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ORIGINAL RESEARCH

Revealing Unforeseen Diagnostic Image 
Features With Deep Learning by Detecting 
Cardiovascular Diseases From Apical 
4-Chamber Ultrasounds
Li-Hsin Cheng , MSc*; Pablo B. J. Bosch, MSc*; Rutger F. H. Hofman, PhD; Timo B. Brakenhoff , PhD;  
Eline F. Bruggemans , MSc; Rob J. van der Geest , PhD; Eduard R. Holman , MD, PhD

BACKGROUND: With the increase of highly portable, wireless, and low-cost ultrasound devices and automatic ultrasound ac-
quisition techniques, an automated interpretation method requiring only a limited set of views as input could make preliminary 
cardiovascular disease diagnoses more accessible. In this study, we developed a deep learning method for automated detec-
tion of impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical 4-chamber ultrasound cineloops 
and investigated which anatomical structures or temporal frames provided the most relevant information for the deep learning 
model to enable disease classification.

METHODS AND RESULTS: Apical 4-chamber ultrasounds were extracted from 3554 echocardiograms of patients with impaired 
LV function (n=928), AV regurgitation (n=738), or no significant abnormalities (n=1888). Two convolutional neural networks were 
trained separately to classify the respective disease cases against normal cases. The overall classification accuracy of the im-
paired LV function detection model was 86%, and that of the AV regurgitation detection model was 83%. Feature importance 
analyses demonstrated that the LV myocardium and mitral valve were important for detecting impaired LV function, whereas 
the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation.

CONCLUSIONS: The proposed method demonstrated the feasibility of a 3-dimensional convolutional neural network approach in 
detection of impaired LV function and AV regurgitation using apical 4-chamber ultrasound cineloops. The current study shows 
that deep learning methods can exploit large training data to detect diseases in a different way than conventionally agreed on 
methods, and potentially reveal unforeseen diagnostic image features.
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Echocardiography is the main diagnostic imaging 
modality for the assessment of cardiovascular 
disease (CVD). However, although it is applicable 

in most settings, interpretation of echocardiograms is 
time-consuming and subject to intraobserver and in-
terobserver variability. In addition, the image interpreta-
tion requires experienced experts, who are not always 
accessible. With the prevalence of CVD increasing, a 

scarcity of expert cardiologists to perform high-quality 
assessments is expected.1 With the increase of highly 
portable, wireless, and low-cost ultrasound devices 
and automatic ultrasound acquisition techniques,2 the 
availability of an automated interpretation method re-
quiring only a limited set of views as input could make 
echocardiography-based CVD diagnosis more ac-
cessible. Such a system could become beneficial in 
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geographic regions with limited access to expert cardi-
ologists and sonographers. It could also support gen-
eral practitioners in the management of patients with 
suspected CVD, facilitating timely diagnosis and treat-
ment of patients.

Recent developments in artificial intelligence tech-
nology provide an opportunity to achieve this goal. 
In particular, deep learning can automatically learn a 
hierarchy of features from a huge amount of image 
data,3 thus having the potential to uncover diagnos-
tic features in the data not previously recognized. 
Successful deep learning algorithms have already 
been developed to facilitate various steps in the work-
flow of echocardiography interpretation.4–6 Among 
the models developed, 3-dimensional (3D) convolu-
tional neural networks (CNNs) do allow the analysis of 
both spatial and temporal information of the input.7–9 
Therefore, in this study, we developed models to 

detect cardiovascular diseases with a 3D CNN-based 
approach, taking cineloops as input.

As a pilot study for a general-purpose automated 
CVD diagnosis model using simple inputs, we adopted 
the apical 4-chamber (A4C) view ultrasound cineloop 
as the input data, as we consider A4C a general view 
that contains comprehensive information in a single 
shot. We chose 2 abnormalities for the models to learn 
(namely, detection of impaired left ventricular [LV] func-
tion against normal and detection of aortic valve [AV] 
regurgitation against normal). Impaired LV function 
can be seen on the A4C view, but is recommended 
to be determined on multiple viewpoints.10 This task 
would allow us to verify the feasibility of the 3D CNN 
approach, distinguishing the abnormality with limited 
but highly relevant information. On the other hand, 
AV regurgitation is typically diagnosed on the basis of 
color Doppler images using ≥1 viewpoints.11 This de-
tection task would allow us to further test the limit of 
a 3D CNN in distinguishing an abnormality that is not 
obvious on the A4C view. At the same time, it allows 
investigating whether the model identifies unforeseen 
image features while detecting the abnormality with 
an approach different from the clinical convention. 
Therefore, after training the models, we performed 
feature importance analysis to try to inspect what are 
the identified image features associated with each di-
agnostic task (Figure 1).

