths of both U-Net and residual

neural network to segment hyperintensities with 2D patches and dif-

ferentiate between WMHs and stroke lesions (Guerrero et al., 2018).

Li and colleagues proposed an ensemble of three U-Net's with differ-

ent random weight initializations, which won the first place in the

MICCAI WMH Segmentation Challenge at MICCAI 2017 (https://

wmh.isi.uu.nl/; Li et al., 2018; Ronneberger, Fischer, & Brox, 2015).

However, the skip connections of the U-Net simply concatenate low-

level and high-level features together; thus, multi-scale features are

not sufficiently utilized. Methods using U-Net also require the users

to have computer and programming knowledge. Liu and his colleagues

proposed a deep convolutional neural network, M2DCNN, that can

accurately segment WMHs (Liu et al., 2020). M2DCNN consists of

two subnets that rely on a set of novel multi-scale features and a

novel architecture (inclusion of dense and dilated blocks). Seven

methods were evaluated in the work of Vanderbecq and colleagues

(Vanderbecq et al., 2020) using two different datasets. Their results

showed the method of NicMslesion to be the only deep learning

method that did not perform very well. We speculate that it may need

to be retrained to achieve better performance.

In this paper, we propose a novel method using deep fully con-

volutional neural network (FCN) and ensemble models for WMHs seg-

mentation. We evaluated the performance of our proposed model by

comparing it with five other methods using three datasets, including

two research datasets and one clinical dataset. Furthermore, we

encapsulated our model into a user-friendly, fully automated pipeline

for WMHs segmentation. This pipeline can generate both image and

text outputs for whole brain, lobar and anatomical automatic labeling

(AAL) WMHs. The code and software are available for download at

https://www.nitrc.org/projects/what_v1.

2 | MATERIAL AND METHODS

2.1 | Fully convolutional network

2.1.1 | U-Net

U-Net was proposed by Ronneberger et al. to perform biomedical

image segmentation (Ronneberger et al., 2015). The structure consists

of a contracting path and an expansive path, such that high-resolution

features from the contracting path are combined with the upsampled

output. In this work, we build an FCN based on the U-Net structure,

which takes as input the axial slices of T1 and T2-FLAIR images. The

model is illustrated in Figure 1a. The expansive path is approximately

symmetric to the contracting path. The contracting path consists of

the repeated application of two 3 � 3 convolutions, each is followed

by a batch normalization, a rectified linear unit (ReLU) and a 2 � 2

max-pooling operation with a stride of 2 for downsampling, which

was replaced by upsampling in the expansive path. At the final layer, a

1 � 1 convolution is used to map each 64-component feature vector

to a WMHs map class.
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2.1.2 | U-Net with a squeeze-and-excitation block

U-Net implements skip connections, which are a simple concatenation

of the low-level and high-level features. However, they cannot fully

fuse the spatial and semantic information. In order to capture the

nonlinear relationship of these two features, squeeze-and-excitation

(SE) blocks were added after the concatenation of the skip connec-

tions in U-Net (Hu, Shen, & Sun, 2018; Lee et al., 2020). As shown in

Figure 1b, the SE-block expects an increased representational power

from modeling the channel-wise dependencies of the convolutional

features. These SE blocks were originally envisioned for image classifi-

cation using adaptive feature recalibration, such that the informative

features can be boosted and the weak ones can be suppressed at a

minimal computational burden.

2.1.3 | U-Net with multi-scale features

U-Net suffers from an insufficient utilization of the multi-scale fea-

tures. To address this limitation, the proposed network retains the

classic encoder-decoder architecture of U-Net, while introducing

dense connections in the encoder. The model is shown in Figure 1c. In

order to avoid overfitting caused by too many network parameters,

the network does not introduce these dense connections among each

layer of the feature maps, but only connections between the feature

map after the downsampling and the original input. The operation has

the purpose of integrating the low-level features and high-level

features, while using the original input image to globally supervise the

subsequent feature maps. In the decoder of the model, the network

integrates features of different scales together and provides them as

input to the last layer of the network for WMHs segmentation.

