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Menin liver-specific hemizygous mice challenged with high fat
diet show increased weight gain and markers of metabolic
impairment
L Wuescher, K Angevine, PR Patel and E Mensah-Osman

OBJECTIVE: The menin tumor suppressor protein is abundantly expressed in the liver, although no function has been identified
because of lack of tumor development in multiple endocrine neoplasia type 1 (Men1) null livers. We examine the phenotype of
mice lacking one functional allele of Men1 (consistent with the phenotype in humans with MEN1 syndrome) challenged with high
fat diet (HFD) to elucidate a metabolic function for hepatic menin.
METHODS: In this study, we challenged mice harboring a liver-specific hemizygous deletion of Men1 (HETs) alongside wild-type
(WT) counterparts with HFD for 3 months and monitored the severity of metabolic changes. We demonstrate that the HET
mice challenged with HFD for 3 months show an increased weight gain with decreased glucose tolerance compared with WT
counterparts. Along with these changes, there was a more severe serum hormone profile involving increased serum insulin, glucose
and glucagon, all hallmarks of the type 2 diabetic phenotype. In concert with increased serum hormones, we found that these
mice have significantly increased liver triglycerides coupled with increased liver steatosis and inflammatory markers. Quantitative
real-time PCR and western blotting studies show increases in enzymes involved with lipogenesis and hepatic glucose production.
CONCLUSION: We conclude that hepatic menin is required for regulation of diet-induced metabolism, and our studies indicate a
protective role for the Men1 gene in the liver when challenged with HFD.
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INTRODUCTION
Menin is the product of the multiple endocrine neoplasia type 1
(Men1) gene, a classical tumor suppressor following the 2-hit
hypothesis, which involves one genetic mutation followed by
a somatic mutation causing tumor formation. Loss of menin
causes the MEN1 syndrome in humans, which is an autosomal
dominant disorder characterized by development of neuro-
endocrine tumors, glucose intolerance and type 2 diabetes.1–3

The metabolic consequences of the MEN1 syndrome have
been largely ignored, and elucidating a role for menin in
metabolism can be useful in identifying novel drug targets for
metabolic disorders.

Recently, we have shown metabolic abnormalities in mice
hemizygous for menin specifically in the liver, noting differences
in insulin sensitivity and markers of hepatic glucose production
(HGP) compared with wild type (WT) littermates on normal chow.4

In the current study, we challenge menin liver-specific hemizygous
mice and their WT littermates with high fat diet (HFD) for 3
months and characterized their phenotype based on metabolic
parameters. Mice with hemizygous deletion of menin on a HFD
show increasing weight gain, increases in serum hormones
such as insulin and glucagon, and increases in liver triglycerides
(TG) and steatosis compared with WT. The menin mice (HETs) also
exhibit increases in metabolically relevant genes such as
uncoupling protein 2 (UCP2), peroxisome proliferator-activated
receptor g coactivator 1-a (PGC-1a) and glucokinase (GK), all of

which are associated with the upregulation of HGP and
lipogenesis.5–8 These results demonstrate that hepatic menin
has a protective role during high fat feeding and when lost
contributes to diet-induced obesity.

MATERIALS AND METHODS
Animal maintenance
Animals were kept on a 12:12-h dark–light cycle and fed Research Diets
(New Brunswick, NJ, USA) D12451 consisting of 45% calories from saturated
fat, ad libitum, for 3 months starting at 3 months of age. All procedures were
approved by Institutional Animal Care and Use Committee at the University
of Toledo. Liver-specific menin hemizygous mice on a mix of FVB/129S mice
expressing loxP sequences on exons 3–8 of the Men1 gene (Jackson Labs,
Bar Harbor, ME, USA, #005109) and C57bl/6 mice expressing Albumin-Cre
(Jackson Labs, #003574) were crossed, and genotyping was performed
with tail lysates. WT and Flox (loxP) sequences with Cre expression were
considered hemizygous for menin in the liver (HETs).4 All experiments were
conducted with WT HFD N¼ 7 and HET HFD N¼ 5 unless otherwise noted.