The current study proposes the use of deep learn-
ing to automatically derive CVD diagnoses from echo-
cardiography cineloops with 2 specific focuses. First, 
we aimed to investigate the feasibility of using 3D 
CNNs to detect diseases based solely on the A4C 
view. Second, through feature importance analysis, 
we aimed to investigate whether the built models can 
identify anatomical and motion-related image features 
associated with the diseases, typically not being con-
sidered in conventional image interpretation.

METHODS
The code and the trained model weights of this study 
are publicly available on GitHub (https://github.com/
Lishi​nC/Disea​se-Detec​tion-and-Diagn​ostic​-Image​
-Feature). Additional supporting data are available from 
the corresponding author on reasonable request.

Data Extraction
Echocardiographic data appropriate for this retro-
spective study were anonymously extracted from the 
echocardiography database of the Heart Lung Center 
at the Leiden University Medical Center, Leiden, the 
Netherlands. The study was approved with waiver 
of informed consent by the Ethics Committee of the 
institution.

CLINICAL PERSPECTIVE

What Is New?
•	 In this study, we developed deep learning mod-

els for automated detection of impaired left ven-
tricular function and aortic valve regurgitation 
using apical 4-chamber ultrasound cineloops.

•	 With the feature importance analysis method 
DeepLIFT, we further identified the image 
features used by the models to detect the 
abnormalities.

What Are the Clinical Implications?
•	 With portable ultrasound devices becoming 

widely available, the study paves the way for 
an automated cardiovascular disease diagnosis 
tool requiring only a limited set of views as input, 
which could make preliminary cardiovascular 
disease diagnoses more accessible in the future.

•	 The study demonstrates that deep learning 
methods can be used to detect diseases in a 
way different from the predefined conventional 
way, and potentially help discovering unfore-
seen diagnostic image features.

Nonstandard Abbreviations and Acronyms

3D	 3 dimensional
A4C	 apical 4 chamber
AV	 aortic valve
CNN	 convolutional neural network
tSNE	 T-distributed stochastic neighbor 

embedding

https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature
https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature
https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature
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All patients underwent echocardiography in the 
left lateral decubitus position, using a commercially 
available system (Vivid 7, E9, or E95; GE Vingmed 
Ultrasound AS, Horten, Norway) and 3.5-MHz trans-
ducers. Standard M-mode and 2-dimensional, color, 
pulsed, and continuous-wave Doppler images were 
acquired, according to the recommendations of the 
European Association of Echocardiography.12 Offline 
analysis was performed using EchoPAC (version 
203.59.0; GE Medical Systems). Only echocardio-
graphic data of patients who were diagnosed as nor-
mal or with impaired LV function or AV regurgitation 
were included in this study. For patients diagnosed as 
normal, the images showed no significant abnormal-
ities in anatomy or motion. Assessment of impaired 
LV function and AV regurgitation was done according 
to the recommendations of the American Society of 
Echocardiography and the European Association of 
Cardiovascular Imaging, based on complete acquisi-
tions.10,11 The LV volume was estimated by using the 
modified Simpson rule. The loss of LV function was 
qualified using the standard cutoff values for calcu-
lated LV ejection fraction10 as mildly, moderately, or 
severely impaired. The severity of AV regurgitation 
was determined using the standard parameters (ie, 
vena contracta, proximal isovelocity surface area 
method, or pressure half time)11 as mild, moderate, or 
severe regurgitation. All assessments were done by 

experienced cardiologists. For our classification tasks, 
we combined the moderate and severe categories to 
form the “substantial” class. Therefore, both impaired 
LV function detection and AV regurgitation detection 
were formulated into a 3-class (normal, mild, and sub-
stantial) classification problem.

Echocardiographic examinations were anony-
mously extracted in DICOM format. As such, meta data, 
like sex, age, and weight of patients, were unknown. 
From the available database, a data set was created 
by manually selecting all A4C cineloops. The resulting 
3554 ultrasounds were randomly split into separate 
data sets for training (70%), validation (10%), and test-
ing (20%). Unfortunately, because of anonymization of 

Figure 1.  Study overview.
A, Two R(2+1)D models were trained to detect impaired left ventricular (LV) function and aortic valve (AV) 
regurgitation. B, Subsequently, T-distributed stochastic neighbor embedding (tSNE) was used to visualize 
the embedding of the extracted feature vectors, and DeepLIFT was used to identify important image 
features associated with the diagnostic tasks. A4C indicates apical 4 chamber; and Conv., convolutional 
layer.

