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Introduction: COVID-19 is a novel and devastating disease. Its manifestations vary

from asymptomatic to lethal. Moreover, mortality rates differ based on underlying

health conditions and ethnicity. We investigated the biochemical rationale behind these

observations using machine reasoning by the sci.AI system (https://sci.ai/). Facts were

extracted and linked from publications available in nlm.nih.gov and Europe PMC to form

the dataset which was validated by medical experts.

Results: Based on the analysis of experimental and clinical data, we synthesized

detailed biochemical pathways of COVID-19 pathogenesis which were used to explain

epidemiological and clinical observations. Clinical manifestations and biomarkers are

highlighted to monitor the course of COVID-19 and navigate treatment. As depicted

in the Graphical Abstract, SARS-CoV-2 triggers a pro-oxidant (PO) response leading

to the production of reactive oxygen species (ROS) as a normal innate defense.

However, SARS-CoV-2’s unique interference with the antioxidant (AO) system, through

suppression of nitric oxide (NO) production in the renin- angiotensin-aldosterone system

(RAAS), leads to an excessive inflammatory PO response. The excessive PO response

becomes critical in cohorts with a compromised AO system such as patients with

glucose-6-phosphate dehydrogenase deficiency (G6PDd) where NO and glutathione

(GSH) mechanisms are impaired. G6PDd develops in patients with metabolic syndrome.

It is mediated by aldosterone (Ald) which also increases specifically in COVID-19.

Conclusion: G6PD is essential for an adequate immune response. Both G6PDd and

SARS-CoV-2 compromise the AO system through the same pathways rendering G6PDd

the Achilles’ heel for COVID-19. Thus, the evolutionary antimalarial advantage of the

G6PDd cohort can be a disadvantage against SARS-CoV-2.

Keywords: COVID-19, glucose-6-phosphate dehydrogenase (G6PD), reactive oxygen species, nitric oxide - NO,

glutathione, aldosterone (Ald), Metabolic syndrome
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GRAPHICAL ABSTRACT |

INTRODUCTION

Based on our previous discussion about the basic mechanisms of
coronavirus disease 2019 (COVID-19) pathogenesis (1), in this
paper, we will focus on particular parts of it to explain the present
clinical and epidemiological observations.

The human host defends itself against infection through its
immune response with two cooperative phases.
1. The first phase occurs early, is innate and nonspecific, and has
two components.

(a) A pro-inflammatory pro-oxidant (PO) system mediates
inflammation. It attacks pathogens with free radicals of
the reactive oxygen species (ROS). However, when there
is increased production and/or decreased neutralization,
a heightened level of ROS occurs, and excessive levels
cause collateral damage to normal cells and is referred
to as “oxidative stress,” “cytokine storm,” and “systemic
inflammatory response syndrome (SIRS).”

(b) An anti-inflammatory antioxidant (AO) system balances the
PO response (2).
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2. The second phase occurs with a delay and is adaptive and
specific. It is mediated through antibody expression.

These two arms of immune response usually eradicate the
pathogen (3). However, in COVID-19, both phases are delayed
due to suppression of the host’s gene expression by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)’s nsp1
protein (4).

Wu et al. (5) demonstrated, in vitro, that glucose-6-
phosphate dehydrogenase deficiency (G6PDd) cell lines are
vulnerable to coronavirus infection. There are two types of
G6PDd: congenital and acquired. Congenital G6PDd is the
most prevalent enzyme deficiency in the world, affecting
4.9% of the global population. It evolved against malaria
and predominates in specific ethnic cohorts such as the
Mediterranean, Asian, and African (6). Interestingly, these
cohorts have been particularly affected by the COVID-19
pandemic (7–10). Acquired G6PDd develops in patients with
underlying health conditions, especially the metabolic syndrome
(11). The metabolic syndrome is prevalent and it spreads
acquired G6PDd worldwide.