Serum hormone assays and glucose tolerance test
Fasting glucose was obtained using a glucometer (Accu-Chek, Roche,
Indianapolis, IN, USA) after mice had undergone an 18-h fast. Mice were
then injected intraperitoneally with 2 mg kg� 1 glucose and monitored up
to 180 minutes after injection. The upper limit of detection is 600 mg dl� 1

and glucose above that level was recorded as such. Whole venous blood
was collected via the retro orbital sinus. Radioimmunoassay was then
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conducted to measure serum insulin (Millipore, Billerica, MA, USA, #SRI-13K),
glucagon (Millipore, #GL-32K) and C-peptide (Millipore, #RCP-21K). The C:I
(C-peptide to Insulin) ratio was calculated from the serum C-peptide and
insulin values.

Triglyceride and free fatty-acid measurements
Liver-specific triglyceride concentrations were determined by digesting
tissue samples in chloroform-methanol (2:1 (v/v)). Briefly, the lipid layer
was separated using H2SO4, and concentrations were determined
using triglyceride assay kit (Pointe Scientific Inc., Canton, MI, USA) and
spectrophotometry. TG were normalized ng per mg of tissue. Serum TG
were also analyzed using Pointe Scientific Inc. triglyceride reagents. Serum-
free fatty acids were calculated using NEFA C kit (Wako Chemicals,
Richmond, VA, USA).

Liver histology
Livers were fixed in formalin and paraffin embedded. These liver sections
were then stained with hemotoxylin-eosin and assessed for the degree of
steatosis and lobular inflammation according to the non-alcoholic
steatohepatitis (NASH) scoring system proposed by the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK)-NASH Clinical
Research Network.9

Quantitative real-time PCR
RNA was extracted using the 5 PRIME PerfectPure RNA Tissue Kit (5 Prime,
Gaithersburg, MD, USA). RNA was transcribed into complimentary DNA, as
described previously.4 quantitative real-time PCR was performed on the
Applied Biosystems StepOnePlus system using Fast SYBR green Master Mix
(Applied Biosystems, Carlsbad, CA, USA). Probe sequences are as follows:

Menin forward: 50-TCATTGCTGCCCTCTATGCC-30

Menin reverse: 50-TCCAGTTTGGTGCCTGTGATG-30

TNFa forward: 50-CATCTTCTCAAAATTCGAGTGACAA-30

TNFa reverse: 50-TGGGAGTAGACAAGGTACAACCC-30

18S forward: 50-ATACATGCCGACGGGCGCTG-30

18S reverse: 50-GGGAGGGAGCTCACCGGGTT-30

PGC1a forward: 50-ATGTGTCGCCTTCTTGCTCT-30

PGC1a reverse: 50-CACGACCTGTGTCGAGAAAA-30

UCP2 forward: 50-GCGTTCTGGGTACCATCC-30

UCP2 reverse: 50-GCGACCACGCCATTGTAGA-30

GK forward: 50-ACTTTCCAGGCCACAAACA-30

GK reverse: 50-TCCCAGAACTGTAAGCCACTC-30

HNF4a forward: 50-ATCTTCTTTGATCCAGATGCCA-30

HNF4a reverse: 50-GTTGATGTAATCCTCCAGGC-30

Immunoblotting analysis
Livers were harvested and lysed in T-PER (Life Technologies, Grand Island,
NY, USA) with Complete Protease Inhibitor Mini (Roche) and HALT Phospha-
tase Inhbitor (Thermo Fisher, Waltham, MA, USA). Protein concentration was
assayed using the bicinchoninic acid (BCA) protein assay (Pierce, Rockford,
IL, USA) and 50mg of protein was loaded per well. Samples were run on a
10% Tris glycine gel at 125 V for 2 h. Blots were probed using antibodies
against menin (Santa Cruz Biotechonology, Santa Cruz, CA, USA), HNF4a
(Santa Cruz Biotechnology) and PGC1a (Santa Cruz Biotechnology). Analysis
was done using the Odyssey Infrared Imager (Li-Cor, Lincoln, NE, USA) with
secondary antibodies conjugated to near-infrared dyes (Li-Cor).