2.1.4 | Ensemble FCNs

The ensemble model combines multiple deep learning models to obtain

an enhanced performance compared with the single models. In computer

vision and medical image analysis, the ensemble model has been widely

used and achieved very good results. Li et al. used an ensemble of three

U-Net structures with different random weight initializations, and won

the first place in the MICCAI WMH challenge (Li et al., 2018). In our

model, we employed an ensemble of U-Net, SE block and multiple-scale

U-Net. The proposed architecture is shown in Figure 1d. Each model will

make a prediction on the test image and generate a probability map.

Then the resulting three maps will be averaged. Finally, we used a

threshold of .5 to cut the probabilities to make class predictions.

2.2 | Participants

In this study, we used two research datasets and a clinical dataset to vali-

date our pipeline. For the research datasets, the first one was acquired

from the MICCAI WMH Challenge (Kuijf et al., 2019), and the second

one included data from the Older Australian Twins Study (OATS;

F IGURE 1 (a) Two-dimensional Convolutional Network Architecture. The input includes FLAIR and T1 channel. (b) Conceptual diagram of
basic squeeze and excitation (SE) block. (c) Proposed architecture for WMHs segmentation with multi-scale features. (d) Overall framework for
the testing stage
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Sachdev et al., 2013) and Sydney Memory and Aging Study (Sydney

MAS; Sachdev et al., 2010), which were acquired using multiple scan-

ners. For the clinical dataset, we randomly selected 30 participants from

hospital A (sub-A) and 30 participants from hospital B (sub-B) in the Chi-

nese National Stroke Registry (CNSR; Wang et al., 2011).

2.2.1 | MICCAI WMH challenge (MWC)

This dataset includes T2-FLAIR and T1 MR images of 60 subjects

acquired by three different scanners in three different hospitals

(Utrecht, Singapore and Amsterdam, 20 subjects each) in the

Netherlands and Singapore. A 3D T1-weighted image and a 2D multi-

slice T2-FLAIR image were provided for each subject. Characteristics

of the data are summarized in Table 1. The following scanning param-

eters were used:

In UMC Utrecht, a 3 T Philips Achieva was used. 3D T1-weighted

sequence (192 slices, voxel size: 1.00 � 1.00 � 1.00 mm3, repetition

time (TR)/echo time (TE): 7.9/4.5 ms), 2D T2-FLAIR sequence

(48 slices, voxel size: 0.96 � 0.95 � 3.00 mm3, TR/TE/inversion time

[TI]: 11,000/125/2,800 ms).

In NUHS Singapore, a 3 T Siemens TrioTim was used. 3D

T1-weighted sequence (voxel size: 1.00 � 1.00 � 1.00 mm3, TR/TE/

TI: 2,300/1.9/900 ms), 2D T2-FLAIR sequence (voxel size:

1.00 � 1.00 � 3.00 mm3, TR/TE/TI: 9,000/82/2,500 ms).

In VU Amsterdam, a 3 T GE Signa HDxt was used. 3D

T1-weighted sequence (176 slices, voxel size:

0.94 � 0.94 � 1.00 mm3, TR/TE: 7.8/3.0 ms), 3D T2-FLAIR sequence

(132 slices, voxel size: 0.98 � 0.98 � 1.20 mm3, TR/TE/TI:

8,000/126/2,340 ms).

2.2.2 | Chinese National Stroke Registry (CNSR)

CNSR is a nationwide registry of ischemic stroke or transient ischemic

attack (TIA) in China based on etiology, imaging, and biology markers.