Table 1.  Characteristics of the Data Set

Diagnosis Total Training Validation Test

Normal 1888 1322 189 377

Mildly impaired LV 
function

509 356 51 102

Substantially impaired 
LV function

419 293 42 84

Mild AV regurgitation 285 200 28 57

Substantial AV 
regurgitation

453 317 45 91

Per diagnosis, the total number of ultrasounds extracted (total) and 
ultrasounds per training, validation, and testing data set are presented. AV 
indicates aortic valve; and LV, left ventricular.
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the data, we were not able to include the ultrasounds 
of individual patients in a single data set and enforce 
sample independence for patients. The Table 1 shows 
per class the total number of extracted ultrasounds 
and ultrasounds per data set for training, validation, 
and testing.

Data Preprocessing and Augmentation
In the raw ultrasound data, the frame rate for each ac-
quisition could be different as well as the heart rate for 
each subject. As a result, in each raw ultrasound, a 
cardiac cycle could span a different number of frames. 
To make the temporal dimension and the contained in-
formation of the model input consistent, we wanted the 
input clip to be always 30 frames and corresponding 
to 1 cardiac cycle. To achieve this, we resampled each 
raw ultrasound (namely, adjusting the frame rate such 
that the duration of 1 cardiac cycle corresponded with 
30 frames). After such resampling, taking a 30-frame 
clip from the frame rate-adjusted ultrasound would al-
ways lead to a clip covering exactly 1 cardiac cycle. 
During training time, we extracted a 30-frame clip 
with a random starting point as the model input. It is 
a part of the on-the-fly data augmentation to increase 
data diversity, analogous to the random shift in the 
spatial dimension. During validation and test time, we 
always extracted the clip from the starting point pre-
determined by the software of the ultrasound scanner, 
analogous to not performing any spatial augmentation 
during evaluation.

The raw ultrasound is embedded with electrocar-
diographic and text annotations. We filtered out all the 
embedded information so that our models would learn 
the 2 diagnoses based solely on the actual image in-
formation. The intensity of the filtered ultrasounds was 
subsequently aligned to the global intensity distribution 
of the whole data set through histogram matching.13 
This procedure helped ensure that the brightness and 
contrast of each video were roughly the same.

From the raw ultrasound of 708×1016 pixels, we 
cropped the center 549×549 pixels containing the fan-
shaped field of view, then down-sampled the image 
to 112×112 pixels. During training, random translation 
(±5%) and rotation (±15°) were applied on the fly as 
augmentations to increase data diversity and prevent 
overfitting. The transformations were included to mimic 
variations that would happen in the real world because 
of different angles and positions of the transducer.

Model Development
We built 2 3D CNNs to separately classify impaired LV 
function and AV regurgitation cases against the normal 
cases. We decided to adopt the R(2+1)D model archi-
tecture14 for the tasks. This particular architecture de-
composes a 3D convolution into a spatial convolution 

followed by a temporal convolution, which was re-
cently used to successfully predict the ejection fraction 
based also on A4C ultrasound cineloops.7

We used cross entropy as the loss function and the 
Adam optimizer to update network weights. The learn-
ing rate was set at 0.001, and the batch size was 16. 
Early stop with a patience of 50 epochs was applied. 
The models were implemented with the deep learning 
library Pytorch 1.7, and the training was performed on 
a NVIDIA Quadro RTX 6000 GPU. The code and the 
trained model weights are made available on GitHub 
(https://github.com/Lishi​nC/Disea​se-Detec​tion-and-
Diagn​ostic​-Image​-Feature).