Statistical analysis
Values are reported as mean±s.e.m. Student’s t test and two-way analysis
of variance with Bonferroni’s post test were performed using GraphPad
Prism version 5.02 for Windows (GraphPad Software, San Diego, CA, USA;
http://www.graphpad.com).

P values o0.05 were considered statistically significant.

RESULTS
HET mice show increased weight gain and a higher glucose
intolerance than WT counterparts
HET mice and their WT counterparts were fed HFD ad libitum for a
period of 3 months. As shown in Figures 1a and b, the HET mice
show a scruffy phenotype compared with WT animals, which
could indicate illness or a more cytotoxic effect as a result of the
HFD on mice deficient in menin.10,11 During the 3-month period,

mice were weighed initially 2 weeks after feeding, then each
month after that for the duration of the experiment. As shown in
Figure 1c, the HET mice showed increased weight gain compared
with WT throughout the experiment, and reached statistical
significance at 14 days and 60 days of high fat feeding.
We performed glucose tolerance testing (IPGTT) (Figure 1d) on
these mice and found that HET mice had a significantly increased
area under the curve (Figure 1e), indicating an increased glucose
intolerance.

Menin HETs have increased serum hormones compared with WT
counterparts
To further investigate the metabolic phenotype of the HET mice,
serum was harvested from the mice after 3 months of high fat
feeding for analysis. The HET mice showed increased levels of
serum glucose, insulin and glucagon, all consistent with a type 2
diabetic phenotype (Figures 2a–c).12,13 To check whether the
increased serum insulin levels were due to increased insulin
secretion from b cells, serum C-peptide was measured. This is a
reliable indication of secretion because it is released from the
b cell at a 1:1 ratio with insulin.14 A significant increase was
observed in C-peptide, indicating increased insulin secretion in
these animals compared with WT (Figure 2d). Using the C-peptide
and serum insulin measurements, the C:I ratio was calculated, which
is, a measure of insulin clearance predominantly in the liver.15 There
were no significant increases in the C:I ratio in these animals
(Figure 2e), indicating no problems in insulin clearance, and
enforcing that the increase in serum insulin is attributed to increased
insulin secretion related to insulin resistance in these animals.16

Menin HETs show increased liver TG
HFD is known to cause alterations of the lipid profile in mice in
association with metabolic syndrome.17,18 As serum hormones are
elevated, serum TG and free fatty acid levels were examined.
There was no evidence of increased serum-free fatty acids or TG
between the WT and HETs on HFD (Figures 3a and b). However, a
significant increase in the level of liver tissue TG was observed
with no change in liver weight between the groups (Figures 3c
and d). These findings indicate that loss of menin does have a
protective role in the liver in the regulation of diet-induced
triglyceride accumulation, consistent with a recent report using
the acute hepatic knockdown of menin.19

Increased hepatic steatosis in HET mice compared with WT
counterparts
As the HETs exhibited increase in liver TG and knowing that HFD
contributes significantly to the development of non-alcoholic fatty
liver disease, which can progress to NASH,20,21 livers were
harvested and histologically analyzed. HET mice on HFD have
increased liver-fat droplets characterized by large size vacuoles
compared with WT (Figure 4a). Using a previously described
method of NASH scoring,9 it was determined that the total NASH
score of the HET mice on HFD was significantly higher than
WT counterparts on HFD (Figure 4b). As NASH is associated
with hepatic inflammation, the messenger RNA (mRNA) of TNFa in
the liver of the WT and HETs on HFD was measured. Higher TNFa
levels in the HET mice on HFD compared with WT were observed,
signifying a significant increase of inflammation in the livers of the
HET mice (Figure 4c).