This dataset includes T1 and T2-FLAIR scans for 60 subjects from two

different hospitals. This registry is funded by the Chinese government

and represents the only nationwide stroke registry that includes

132 urban hospitals (Wang et al., 2011). In this study, we randomly

selected 30 participants from sub-A and 30 participants from sub-B in

the CNSR. A 2D multi-slice T1-weighted image and a 2D multi-slice

T2-FLAIR image are provided for each subject. Characteristics of the

data are summarized in Table 1. The following scanning parameters

were used:

Sub-A, 1.5 T GE Optima MR360: 2D T1-weighted sequence

(20 slices, voxel size: 0.47 � 0.47 � 6.5 mm3, TR/TE/TI:

2,852/20/750 ms), 2D T2-FLAIR sequence (voxel size:

0.47 � 0.47 � 6.5 mm3, TR/TE/TI: 8,500/130/2,100 ms).

Sub-B, 1.5 T GE Signa HDxt: 2D T1-weighted sequence (19 slices,

voxel size: 0.47 � 0.47 � 7 mm3, TR/TE/TI: 1,709/26/720 ms), 2D

T2-FLAIR sequence (voxel size: 0.47 � 0.47 � 6.5 mm3, TR/TE/TI:

8,502/163/2,100 ms).

2.2.3 | OATS and Sydney MAS (OSM)

In this work, we selected 40 subjects from OATS and Sydney MAS,

the detailed information had been previously described (Jiang

et al., 2018).

OATS is a study of community-dwelling twins aged 65 and above

(Sachdev et al., 2013). The recruitment of participants occurred in

three states in Eastern Australia: New South Wales, Victoria, and

Queensland. At baseline, a total of 623 individuals had participated at

baseline and MRI data were acquired for 421 of them. Participants

recruited in Victoria were scanned using a 1.5 T Siemens Magnetom

Avanto scanner (N = 148), and those in Queensland were scanned

using a 1.5 T Siemens Sonata scanner (N = 102). In New South Wales,

a Phillips 1.5 T Gyroscan scanner was initially used (N = 116); later

on, it was replaced with a Philips 3 T Achieva Quasar Dual scanner

(N = 34). The following scanning parameters were used:

T1-weighted MRI images were acquired from 1.5 T scanners in all

three centers, the scanning parameters were as follows: in-plane reso-

lution 1 � 1 mm with a slice thickness of 1.5 mm, contiguous slices,

TR (repetition time) = 1,530 ms, TE (echo time) = 3.24 ms, TI (inver-

sion time) = 780 ms and flip angle = 8�. For T1-weighted MRI

acquired for the 3 T scanner in New South Wales, the scanning

parameters were as follows: TR = 6.39 ms, TE = 2.9 ms and spatial

resolution = 1 � 1 � 1 mm3.

T2-weighted T2-FLAIR images were acquired from 1.5 T scanners in

all three centers, the scanning parameters were as follows:

TR = 10,000 ms, TE = 120 ms, TI = 2,800 ms, slice thickness = 3.5 mm

and in-plane resolution = 0.898 � 0.898 mm2. For the 3 T scanner at

New South Wales, the scanning parameters were the following:

TR = 10,000 ms, TE = 110 ms, TI = 2,800 ms, slice thickness = 3.5 mm

and in-plane resolution = 0.898 � 0.898 mm2.

TABLE 1 Characteristics of MICCAI WMH Challenge (MWC) dataset and CNSR dataset

Datasets Centers Scanners name Voxel size (mm3) Size of FLAIR scans N

MWC UMC Utrecht 3T Philips Achieva 0.96*0.95*3.00 240*240*48 20

NUHS Singapore 3T Siemens TrioTim 1.00*1.00*3.00 252*232*48 20

VU Amsterdam 3T GE Signa HDxt 0.98*0.98*1.20 132*256*83 20

CNSR Sub-A GE Optima MR360 0.47*0.47*6.5 512*512*20 30

Sub-B GE Signa HDxt 0.47*0.47*7 512*512*19 30
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Sydney MAS is a community-based longitudinal study of older

adults aged 70–90 years at baseline, living in Sydney, Australia

(Sachdev et al., 2010). A total of 1,037 nondemented community-

dwelling participants were randomly recruited from the compulsory

electoral rolls of two regions in Sydney. The following scanning

parameters were used:

T1-weighted MRI: TR = 6.39 ms, TE = 2.9 ms, flip angle = 8�,

matrix size = 256 � 256, FOV (field of view) = 256 � 256 � 190 and

slice thickness = 1 mm with no gap in between, yielding

1 � 1 � 1 mm3 isotropic voxels.