Feature Exploration Using T-Distributed 
Stochastic Neighbor Embedding 
Visualization
T-distributed stochastic neighbor embedding (tSNE)15 
is a dimensionality reduction method that is often used 
to embed high-dimensional data into a 2- (or 3-) dimen-
sional embedding for the purpose of visual exploration. 
When performing embedding, the tSNE method tries 
to preserve the local relative distance between sam-
ples, such that closer data points in a tSNE plot imply 
more similar samples.

tSNE can be applied to visualize a variety of high-
dimensional data. In this study, the method was used 
to visualize both the input video and the features ex-
tracted by the trained 3D CNN (512-dimensional vector). 
tSNE visualization of the input video shows the simi-
larity of samples based directly on the pixel intensities, 
whereas visualization of the extracted features shows 
the similarity of samples based on the feature values. 
Comparison of the 2 can reveal whether the 3D CNN 
successfully extracted features relevant to the diagnosis 
and filtered out the noise, such that samples belonging 
to the same diagnosis were clustered closer together 
in the extracted-feature plot compared with the input-
video plot. In addition, the extracted-feature plot could 
also indicate the relationship (the distance/similarity to 
each other) between several overlapping clusters.

Feature Importance Analysis
We used the feature importance analysis method 
DeepLIFT16,17 to try to decrypt the reasoning behind 
the models’ predictions, which could potentially help 
reveal diagnostic image features not considered be-
fore. DeepLIFT attributes a model’s classification out-
put to certain input features (pixels), which allows us 
to understand which region or frame in an ultrasound 
is the key that makes the model classify it as a certain 
diagnosis.

DeepLIFT decomposes the output activation dif-
ference between the input and the baseline as a sum 
of layer-wise relevance values, thus obtaining the 

https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature
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contribution of each input feature (pixel) to the out-
put prediction. On a given input of interest, DeepLIFT 
would return an analysis result with the same size as 
the input for each class. The values in the analysis re-
sult reflect the importance of that pixel to the class, 
and the sign of the values indicates either a positive or 
a negative contribution to the class.

RESULTS
Model Performance
Figure  2 summarizes the predictive performance of 
the 2 models. Figure  2A and 2C shows the normal-
ized confusion matrices for the impaired LV function 
and AV regurgitation detection models, respectively. 
Figure 2B and 2D lists the detailed recall (sensitivity), 
precision, and F1-score values for each diagnosis for 
both models.
The impaired LV function detection model achieved an 
overall accuracy of 86%. The model was able to detect 
92% of the ultrasounds qualified by the cardiologist as 
substantially impaired. Of the mildly impaired class, 

67% were correctly identified. On the other hand, the 
AV regurgitation detection model reached an overall 
accuracy of 83% and was able to detect 71% of the 
substantial class, but only 25% of the mild class.

Feature Exploration Using tSNE 
Visualization
Figure 3 shows the tSNE plots for impaired LV function 
(Figure 3A and 3B) and AV regurgitation (Figure 3C and 
3D), with each sample colored by the corresponding 
diagnosis. By comparing the plots before being pro-
cessed by the models (Figure  3A and 3C) and after 
(Figure  3B and 3D) (ie, the input-video plot with the 
extracted-feature plot), we can observe that samples 
of the same diagnosis are clustered closer to each 
other after being processed by the models. This im-
plies that the models have successfully extracted 
diagnosis-relevant features and filtered out irrelevant 
noise throughout cascades of convolutional layers.

Especially, for the case of impaired LV function de-
tection, it can be seen in Figure 3B that, after process-
ing, the normal, mild, and substantial clusters are even 

Figure 2.  Predictive performance of the impaired left ventricular function detection model (A and 
B) and the aortic valve regurgitation detection model (C and D).
A and C, The normalized confusion matrices for each classification task. B and D, The detailed recall 
(sensitivity), precision, and F1-score of each class. The performance demonstrates the feasibility of 
detecting the diseases using apical 4-chamber cineloops.
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ordered in the level of severity. The information about 
the severity (ie, the correct ordering of the 3 classes) 
was actually not given to the model. The 1-hot cate-
gorical label fed to the model implies only that normal, 
mild, and substantial were 3 different classes, which 
does not contain hints about the relative similarity be-
tween each class. Therefore, besides being able to 
differentiate the 3 classes, the model had also learned 
the correct relative similarity relationship between the 
3 classes.