HET mice show increased markers of stress, HGP and lipogenesis
in the liver
In Figures 5a, 6a and b there are significant decreases in the mRNA
and protein expression of menin in the liver of HET mice.
To further investigate what contribution decrease in hepatic
menin has on markers implicated in metabolic syndrome under
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the metabolic stress of 3 months on HFD, factors were analyzed
that are involved in oxidative stress and regulation of HGP, which
have both been shown to be increased in HFD conditions.17,22

GK is a key regulatory enzyme responsible for converting glucose
to glucose-6-phosphate, which subsequently undergoes glycolysis
and lipogenesis in the liver.7,8 GK is significantly increased in HET
mice (Figure 5b), consistent with observations in diabetic patients

and patients with fatty liver.8 Hepatic nuclear factor 4 a (HNF4a),
an orphan nuclear receptor, shows increased expression at both
the mRNA and protein levels in HET mice compared with WT
(Figures 5c, 6c and d). This could account for the increased
expression of GK as HNF4a is a known positive regulator of GK
expression.23–26 UCP2, an inner mitochondrial membrane protein,
has been shown to be increased in pathology such as NASH and
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type 2 diabetes.27–29 A significant increase is observed in UCP2 in
HET mice on HFD compared with WT HFD-fed counterparts
(Figure 5d). As peroxisome PGC1a has been shown to be a

regulator of UCP2 expression,30 the mRNA and protein expression
of PGC1a was investigated and found it to be significantly
increased at the mRNA level and trending toward an increase at
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the protein level in HET mice compared with WT (Figures 5e, 6e
and f). PGC1a has other well-known functions in metabolism such
as regulation of factors involved in gluconeogenesis in concert
with HNF4a.26,31

DISCUSSION
The menin liver-specific complete knockout has previously been
shown to be void of tumors; however, no studies were undertaken
on the metabolic phenotype of these mice.32 We have shown
previously that HET mice on normal chow do have metabolic
perturbations compared with WT counterparts.4 When challenged
with HFD, HET mice exhibited increased weight gain compared
with WT, indicating that hepatic menin does have a systemic
effect on the response of these mice to high fat challenge. We
have also shown that these mice exhibit insulin resistance with
increased glucose intolerance during glucose tolerance testing
(Figure 1d). This decreased glucose tolerance is indicative of a
more severe metabolic phenotype,33 and with the liver being a
main regulator of insulin clearance,34 this finding therefore
implicates hepatic menin as having a role in regulating whole
body glucose homeostasis. It has been previously shown that
menin levels fluctuate with high fat challenge and the mice show
an increased hepatic steatosis.19 As the results confirm that
finding in this study, we have expanded on this fact through a
total metabolic profile showing a systemic effect of menin loss in
the liver. Also, the results show a chronic effect of menin loss as
opposed to acute loss, implicating menin both as an acute and
chronic regulator of the metabolic state in the liver.

To further our understanding of the phenotype of these mice,
we examined levels of serum hormones commonly deregulated in
metabolic syndrome. Mice with prolonged exposure to HFD
commonly exhibit hyperglycemia;35 however, this consequence is
exacerbated and significantly higher in the HET mice (Figure 2a).
This and the increase in other serum markers indicate that HET
mice are showing a decreased ability to clear glucose from the
system compared with WT mice fed HFD, enforcing that the loss

of hepatic menin affects systemic glucose homeostasis. Further-
more, the HET mice show significant increases in serum insulin
concentration and increased C-peptide (Figures 2b and d), both of
which are indicative of insulin resistance and increased insulin
secretion owing to hyperglycemia.7,16

Glucagon secreted from the pancreas regulates HGP in the
fasted state causing increased gluconeogenesis and glycogenoly-
sis in the liver, and increased lipolysis in adipose tissue.22,36,37

Hyperglucagonemia has been implicated in hyperglycemia in
models of metabolic syndrome because of its regulatory role in
HGP. HET mice exhibit significantly increased levels of serum
glucagon consistent with the changes observed in mice with high
HGP. Previously, our lab has shown that the loss of hepatic menin
in mice fed normal chow have increased markers of HGP and
downstream targets of FoxO1, a main regulator of the switch
between fasting and feeding.4,5,38,39 Hypertriglyceridemia is also a
consequence of HFD that contributes to the pathogenesis of type
2 diabetes and metabolic syndrome through increased de novo
production of TG in the liver.8,40 Although we do not see high
serum TG or free fatty acids, we do see a significant increase of TG
in the liver (Figure 3c) between the two groups.