This paper presents a detailed description of how
SARS-CoV-2 affects the innate PO and AO responses and
how G6PDd potentiates COVID-19. In addition, we highlight
accompanying clinical manifestations and biomarkers that are
useful to monitor the clinical course and navigate treatment.

METHODS

We used the sci.AI machine reasoning system (https://sci.ai/)
to operate on publicly available datasets from nlm.nih.gov
and Europe PMC. The process consisted of two stages:
Representation and Reasoning.

Representation algorithms translate unstructured individual
papers, documents, and files from heterogeneous sources
into embeddings and graphs of entities relations. It goes
beyond classic Named Entity Recognition (NER) and arbitrarily
recognizes individual and composite biological entities and
how they relate to each other. For example, in this sentence:
“Obese patients with MetSyn had a significantly lower nitric
oxide production rate (0.21 ± 0.13 µmol/h per kg; P =

0.009) than healthy normal-weight individuals (0.63 ± 0.30
µmol/h per kg), whereas nitric oxide (NO) production rate
was intermediate in obese patients without MetSyn (0.49
± 0.22 µmol/h per kg; P = 0.33)” (12); the machine
recognizes the conditions “obesity” and “metabolic syndrome”
and recognizes substance “nitric oxide” and links it to
CHEBI:16480. Ultimately, “lower nitric oxide production rate”
in the context of “metabolic syndrome” is recognized as
a biomarker.

The second, Reasoning stage, synthesizes knowledge based on
a subset of findings that appear to be relevant to COVID-19.
The discovery process was triggered by textual queries “SARS”
and “ARDS.” Traversing through the interlinked representations
computed at the first stage produced multiple subgraphs.
We progressively refined the generated knowledge and, in
the last step, linked these excerpts to synthesize biochemical

pathways to help explain the pathophysiology of COVID-19. We
translated complex pathways into clinically relevant applications,
conforming to our clinical observations.

Pathways were constructed iteratively; it is not a result of
one time inference. Generally speaking, typical machine learning
algorithms approximate previous data distributions. In contrast,
our reasoning algorithm is based on graph traversing and
utilizes biochemical properties in context. It allows to avoid bias
caused by frequently mentioned terms, for example, angiotensin-
converting enzyme 2 (ACE2). Subgraphs were interactively
validated by a domain expert at every iteration. For instance, the
term “SARS” mentioned together with “TLR” and “ACE2” led to
the creation of two axes as described in our previous work (1):

– TLR/TNFα/NADPH oxidase (NOX2)/ROS, which is
positively regulated, and

– ACE2/NOS3/NO, which is negatively regulated by SARS.
Both axes turn out to be composedmainly of canonical pathways:
renin–angiotensin system, glutathione (GSH) metabolism,
pentose phosphate pathway, aldosterone (Ald) synthesis and
secretion, and NO production. When we placed all these
pathways on the same canvas, reduced nicotinamide adenine
dinucleotide phosphate (NADPH) appeared to be the cofactor
of both axes and, in turn, is produced by glucose-6-phosphate
dehydrogenase (G6PD). This biochemical rationale, together
with the worldwide prevalence of congenital and acquired
G6PDd, is consistent with COVID-19 outcomes at individual
and epidemiological levels.

A limitation of our research is that it focuses on the
centrality of G6PD. Yet, we acknowledge that there is certainly
other biochemistry relevant to COVID-19 that remains open
for investigation.

RESULTS AND DISCUSSION

Based on machine reasoning of data from 30M papers, we
demonstrate the results.