Feature Importance Analysis
Figure  4 presents the feature importance analysis 
results produced by DeepLIFT, which attributes (per 
query) the model’s prediction of an output class to 

certain input features (pixels). For both the impaired 
LV function and AV regurgitation detection models, 
we present the analysis calculated on the basis of the 
same representative normal case. The analysis results 
are presented as heat maps in Figure 4. The brighter 
pixels in the heat maps are the input features that 
positively contributed to the normal class (ie, image 
features that made the model classify the case as nor-
mal). The highlighted regions can thus be interpreted 
as the image information that makes the models dis-
tinguish the normal case from the disease cases. More 
analyses in video format can be found in our GitHub 
repository.
For the impaired LV function detection model, DeepLIFT 
highlighted the basal part of the myocardium from the 
early systolic to the early diastolic phase. In addition, 

Figure 3.  T-distributed stochastic neighbor embedding (tSNE) visualization for impaired left ventricular function (A and B) 
and aortic valve regurgitation (C and D).
A and C, The visualizations of input ultrasound, in which the input video was directly reduced into a 2-dimensional embedding by tSNE 
and visualized. B and D, The visualizations of the model-extracted feature vector, in which the 512-dimensional feature extracted by 
the model was reduced into a 2-dimensional embedding by tSNE and visualized. Nearby dots in the plots imply similar data in the 
original high-dimensional space. It can be observed (B and D) that samples of the same diagnosis are clustered closer to each other, 
as compared with other data (A and C). This indicates that the models have filtered out irrelevant information and extracted diagnosis-
relevant features. B, Especially, it can be seen that the model might have obtained information on the level of severity.
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Figure 4.  Feature importance analysis with DeepLIFT.
The highlighted regions are image features considered important by the respective models to distinguish normal cases 
from the disease cases. A, The analysis of the impaired left ventricular (LV) function detection model. The LV myocardium 
at the basal level was highlighted from the early systolic to the early diastolic phase. The mitral valve was highlighted as 
well during the early diastolic phase. B, The analysis of the aortic valve (AV) regurgitation detection model. The tip of the 
mitral valve anterior leaflet was highlighted particularly at a short time, centering around the moment of valve opening. 
This indicates that the model focuses not only on a certain anatomical structure but also on a certain temporal phase 
within the cardiac cycle. This representative case shown herein is the one with the highest average probability of being 
the normal class, as predicted by the 2 models (namely, a confident case). More examples in video format are available 
in our GitHub repository.
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the mitral valve was highlighted at the early diastolic 
phase (Figure 4A).

For the AV regurgitation detection model, DeepLIFT 
highlighted the tip of the mitral valve anterior leaflet, 
particularly at a short time centering around the mo-
ment of valve opening (Figure 4B). This indicates that 
the model not only focused on a specific anatomical 
structure but also on a specific temporal phase within 
the cardiac cycle.

DISCUSSION
As a pilot study to make preliminary diagnoses of car-
diovascular diseases automated and thus more acces-
sible, we built 2 3D CNNs to detect impaired LV function 
and AV regurgitation using the A4C-view ultrasound. 
The impaired LV function model was able to detect 92% 
of the substantial class, and the AV regurgitation model 
was able to detect 71% of the substantial class. On the 
basis of the lower recall, we conclude that detecting AV 
regurgitation was the more difficult task among the 2. 
This is in line with the fact that AV regurgitation is usually 
diagnosed using Doppler imaging and not from an A4C 
view. However, our results also reveal that abnormali-
ties derived from the A4C view, although not obvious to 
the human eye, were sufficient for the AV regurgitation 
model to reach an overall detection accuracy of 83%. 
The success of building the impaired LV function detec-
tion model demonstrates the feasibility of deep learn-
ing algorithms in identifying the abnormality with limited 
input information. Furthermore, the success of AV re-
gurgitation detection verifies that the model can detect 
a disease with an approach different from the current 
practice (ie, based on Doppler information). We attribute 
this to the models’ ability to learn from huge amounts of 
data and derive important features independently.

Using tSNE visualization, we verified that the models 
had transformed the input ultrasounds into a diagnosis-
relevant feature representation. Especially, similar to 
the reconstruction of disease progression, as shown in 
the study by Eulenberg et al,18 the impaired LV function 
detection model had mapped the normal, mild, and 
substantial classes in the correct order. This indicates 
that the model might have obtained information about 
the severity of the disease, although to which extent it 
can accurately rank the severity of each individual case 
requires further evaluation. Nevertheless, this indicates 
that the trained model could potentially serve as a tool 
to systematically evaluate the severity of the disease, 
which would otherwise be hard to accurately quantify 
by the human eye, merely from a single view and with-
out additional annotation.