T2-weighted T2-FLAIR: TR = 10,000 ms, TE = 110 ms,

TI = 2,800 ms, matrix size = 512 � 512, slice thickness = 3.5 mm

without a gap and in plane resolution = 0.488 � 0.488 mm2.

2.3 | Manual segmentation of WMH

MICCAI WMH Challenge: an expert observer (O1) manually seg-

mented WMHs and other pathologies (i.e., lacunes and nonlacunar

infarcts, [micro] hemorrhages), and a second expert observer

(O2) with 11 years of experience in quantitative neuroimaging and

clinical neuroradiology peer-reviewed the segmentation results (Kuijf

et al., 2019).

OATS and Sydney MAS: Liu, H., defined the manual reference

standard on the T2-FLAIR image. Then, Rebecca Koncz, a neuroradiol-

ogist with more than 5 years of experience in reading cerebral MRI

scans (Jiang et al., 2018), reviewed the results.

CNSR: We used the manual segmentation performed on all

60 T2-FLAIR images by an experienced neuroradiologist using 3D

Slicer as the ground truth to evaluate the method. Then, the segmen-

tation results were reviewed by Jing Jing, an experienced

neuropsychiatrist.

We separately randomly selected 10 subjects from three datasets,

then another experienced neuroradiologist was asked to manually

label WMHs on these selected subjects. The dice values of MWC,

OSM, and CNSR datasets between the two manual labelers were

0.800, 0.853 and 0.806, respectively.

2.4 | Preprocessing and data augmentation

T2-FLAIR and T1 images were preprocessed according to the follow-

ing steps: (1) Coregistration. T1 images were co-registered to the

patient's T2-FLAIR images using FSL-FLIRT (Jenkinson &

Smith, 2001). The axial slices of the two modalities were provided as

an input to our model. (2) Skull stripping and neck cleanup. First, non-

brain tissue was removed from coregistered T1 images using FSL-BET

(Smith, 2002), which can generate a brain mask. Second, the brain

mask was used to mask the T2-FLAIR images. (3) Gaussian normaliza-

tion. In order to have consistent intensity voxel values, the intensity

distributions for the 3D scans were normalized using Gaussian nor-

malization. (4) Uniform size. All the axial slices of T1 and T2-FLAIR

images were cropped or zero-padded to the size of 200 � 200 or

512 � 512. (5) Data augmentation. The axial slices were horizontally

flipped, and rotation, scaling, and shearing were used.

2.5 | Determination of hyper-parameters

We used fivefold cross-validation across the subjects to determine

the optimal parameters that maximized the Dice similarity coefficient

(DSC) on the validation subset for the five methods. For the LGA

(Schmidt et al., 2012), LPA (Schmidt, 2017) and UBO detector (Jiang

et al., 2018), we chose the optimal probability threshold that is used

to define WMHs. For U-Net and the proposed model, they were

trained with Kaiming weight initialization (He, Zhang, Ren, &

Sun, 2015) for 50 epochs with an initial learning rate of 0.0002 and

batch size 32. The optimization was performed using the Adam with

first momentum 0.9 and second momentum 0.999.

2.6 | Validation metrics

Five metrics were used to evaluate the performance of different

methods based on the segmentation results: (1) the DSC (Dice, 1945),

(2) a modified Hausdorff distance (95th percentile; H95)

(Huttenlocher, Klanderman, & Rucklidge, 1993), (3) the absolute per-

centage volume difference (AVD), (4) recall: the ratio of true positives

from each method to the manually traced WMHs, (5) precision: the

ratio of true positives from each method to each method-generated

WMHs. The five metrics can be defined as follows:

DSC¼ 2TP
PþG

¼ 2TP
2TPþFPþFN

ð1Þ

recall¼TP
G

¼ TP
TPþFN

ð2Þ

precision¼TP
P

¼ TP
TPþFP

ð3Þ

where G is the ground-truth segmentation map and P is the segmenta-

tion map of each method. TP, TN, FP, and FN denote the number of

true positives, true negatives, false positives and false negatives,

respectively.