Severe Acute Respiratory Syndrome
Coronavirus 2 Affects the Innate Immune
Response
The PO System
The PO system is triggered by SARS-CoV-2, as for any pathogen,
through toll-like receptors (TLRs) on macrophages, the first-
line cell of innate defense (13). As depicted in Figure 1,
this results in tumor necrosis factor-alpha (TNFα)-induced
inflammation, which has two clinically relevant molecular
effects: inactivation of insulin receptor signaling on endothelial
cells (see Graphical Abstract) and activation of NOX2 on
macrophages (14, 15). This response is acute and transient.
Activated NOX2 produces ROS, particularly superoxide anion
(O2∗-) from oxygen (O2). Then a hydroxyl radical (OH∗)
is produced through the Fenton reaction (16). It destroys
microorganisms (17). At the same time, it stresses the
host’s cells, especially platelets, lymphocytes, erythrocytes, and
muscle cells (18–20). Muscle cell damage manifests with
rhabdomyolysis (21). Damage of erythrocyte membranes results
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FIGURE 1 | SARS-CoV-2 triggers the PO response resulting in ROS.

in latent hemolysis leaking lactate dehydrogenase (LDH), and
hemoglobin (Hb) is oxidized to methemoglobin (MetHb)
(22–24).

Clinical Pearls
• Hyperglycemia occurs during COVID-19. It is transient

and reversible if there is no antecedent insulin resistance.
Otherwise, underlying insulin resistance is aggravated by the
stress of infection (25).

• Ferritin production is induced by TNFα and can be used to
monitor the degree of the PO response (26).

• Thrombocytopenia and lymphopenia reflect the degree of
oxidative stress and can be followed as biomarkers (27, 28).

• Since statins cause rhabdomyolysis as a complication, avoid
these drugs in COVID-19 patients (29, 30).

• Erythrocytes are decreased due to latent hemolysis, which can
be monitored by LDH levels (31).

• Increased MetHb makes SpO2 calculation inaccurate. It
causes a low SpO2 by pulse oximetry in patients with

a normal PaO2 (32, 33). This can be misleading and
can result in an unnecessary administration of O2, the
substrate of ROS.

Thus, SARS-CoV-2 interacts with the innate PO
system, and adequate ROS levels are a first-line
antimicrobial defense.

The AO System
The AO system balances the PO response through two central
mechanisms: suppression of ROS production by NO and ROS
neutralization by GSH (34, 35).

As depicted in Figure 2, SARS-CoV-2 binds to the ACE2
receptor in order to enter cells and, in turn, destroys this
receptor. The ACE2 receptor is involved in the protective
ACE2/endothelial nitric oxide synthase (eNOS)/NO pathway
of the renin–angiotensin–aldosterone system (RAAS). It leads
to the suppression of eNOS, the most prevalent isoform of
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FIGURE 2 | SARS-CoV-2 interferes with the AO response through RAAS resulting in excessive ROS.

NOS, and consequently decreased NO levels (36). In addition
to its antioxidant property, NO is also essential for vasodilation,
prevention of platelet aggregation, and inhibition of the
replication of SARS-CoV (37, 38).

Suppression of ACE2 activity also leads to an inability to
convert angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-
7). Ang II is a potent vasoconstrictor and also stimulates
Ald (39). This results in a transient increase in Ald that
induces TNFα through mineralocorticoid receptor (MCR) on
macrophages (40). NOX2 hyper-activation by TNFα, which is
induced by the virus and Ald, and its disinhibition by virus-
induced NO inhibition perpetuate ROS production, making
it excessive.

It is also noteworthy that adrenocortical glomerulosa cells
are extremely sensitive to dissolved O2 blood levels (41).
And fever shifts the O2-Hb dissociation curve to the right,
lowering the affinity of Hb to O2, further contributing to ROS
production (42).

Clinical Pearls
• An increased Ald level is a specific biomarker of the

SARS-CoV-2 infection. This is acute, transient, and
Ang II-dependent.

• The virus-induced decrease in NO and increase in Ald
(NO/RAAS dysbalance) render the immune response
to COVID-19 excessive. This manifests with fever
and hematological complications, especially progressive
hemolysis, and thrombus formation (43).

• Vasoconstriction, mediated by NO/RAAS dysbalance, is a
main pathophysiological component of COVID-19-associated
acute respiratory distress syndrome (ARDS) and manifests as
acute vascular distress syndrome (AVDS) (44).

• Pulmonary edema is potentiated by elevated levels of Ald and
aggravates ARDS (45).

• Excessive O2 therapy can be deleterious.

