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Abstract: Mortalities of bivalve larvae and spat linked with Vibrio spp. infection have been described in
hatcheries since 1959, causing potential development of resistant bacteria. A reliable and sustainable
solution to this problem is yet to be developed. Potential treatment of bacterial infection with
bacteriophages is gaining interest in aquaculture as a more sustainable option for managing Vibrio
spp. infection. This study assessed the effectiveness of bacteriophages (Φ-5, Φ-6, and Φ-7) against
pathogenic Vibrio isolates (USC-26004 and USC-26005). These phage isolates were found to belong to
the Myoviridae viral family. A total of 212 ORFs of Φ-5 were identified and annotated. The genome of
this phage contained putative thymidine kinase and lysin enzyme. During infections with phages,
the OD values of the isolates USC-26005 and USC-26004 remained stable at a much lower reading
compared to the control after 9 h of incubation. Mortality rate of oyster (Saccostrea glomerata) larvae
was 28.2 ± 3.5% in the bacteriophage treatment group, compared to 77.9 ± 9.1% in the bacterial
treatment group after 24 h incubation. Findings of this study indicate that lytic phages might be
utilized as potential bio-control agents of luminescent bacterial disease in oyster hatcheries.
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1. Introduction

Global oyster production accounted for 31% of total world mollusk production in 2016 [1] and a
significant proportion of this output relied on hatchery production [2]. However, bivalve hatcheries
are constantly threatened by bacterial diseases [3] and in most cases, members of the genus Vibrio have
been identified as significant pathogens in production environments [4]. Since the first description of
Vibrio species as the causative agents of disease in bivalve larvae [5], numerous studies have identified
pathogenic Vibrio spp., including V. tubiashii [3], V. splendidus biovar II [6], and V. ostreicida [7] associated
with infections that have caused major losses for shellfish farmers [8].

Major activities within oyster hatcheries include broodstock holding, spawning induction,
rearing and setting of larvae, and the culture and production of live microalgae as a larval food
source [2]. Three key vectors for potential Vibrio spp. contamination in these hatcheries include
broodstock, microalgae cultures, and seawater supply [9,10].
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Antibiotics have been used to treat vibriosis in aquaculture systems [11]; however, there are
considerable concerns regarding the long-term use of antibiotics because of the potential for
development of antibiotic-resistant bacteria [11], which could be exacerbated by transmission of
antibiotic resistance genes into different members of hatchery microbiota by horizontal transfer
mechanisms [10]. Karunasagar et al. [12] indicated that mass mortality of black tiger shrimp (Penaeus
monodon) larvae was caused by multi-drug resistant V. harveyi strains with reported resistance to
cotrimoxazole, chloramphenicol, erythromycin, and streptomycin. Similarly, the Vibrio spp. isolated
from fish-pond facilities in Nigeria were resistant to tetracyclines (100%), oxytetracycline (99.4%),
and chloramphenicol (73.1%) [13]. Resistance to antibiotics by Vibrio spp. has also been reported in
infected bivalve mollusks; examples include resistance to ampicillin, vancomycin, and erythromycin
by 15 strains of V. alginolyticus [14]. In some countries, use of antibiotics in aquaculture species is now
prohibited because of potential side effects and development of harmful residues [15].

Although mortalities of bivalve larvae and spat linked with Vibrio spp. infections have been
described in hatcheries since 1959 [5], a reliable and sustainable solution to disease control is yet to
be developed. Treatment of bacterial infections with bacteriophages is gaining considerable interest
as a safer alternative for its potential to reduce or remove bacterial contamination in aquaculture
systems [11]. Examples include bacteriophage control of V. parahyemolyticus infection in adult oysters
(Ostrea plicatula) [16] and in striped catfish (Pangasianodon hypophthalmus) [17], and bacteriophage
treatment of V. coralliilyticus infection in Pacific oyster (Crassostrea gigas) [18].

In addition, phage enzymes can have antibacterial activities. At the end of the lytic cycle of
double-stranded DNA bacteriophages, holin, and lysin enzymes are created in order for bacteriophages
to exit the infected bacterial host cell. With the help of holins which form large and non-selective
pores in the cytoplasmic membrane, lysins can interact with the peptidoglycan substrate and cause
cell lysis [19]. The holin and lysin interaction is known as the lambda paradigm [20]. Lysin is
considered to be one of the most effective anti-microbial agents because ~50% of bacteria on the
planet are killed by the bacteriophage lytic cycle every 2 days [21]. Lysins, which are greater than
25 kDa in size, have modular organization defined by two distinct domains: N-terminal domain and
C-terminal binding domain, corresponding to the two functions of enzymatic hydrolysis and substrate
recognition. In general, bacteriophage lysins quickly break the cell wall of host bacteria, especially the
Gram-positive bacteria. However, the access of lysins to the peptidoglycan in Gram-negative bacteria
can be problematic because the outer membrane can block their entry and, as a result, their efficiency
is limited [20]. Recently, more research has focused on lysin enzymes such as lysin Cpl-1 to treat
pneumococcal infection [22,23], PlySs2 to treat Streptococcus pyogenes and Staphylococcus aureus [24];
PlyCD for Clostridium difficile [25]; PlyE146 for E. coli K12, Pseudomonas aeruginosa, and Acinetobacter
baumannii [26]; PlyF307 for Acinetobacter baumannii [27]; and ABgp46 for Acinetobacter baumannii,
Pseudomonas aeruginosa, and Salmonella typhimurium [28].