HD G,Pð Þ¼max h G,Pð Þ,h P,Gð Þf g ð4Þ

h G,Pð Þ¼max
a � G

min
b � P

d a,bð Þ ð5Þ

h P,Gð Þ¼max
b � P

min
a � G

d a,bð Þ ð6Þ

where d(a, b) represents the distance of a and b, max denotes the

maximum and min is the minimum. Instead of the maximum (100th

percentile) distance, we modified it to obtain a robust version by using

the 95th percentile distance.
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AVD¼ VG�VPj j
VG

ð7Þ

where VG and VP denote the WMHs volume in G and P, respectively.

2.7 | Statistical analysis

We used fivefold cross-validation to evaluate the performance of dif-

ferent methods on the MICCAI and CNSR datasets. In order to assess

the proposed model generalization ability, we trained the proposed

model on MWC and CNSR respectively, and tested it on CNSR and

MWC respectively. And we trained our model separately on MICCAI

and CNSR, then tested it on OATS and Sydney MAS. We performed

paired t-tests on the Dice values of all pairs of method comparisons to

assess the statistical significance of the results. The above process is

shown in Figure 2.

3 | RESULT

3.1 | Performance on the clinical routine dataset
(CNSR) and the research dataset (MWC) using cross-
validation

We validated the performance of each method through fivefold

cross-validation using T1w and T2-FLAIR images on the research

dataset (MWC) and the clinical (CNSR). Tables 2 and 3 lists the

quantitative evaluation results of different methods on MWC and

CNSR, respectively. In order to assess the statistical significance of

the results, we performed paired t-tests on the Dice values of all

pairs of method comparisons. The results showed that our method

achieved a significantly better performance than the other methods

on MWC and CNSR (p < .001). The mean DSC value of our model

was 0.833, which is 3% higher than the second-best result on

MWC. And on the CNSR, our method achieved the highest mean

DSC value of 0.783, which is 3.8% higher than the second-best

result.

Figure 3a,b separately shows the DSC statistical distribution plots

for different methods on MWC and CNSR. Our method and U-Net

had a denser distribution compared with the classical segmentation

methods including LPA, LGA and UBO detector, especially at high

DSC values on MWC and CNSR. And on the MWC dataset, minimum

DSC value of classical methods is ranging between 0 and 0.2, while

those of our method and U-Net were higher than 0.6

Figures S1 and S2 in supplemental material separately shows the

qualitative results of different methods separately on MWC and

CNSR. It can be observed that our method obtained more accurate

segmentation results compared with the other methods on both

datasets. Specifically, the middle of the ventricle could be accu-

rately identified as non-WMHs by deep learning-based methods,

that is, our method and U-Net, while classical segmentation

methods could not perform this identification. In addition, our

method yielded better segmentation results at the edges of WMHs.

Compared with U-Net, the false negative rate of our method was

reduced by 29.3 and 11.9% on MWC and CNSR, respectively. Our

method is both quantitatively and qualitatively superior to the

other four methods on CNSR.