Liver histology clearly shows differences in the phenotypes of
HET mice compared with WT mice. WT mice fed HFD for 3 months
show microsteatosis and inflammatory infiltrate, but this is to a
much greater degree in HET mice on HFD (Figure 4a). The
macrosteatosis and increased inflammation we see in the HET
mice (Figures 4a–c) implicates menin as a protective protein for
high-fat diet challenge. Indeed, the gene expression profile in HET
mice challenged on HFD shows increased markers of hepatic
metabolism such as GK, the enzyme responsible for converting
glucose to glucose-6-phosphate, which is also a regulator of
hepatic lipogenesis, glycolysis and glycogen synthesis.8 Hepatic
GK gene expression has been associated with increased hepatic
lipid content, which is consistent with what we observe in our HET
mice. GK gene expression is dependent on insulin signaling along
with glucose concentration, but it is also regulated by factors such
as HNF4a.23 As we show in this study, HNF4a expression is
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increased in HET mice on HFD (Figures 5c, 6c and d). This factor
has been implicated in regulation of many genes involved in
lipogenesis and HGP.31,41 It has also been cited as a cofactor
working with PGC1a to regulate gluconeogenic genes.42 PGC1a is
a master regulator of mitochondrial biogenesis, and when
upregulated its expression is associated with increased
expression of protective genes such as UCP2.30,43 PGC1a is also
a direct transcriptional regulator of UCP2, which is a mitochondrial
protein responsible for inhibiting increases in membrane potential
under the conditions of low adenosine diphosphate which, in turn,
decreases reactive oxygen species production.29 UCP2 has been
implicated in the pathogenesis of NASH and non-alcoholic fatty
liver disease.20,21,28,29 The phenotype of our Men1 HET mice on a
HFD suggest that menin has a role in mediating the expression of
these important metabolically related proteins and factors
described above. In conclusion, menin in the liver is a metabolic
protein that functions to regulate genes involved in HGP,
lipogenesis and steatosis in response to HFD.
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El-Hafidi M. High-sucrose diet increases ROS generation, FFA accumulation, UCP2
level, and proton leak in liver mitochondria. Am J Physiol Endocrinol Metab 2011;
301: E1198–E1207.

28 Jiang Y, Zhang H, Dong L-y, Wang D, An W. Increased hepatic UCP2 expression in
rats with nonalcoholic steatohepatitis is associated with upregulation of Sp1
binding to its motif within the proximal promoter region. J Cell Biochem 2008;
105: 277–289.

29 Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD et al.
Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and
increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to
ischaemia–reperfusion injury. Gut 2008; 57: 957–965.

30 Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al.
Mechanisms controlling mitochondrial biogenesis and respiration through the
thermogenic coactivator PGC-1. Cell 1999; 98: 115–124.

31 Rhee J, Ge H, Yang W, Fan M, Handschin C, Cooper M et al. Partnership of PGC-1a
and HNF4a in the regulation of lipoprotein metabolism. J Biol Chem 2006; 281:
14683–14690.

32 Scacheri PC, Crabtree JS, Kennedy AL, Swain GP, Ward JM, Marx SJ et al. Homo-
zygous loss of menin is well tolerated in liver, a tissue not affected in MEN1.
Mamm Genome 2004; 15: 872–877.

33 Simeon IT. Deconstructing type 2 diabetes. Cell 1999; 97: 9–12.
34 Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and

potential. Endocr Rev 1998; 19: 608–624.
35 Winzell MS, Ahren B. The high-fat diet-fed mouse: a model for studying

mechanisms and treatment of impaired glucose tolerance and type 2 diabetes.
Diabetes 2004; 53(Suppl 3): S215–S219.