Thus, SARS-CoV-2 interferes with the AO system, rendering
the PO response excessive. Moreover, SARS-CoV-2-induced
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increases of Ald aggravate the condition, especially in patients
with underlying health conditions.

The Role of Underlying Health Conditions
Individuals probably contract COVID-19 at similar rates.
However, once infected, some persons do worse than others.
The inoculum of infection may be an important variable
(46) but will not be further discussed here. We will focus
on the role of underlying health conditions. And we will
relate these to the PO and AO immune responses that we
discussed above.

As noted above, COVID-19 induces an excessive PO response.
This needs to be balanced by AO mechanisms: NO and GSH.
As depicted in Graphical Abstract, these two mechanisms are
dependent on the cofactor NADPH (47, 48). It is produced
mainly by G6PD in a rate-limiting manner in the pentose
phosphate pathway (PPP) of glucose metabolism. In addition
to NO and GSH, there are several other systems that require
NADPH and compete for it: macrophage NADPH oxidase
(NOX2) for antimicrobial defense, NADPH methemoglobin
reductase for Hb recovery, and thyroid NADPH oxidase for
triiodothyronine (T3) production (49). The inability of G6PD
to supply enough NADPH for the excessive immune response,
along with these other demands, aggravates G6PDd. Thus,

G6PD is essential for both components of innate immune
response and, particularly, for the AO system to balance the PO
system (50).

NO and GSH are also dependent on flavin adenine
dinucleotide (FAD). FAD production is catalyzed by
T3, which requires NADPH for its synthesis by thyroid
NADPH oxidase (51). Thus, G6PDd ultimately decreases
T3, NO, and GSH, thereby compromising the body’s
defensive mechanisms.

Acquired G6PDd
While congenital G6PDd is well known, its acquired deficiency
is less appreciated. It accompanies insulin resistance (52)
and hypertension (53, 54), grouped together as the metabolic
syndrome. In addition, advancing age also lowers it (55). We
demonstrate the biochemical rationale of these findings and why
these cohorts do worse with COVID-19.

As depicted in Figure 3, adipocytes secrete leptin.
Obesity-induced hyper-leptinemia is chronic and progressive
and directly stimulates Ald (56). Moreover, leptin suppresses
atrial natriuretic peptide (ANP), which helps to “escape” Ald
activity (57). Increased Ald, as discussed previously, results
in increased TNFα (37). In addition to NOX2 activation,
chronic TNFα stimulation also causes insulin resistance (14, 58).

FIGURE 3 | How the metabolic syndrome leads to acquired G6PDd.
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FIGURE 4 | GSH depletion activates mechanisms of GSH repletion.

Under normal conditions, insulin receptor signaling is required
for glucose entrance into cells. Glucose is phosphorylated to
glucose-6- phosphate, which activates the carbohydrate response
element-binding protein (ChREBP) (59). ChREBP regulates
the expression of rate-limiting enzymes in glucose metabolism,
in particular G6PD (60). Thus, decreased intracellular glucose
results in decreased G6PD gene expression and, consequently,
lower NADPH (61).

Moreover, Liao et al. (62) showed that there is no significant
difference in the expression of TNFα between G6PDd and
normal patients.

Clinical Pearls
• Even when SARS-CoV-2 can no longer be detected

and antibodies have formed, clinical manifestations of
inflammation may ensue due to Ald-triggered TNFα.
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• Leptin-induced increase of Ald is chronic, progressive,
and AngII-independent, and it is not controlled
by the RAAS, so angiotensin II receptor blockers
(ARBs) and ACE inhibitors can be ineffective as
antihypertensives (63).

• Decreased ANP levels in patients with metabolic syndrome
render them vulnerable to COVID-19-induced acute
increased Ald (64, 65).

• In COVID-19 patients with metabolic syndrome,
hypertension, edema, and hyperglycemia accentuate.

• Chronic hyperglycemia can cause insulin resistance
and can be a biomarker of developing G6PDd
(66, 67).