In order to assess the effects of WMHs load changes on the

performance of the methods, the mean DSC values were divided

into groups according to different ranges of WMHs loads as fol-

lows: small (<5 cm3), medium (5–20 cm3) and large (>20 cm3; Dadar

et al., 2017). Figure 3c,d separately show the DSC statistical distri-

bution plots for subjects with small, medium and large WMHs loads

on MWC and CNSR. As the WMHs loads increased, the perfor-

mance of all the five methods became better. Our method

F IGURE 2 Overall relationships of tests among three datasets
using the proposed model

TABLE 2 Performance of the different automatic segmentation
methods on the research dataset MWC

Method DSC AVD H95 Recall Precision

LGA 0.566 38.616 22.784 0.494 0.755

LPA 0.628 58.352 17.060 0.654 0.722

UBO detector 0.545 63.247 18.860 0.440 0.515

U-Net 0.809 14.82 5.63 0.79 0.75

Proposed model 0.833 14.306 5.189 0.815 0.859

Note: For each metric, the table displays the average. Results in bold

indicates the best score for each metric.

Abbreviations: AVD, the absolute percentage volume difference; DSC, the

Dice Similarity Coefficient; H95, modified Hausdorff distance (95th

percentile).
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outperformed the other methods for the small, medium and large

WMHs load groups.

3.2 | Performance of testing on OSM when
training on MWC and CNSR, respectively

To assess the model generalization ability, we trained the proposed

model separately on MWC and CNSR, and tested it on OSM. As

shown in Table 4, the DSC value of the model trained on MWC was

0.736, while the DSC value of the model trained on CNSR was 0.622

(Figure 2).

The OSM dataset contains two kinds of in-plane resolution data:

0.5 � 0.5 mm2 and 1 � 1 mm2. The in-plane resolution of MWC is

about 1 � 1 mm2, while the in-plane resolution of CNSR is about

0.5 � 0.5 mm2. When we trained the model on MWC and directly

tested it on OSM, the result showed that the DSC value of the test

data with an in-plane resolution of 1 � 1 mm2 was 0.726, while the

TABLE 3 Performance of the different automatic segmentation methods on the clinical dataset CNSR

Method Dice AVD H95 Recall Precision

LGA 0.478 59.431 19.822 0.384 0.730

LPA 0.679 56.209 16.791 0.684 0.726

UBO detector 0.602 65.437 18.958 0.536 0.709

U-Net 0.754 30.779 9.261 0.765 0.771

Ensemble model 0.783 20.209 9.940 0.834 0.751

Note: For each metric, the table displays the average. Results in bold indicates the best score for each metric.

Abbreviations: AVD, the absolute percentage volume difference; DSC, the Dice Similarity Coefficient; H95, modified Hausdorff distance (95th percentile).

F IGURE 3 (a) DSC performance of the different automatic segmentation methods on MWC. The boxplots show the median and the 25 and
75% percentiles of the metrics distribution. Values outside the whiskers indicate outliers. Gray dots show the value for individual participants.
(b) DSC performance of the different automatic segmentation methods on CNSR. (c) DSC value for different methods for low (<5 cm3, left),
medium (5–20 cm3, middle), and high (>20 cm3, right) WMH load for the research dataset MWC. (d) DSC value for different methods for low
(<5 cm3, left), medium (5–20 cm3, middle), and high (>20 cm3, right) WMH load for the clinical dataset CNSR
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DSC value of the test data with an in-plane resolution of

0.5 � 0.5 mm2 was 0.294. When we trained the model on CNSR and

directly tested it on OSM, the DSC value of the test data with a reso-

lution of 0.5 � 0.5 mm2 was 0.610, and the DSC value of the test data

with the resolution of 1 � 1 mm2 was 0.383. After that, we re-

sampled the original images. The re-sampling operation here refers to

making the in-plane resolution of the image approximately equal to

the training data in-plane resolution through interpolation. After per-

forming the WMHs segmentation, the inverse operation was per-

formed to get back the original in-plane resolution. The results

showed that the DSC value of the test data with a resolution of

0.5 � 0.5 mm2 increased from 0.294 to 0.748 (model trained on

MWC), and the DSC value of the test data with a resolution of

1 � 1 mm2 increased from 0.383 to 0.631 (model trained on CNSR).

Additionally, we also test the model generalization ability via

testing the models on MWC or CNSR (Figure 2). The performance

of the model trained on CNSR and tested on MWC (DSC = 0.613)

is higher than the model trained on CNSR and tested on MWC

(DSC = 0.581).