36 Heppner KM, Habegger KM, Day J, Pfluger PT, Perez-Tilve D, Ward B et al.
Glucagon regulation of energy metabolism. Physiol Behav 2010; 100:
545–548.

37 Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol
Endocrinol Metab 2003; 284: E671–E678.

38 Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabo-
lism. Curr Diab Rep 2009; 9: 208–214.

39 Haeusler RA, Kaestner KH, Accili D. FoxOs function synergistically to promote
glucose production. J Biol Chem 2010; 285: 35245–35248.

40 Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ. Akt2 is required for
hepatic lipid accumulation in models of insulin resistance. Cell Metab 2009; 10:
405–418.

41 Oiso H, Furukawa N, Suefuji M, Shimoda S, Ito A, Furumai R et al. The role of class I
histone deacetylase (HDAC) on gluconeogenesis in liver. Biochem Biophys Res
Commun 2011; 404: 166–172.

42 Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J et al. Control of hepatic
gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413:
131–138.

43 Oberkofler H, Klein K, Felder TK, Krempler F, Patsch W. Role of peroxisome
proliferator-activated receptor-gamma coactivator-1alpha in the transcriptional
regulation of the human uncoupling protein 2 gene in INS-1E cells. Endocrinology
2006; 147: 966–976.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 Unported License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Menin-regulated phenotype during high fat feeding
L Wuescher et al

7

& 2012 Macmillan Publishers Limited Nutrition and Diabetes


	title_link
	Introduction
	Materials and methods
	Animal maintenance
	Serum hormone assays and glucose tolerance test
	Triglyceride and free fatty-acid measurements
	Liver histology
	Quantitative real-time PCR
	Immunoblotting analysis
	Statistical analysis

	Results
	HET mice show increased weight gain and a higher glucose intolerance than WT counterparts
	Menin HETs have increased serum hormones compared with WT counterparts
	Menin HETs show increased liver TG
	Increased hepatic steatosis in HET mice compared with WT counterparts
	HET mice show increased markers of stress, HGP and lipogenesis in the liver

	Figure™1High fat diet (HFD)-challenged HET mice show increased weight gain and glucose intolerance. (a) Representative photos of WT HFD-fed mice versus (b) HET HFD-fed mice. (c) Percent change in body weight at 0, 14, 30, 60 and 90 days of high fat feedin
	Figure™2Fasting serum hormone concentrations. (a) Glucose; astPlt0.01. (b) Insulin; astastPlt0.0028. (c) Glucagon; astPlt0.0350. (d) C-——peptide; astPlt0.05 (e) C:I ratio
	Figure™3Measurement of free fatty acids (FFA) and TG in HET versus WT mice on HFD. (a) Serum FFA. (b) Serum TG. (c) Liver TG as ngsolmgrg of tissue significantly increased in HET mice versus WT; astPlt0.0427. (d) Liver weight as a percentage of body weigh
	Figure™4Liver steatosis and increased inflammation in HET mice. (ai) Representative liver histology at times20 magnification. (aii) Representative liver histology at times40 magnification. (b) Total NASH score; astPlt0.0220. (c) Quantitative real-time PCR
	Discussion
	Figure™5qRT-PCR analysis of hepatic tissue from HET and WT mice. (a) Menin mRNA expression; astPlt0.0484. (b) GK mRNA expression; astPlt0.0384. (c) HNF4agr mRNA expression; astPlt0.0331. (d) UCP2 mRNA expression; astastastPlt0.0001. (e) PGC1agr mRNA expre
	A5
	A6
	ACKNOWLEDGEMENTS
	A7
	Figure™6Western blotting analysis of hepatic tissue from HET and WT mice. (a) Menin protein. (b) Quantification of menin protein versus actin; astPlt0.0205. (c) HNF4agr protein. (d) Quantification of HNF4agr versus actin. (e) PGC1alpha protein. (f) Quanti