Finally, to see which signs in the input cineloop the 
models focus on to detect the abnormalities, we ana-
lyzed the models with the feature importance analysis 

method DeepLIFT. The analysis suggests that the mitral 
valve and the LV myocardium at the basal level are cru-
cial for distinguishing the normal class from impaired LV 
function. This observation verifies that the model works 
in a reasonable way to detect the disease, because the 
movement of the myocardium is strongly related to LV 
function, as is the movement of the mitral valve.19 On the 
other hand, the analysis suggests that the tip of the mi-
tral valve anterior leaflet, during the opening of the valve, 
is the most important feature that the model focuses on 
to distinguish the normal class from AV regurgitation. 
It is possible that the movement of the mitral valve is 
affected by the abnormal regurgitation jet20 and, hence, 
identified by the model as a key difference. It is also pos-
sible that morphological changes, such as mitral valve 
leaflet enlargement, were the key characteristic that the 
model used to distinguish cases, as supported by a re-
cent study.21 Although the exact mechanism remains 
unclear, the analysis shows that certain regions of the 
heart or phases in the cardiac cycle that people often 
neglected previously might also have a strong link to the 
disease. Potentially, a trained model could identify image 
features that are not yet known to be related to a dis-
ease, hence bringing insights to the disease diagnosis.

For the respective models, the DeepLIFT-
highlighted regions in the shown normal case repre-
sent the general highlighting pattern that we observed 
in most of the normal cases. These consensus high-
lighted regions are the diagnostic image features 
concluded by the respective models after learning 
from the training data. However, if we input disease 
cases to the analysis, the highlighted regions in dif-
ferent queries would be different. (Examples of the 
DeepLIFT analysis on disease cases can be found in 
our GitHub repository.) We speculate that this might 
be attributable to a higher heterogeneity in the ap-
pearance of the disease cases. This links to a major 
bottleneck in the current feature importance analysis 
workflow, where the method can only show important 
input features per query, instead of directly deriving 
high-level information from the trained model weights. 
For instance, the analysis cannot tell us directly from 
the trained model weights that the wall motion ab-
normality at the end systolic phase is the most crit-
ical sign for a disease. Human interpretation is still 
required to obtain insights from the trained model by 
going through the highlighted regions in multiple input 
queries. Another shortcoming of the currently avail-
able feature importance analysis methods, such as 
DeepLIFT, is that the analysis result is often noisy.22 
This is especially true in our case, where the input 
ultrasound was already noisy. The noise would often 
hinder the further interpretation process.

Apart from these shortcomings of DeepLIFT, this 
study has several limitations. A first limitation refers 
to the lack of patient-relevant information. Because of 
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data protection regulations, all ultrasound data used in 
this study were anonymized and stripped of identify-
ing meta data. Therefore, we were not able to maintain 
subject-level independence for the training-validation-
testing splits. Also, further analyses on age, sex, and 
relevant clinical information and echocardiographic 
findings were not possible. If these data would become 
available in the future, the current analyses could be 
extended to investigate the possibility of integration 
of nonimaging data in the model. Second, there are 
currently no other public data sets with diagnostic la-
bels available as in our data set. If, in the future, an 
independent validation data set becomes available, we 
would be able to further verify the generalization ability 
of our models. We would also like to train our mod-
els on an extended data set with higher sample variety 
(multiple medical centers and various ultrasound ma-
chines), such that the generalizability of the models on 
unseen independent validation data can be potentially 
improved. At the moment, we provide our code and 
trained model weights on GitHub for everyone to use 
to externally validate or fine-tune in a transfer learning 
manner on private data sets. Third, the misclassification 
rates of the models, particularly for the mild classes, 
were still high, especially in AV regurgitation detection. 
Failing to identify the mild cases might have important 
clinical implications, such as delayed diagnosis and 
treatment. Therefore, further refinement of the models 
to decrease the misclassification rates is needed be-
fore their deployment in clinical routine. Finally, this pilot 
study served mainly as a proof of concept of using a 
simple input for automated CVD diagnosis. Whether a 
best single view or best view combination exists for de-
tecting each distinct CVD, and whether A4C is an ac-
ceptable input already for detecting a variety of CVDs, 
remain topics for further investigation.

CONCLUSIONS
In conclusion, this pilot study shows the feasibility of 
a 3D CNN approach in the detection of impaired LV 
function and AV regurgitation based on A4C-view 
ultrasound cineloops, which paves the way for an 
automated CVD diagnosis that can be made more ac-
cessible. Moreover, it demonstrated that deep learning 
methods can learn from large training data to detect 
diseases in a way different from the predefined conven-
tional way, and potentially discover diagnostic image 
features not previously paid attention to by humans.
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