4 | DISCUSSION

In this study, we propose a fully automated method using an ensem-

ble model for WMHs segmentation. The model is based on the archi-

tecture of U-Net, and it combines an SE-block and multi-scale

features. We evaluated our model by comparing its performance with

five automated WMHs segmentation methods, including those using

traditional machine learning and deep learning. We used both a

research dataset (MWC) and a clinical dataset (CNSR) to evaluate the

performance of the proposed model using fivefold cross-validation. In

addition, a multi-center research dataset (OSM) was used to assess

the generalization ability of the proposed method.

On the research dataset MWC, the proposed model in this study

achieved the best performance on the main metric of DSC, which was

significantly better than other methods (p < .001). Our method also

achieved the highest performance on the auxiliary metrics. When we

trained the proposed model, the DSC value on the training set could

easily reach above 0.9, but the DSC value on the test set was only

0.833. This could be explained by falling into overfitting, which

reflects a defect of the deep learning model (Jeong, Rachmadi, Valdés

Hernández, & Komura, 2019; Lawrence, Giles, & Tsoi, 1997). One of

the reasons could be that the amount of the training data was too

small (only 54 subjects).

On the clinical dataset CNSR, our ensemble model also achieved

the best performance with regard to the main metric of DSC, as well

as the auxiliary metrics. However, the model trained on CNSR

achieved a slightly inferior DSC value compared with that trained on

MWC. The in-plane resolution of the CNSR MRI is about

0.5 � 0.5 mm2, which is higher than that of the MWC MRI (about

1 � 1 mm2), but the performance of the trained model did not

improve. The reason may be that the number of axial slices of the

CNSR MRI is less than that of the MWC MRI, and the training data

are similar to those used for testing. However, it is not clear whether

the resolution in the slice direction can affect the performance of the

models (Dalmış et al., 2017; Li et al., 2018). The experimental results

of Dalmış seemed to show that there is no obvious relationship

between the segmentation results and the resolution in the slice

direction of MRI.

To assess the model generalization ability, we trained the pro-

posed model separately on MWC and CNSR, and tested on OSM.

OSM is comprised of two different in-plane resolution MR images,

TABLE 4 Performance of the different automatic segmentation methods trained on MWC and CNSR, respectively, and tested on OSM

Method Resolution Dice AVD HD Recall Precision

Train on MWC Origin

All 0.532 ± 0.233 51.898 ± 27.350 12.570 ± 9.796 0.425 ± 0.244 0.878 ± 0.048

1*1 0.726 ± 0.088 29.593 ± 13.818 6.740 ± 4.042 0.626 ± 0.119 0.886 ± 0.041

0.5*0.5 0.294 ± 0.084 79.161 ± 7.026 19.696 ± 10.109 0.180 ± 0.061 0.867 ± 0.056

Resize

0.5*0.5 0.748 ± 0.046 26.693 ± 9.516 7.609 ± 5.411 0.637 ± 0.074 0.873 ± 0.051

All 0.736 ± 0.074 28.288 ± 12.017 7.131 ± 4.664 0.631 ± 0.100 0.880 ± 0.046

Train on CNSR Origin

All 0.485 ± 0.195 61.568 ± 19.213 23.039 ± 14.444 0.354 ± 0.179 0.922 ± 0.047

1*1 0.383 ± 0.185 71.070 ± 17.062 30.009 ± 15.437 0.262 ± 0.154 0.912 ± 0.057

0.5*0.5 0.610 ± 0.122 49.955 ± 15.088 14.520 ± 6.675 0.466 ± 0.140 0.933 ± 0.030

Resize

1*1 0.631 ± 0.162 43.932 ± 21.488 11.446 ± 5.467 0.509 ± 0.183 0.916 ± 0.038

All 0.622 ± 0.144 46.643 ± 18.896 12.829 ± 6.157 0.490 ± 0.165 0.924 ± 0.035

Note: Origin: Test directly on the test set. Resize: Resample the test image resolution.
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and most studies only tested on images with an in-plane resolution