• Laboratory values of G6PD levels and resulting NADPH
activity can differ for several reasons: highly variable glucose
level-dependent G6PD gene expression; the unique rate-
limiting catalyzation of NADPH production; and the overload
of immune mechanisms competing for NADPH, especially in
patients with developing G6PDd.

• T3 levels reflect the NADPH activity but also can be involved
in thyroid gland disorders.

• Metabolic syndrome-related chronic G6PDd can be
aggravated by COVID-19-induced insulin resistance.

• As a consequence, patients with metabolic syndrome have a
decreased level of NO and exogenous NO treatment can be
considered (12, 68).

• Optimal control of underlying chronic diseases helps defend
against COVID-19.

Thus, metabolic syndrome causes G6PDd. And G6PDd, by
reducing NO, dysbalances the immune response to COVID-19.
In addition, GSH plays a critical role as discussed below.

The Role of GSH System
GSH is an essential endogenous antioxidant. As depicted in
Figure 4, it is composed of three amino acids: glycine, cysteine,
and glutamate. The sulfhydryl (-SH) moiety of cysteine is
responsible for the neutralization of toxic substances, both
endogenous such as ROS and exogenous such as xenobiotics.
During this reaction, GSH is oxidized to its inactive form, GSSG.
The recycling requires NADPH and FAD (69).

GSH depletion can be caused by G6PDd, which leads to
an inability to recycle it (70, 71). It can also be caused by
excessive levels of toxic substances that overload the capacity
for its neutralization. Furthermore, the GSH system can be
compromised by exogenous substances, e.g., the paracetamol
metabolite, N-acetyl-p-benzoquinone imine (NAPQI), which
inactivates glutathione synthetase (GS) of GSH production, and
by endogenous substances, e.g., homocysteine, which inactivates
glutathione peroxidase (GPx) of GSH function (72, 73). The
body responds with γ-glutamyl transferase (GGT) upregulation
to replete intracellular amino acids from extracellular GSH and
also by de novo production of cysteine from methionine (74,
75). These amino acids then enter the γ-glutamyl cycle. When
there is abundant GSH, it suppresses its own production by
blocking γ-glutamyl cysteine synthase (γ-Gcs). Otherwise, GSH

depletion results in increased γ-Gcs, leading to accumulation of
pyroglutamic acid (76).

Clinical Pearls
• Exogenous stresses such as infection, medications, e.g.,

chloroquine (CQ), aspirin (ASA), and medical procedures, are
accompanied by increased ROS production, which exacerbates
GSH deficiency (77–80).

• In COVID-19, paracetamol is used as an antipyretic to avoid
NSAIDs, and it accentuates GSH deficiency (69).

• Exacerbation of G6PDd manifests with fever and hematologic
complications, especially hemolytic anemia. If a patient’s Hb
decreases after 2–3 days on certain treatments, e.g., CQ or
O2 therapy, and the LDH level has increased, G6PDd should
be considered.

• In critically ill patients, severe G6PDdmanifests with transient
hypothyroidism also known as the “low T3 syndrome” or the
“euthyroid sick syndrome” (81).

• Patients with metabolic syndrome have increased levels of
homocysteine. Consider folic acid and/or cyanocobalamin
deficiency in these patients to prevent aggravation of GSH
depletion (82, 83).

• Severe GSH deficiency clinically manifests with unexplained
anion gap metabolic acidosis. This should be considered as
pyroglutamic acidosis until proven otherwise. This acidemia,
by itself, is not clinically important, but it is a sign of serious
metabolic stress (73).

• An increased level of GGT can be used as a biomarker of
GSH depletion.

CONCLUSION

G6PD activity is essential for the adequate functioning of both
the PO and AO components of the innate immune response
to counteract COVID-19-induced immune dysregulation.
Therefore, in COVID-19 patients, inadequate G6PD activity
should be considered and can be monitored with biomarkers.
Recognizing these interactions is critical to avoid inappropriate
treatment. “Primum non nocere.”
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