similar to that of the training images (Iorio et al., 2013; Lee

et al., 2020; Li et al., 2018). Surprisingly enough, the model trained on

CNSR had a worse performance compared with the trained on MWC,

as indicated by a lower DSC. Since the in-plane resolution of CNSR

and MWC is 0.5 � 0.5 mm2 and 1 � 1 mm2, respectively, we antici-

pated that the model could get more detailed information from CNSR,

but the fact was the opposite. The vertical gap of the MWC MRI is

3 mm or 1.2 mm, while that of CNSR is 6.5 mm, and that of OSM is

1 mm or 3.5 mm. We suspect that the reason for this phenomenon is

that the training data of MWC may have richer image information in

the vertical direction, and they have more similar structural informa-

tion of MRI to that of the test data. The training data of CNSR have a

too large vertical gap, which may lack images of some different brain

structures. Secondly, the DSC value of the model trained on MWC

was 0.736, which is 11.6% lower than the result of fivefold cross-

validation on MWC. Meanwhile, the DSC value of the model trained

on CNSR was 0.622, which is 20.6% lower than the result of fivefold

cross-validation on CNSR. We can observe that the model trained on

CNSR has worse generalization ability than that trained on MWC. The

possible explanation may be that the MWC MRI has more axial slices

in the depth direction, and thus has more information. While the test

data of OSM may be more similar to the training data of MWC, the

training data of CNSR may lack some important cross-sectional MRI

information. This is in accordance with findings in the literature,

where the segmentation performance of the different models was sig-

nificantly decreased when they were trained on data different from

the data used for testing. Valverde and colleagues already demon-

strated that one obtains a lower performance when a model is tested

on a dataset that is too different from the training set (Valverde

et al., 2019; Vanderbecq et al., 2020). At least, the results after re-

sampling prove that the image resolution has a significant impact on

the model segmentation results. When the in-plane resolution of the

test data is similar to the training data, the model can show good gen-

eralization ability. However, when the in-plane resolution is highly dif-

ferent between the training and test data, this often leads to a poor

model generalization. This proves the effectiveness of the resampling

operation.

Notably, the LPA, LGA, and UBO detector used in this study all

achieved a lower performance than in previously published papers

(Griffanti et al., 2016; Jain et al., 2015; Jiang et al., 2018; Kuijf

et al., 2019). Vanderbecq and colleagues obtained similar results of

the LGA, LPA, and UBO detector (Vanderbecq et al., 2020). One of

the reasons may be the small WMHs data volume in this study. Sec-

ondly, there may be a big difference between the data used in this

research to train the detectors and the training data used in the above

methods. Finally, these methods suffer from some limitations, espe-

cially for the central regions of the brain, which were mostly wrongly

detected as WMHs.

Overall, we propose a new approach to automatically segment

WMHs from T2-FLAIR and T1 weighted MR images. The proposed

model has been evaluated on the datasets of MWC, CNSR, and OSM

and compared with four different segmentation methods.

Experimental results show that the proposed model has achieved the

best performance and presented the greatest robustness to the

changes in the WMHs scale and the similarity of the tissue intensity.

Our study has several limitations. Firstly, other pathologies,

such as stroke lesions in T2-FLAIR MR images, could co-exist and

coalesce with WMHs (Guerrero et al., 2018; Lee et al., 2020). Since

the objective of this study is to automatically segment WMHs, we

did not require the methods to identify all other types of patholo-

gies; thus, the proposed method did not consider labeling other

pathologies. When we trained the model, other pathologies and the

background were classified as the same label. However, other path-

ological features, such as stroke lesions, often appear as

hyperintense regions as well, which caused false positive results for

WMHs segmentation. Secondly, the deep learning model requires a

large number of labeled training data samples, but only 60 subjects

were enrolled in this study, which could limit the generalization

ability of the proposed model.
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