Development of bacteriophage biocontrol methods as a means of treating Vibrio spp. contamination
in aquaculture systems is attractive for three main reasons: (1) Most bacteria are parasitized by at least
one bacteriophage and the bacteriophage plays an important role in the evolution of the host genome;
(2) land and water resources host large numbers of bacteriophages, estimated at 10–100 times greater
than that of the host bacteria; and (3) the potential of bacteriophage therapy as an alternative treatment
to antibiotics [29]. However, the effectiveness and potential application of bacteriophage therapy for
reduction of Vibrio spp. in oyster hatcheries has not yet been extensively studied. The objectives of
this study were, therefore, to isolate pathogenic Vibrio spp. and their specific bacteriophages, and to
determine the effectiveness of a bacteriophage cocktail composed of these isolated bacteriophages
against Vibrio spp. infesting cultures of oyster larvae. Moreover, characteristics of the isolated
bacteriophages, including a full genome analysis, were also investigated.
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2. Results

2.1. Vibrio spp. Isolation and Pathogenicity Test

Conventional biochemical tests revealed that the isolates USC-26004 and USC-26005 were
V. alginolyticus (98.2%) and V. alginolyticus (98.6%), respectively. The isolate USC-26004 (Figure 1)
caused 100% mortality of oyster larvae within 36 h with a pathogenicity rate of 17.7%. In contrast,
the pathogenicity rate of USC-26005 was 2.5% (Table 1).
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Figure 1. Phylogenetic tree of the pathogenic Vibrio sp. (USC-26004) in relation to its closest relatives.

Table 1. Recorded mortality (%) of oyster (Saccostrea glomerata) larvae in challenge tests when exposed
to different Vibrio isolates.

Vibrio Species BLAST (Identity %) Pathogenicity Rate (%)

USC-26004 V. alginolyticus (99%) 17.7
USC-26005 V. alginolyticus (99%) 2.5

ATCC 14126 V. harveyi 16.6
ATCC 17749 V. alginolyticus 12.9

Data presented as averages. All tested groups were performed in triplicate using the method of Prado et al. [30].

2.2. Prophage Detection in Bacterial Isolates and Antibiotic Susceptibility

The concentration of bacterial isolates increased over the incubation period. No plaque from the
spot technique was seen (results not shown). Therefore, there was no prophage detected in the isolated
Vibrio USC-26005 and USC-26004′s chromosomes.

Vibrio isolate USC-26004 was found to be resistant to aztreonam, erythromycin, gentamicin,
streptomycin, cefoxitin, and ampicillin and to have intermediate-resistance to imipenem.

2.3. Isolation and Characterization of Bacteriophages

Three different bacteriophages namely Φ-5, Φ-6, and Φ-7 were isolated and examined using
transmission electron microscope (TEM) which showed that all bacteriophages had long tails.
Characteristics of these bacteriophages are shown in Figure 2 and Table 2.

Table 2. Characteristics of the Vibrio bacteriophages isolated in this study.

Bacteriophage
Head (nm)

Nucleic Acid
Neck (nm) Tail Sheath (nm)

Family
L W L W L W

Φ-5 131.8 122.7 DNA, ds 11.4 6.8 129.5 18.2 Myoviridae
Φ-6 NM 96.0 DNA, ds NM NM 162.2 16.1 Myoviridae
Φ-7 68.6 59.1 DNA, ds 4.76 3.8 81.9 8.6 Myoviridae

The concentration of bacteriophages was ~×108 PFU/mL; W: wide; L: length, NM: not measured. Data presented as
averages. Bacteriophages were measured in triplicate.



Antibiotics 2020, 9, 415 4 of 13
Antibiotics 2020, 9, x FOR PEER REVIEW 4 of 14 

4 
 

 
Figure 2. Transmission electron micrographs of the Vibrio bacteriophages isolated in this study. (a) Φ-
5, (b) Φ-6, (c) Φ-7. 

Table 2. Characteristics of the Vibrio bacteriophages isolated in this study. 

Bacteriophage 
Head (nm) 

Nucleic Acid 
Neck (nm) Tail Sheath (nm) 

Family 
L W L W L W 

Φ-5 131.8 122.7 DNA, ds 11.4 6.8 129.5 18.2 Myoviridae 
Φ-6 NM 96.0 DNA, ds NM NM 162.2 16.1 Myoviridae 
Φ-7 68.6 59.1 DNA, ds 4.76 3.8 81.9 8.6 Myoviridae 

The concentration of bacteriophages was ~×108 PFU/mL; W: wide; L: length, NM: not measured. Data 
presented as averages. Bacteriophages were measured in triplicate. 

S1 nuclease and RNase A endonuclease digestion did not result in the production of fragments 
or degraded genomic DNA for any of the three isolated bacteriophages (results not shown), therefore, 
it was concluded that the nucleic acids of all bacteriophage isolates were double stranded DNA. 

Using combined results from the TEM imaging and the digestions of genomic DNA, the Φ-5, Φ-
6, and Φ-7 were deduced to belong to the Myoviridae viral family (Table 2). 

Genomes of Φ-5 were aligned with toxic Vibrio genes: toxR, toxS gene (GenBank of AB372519.1), 
tlh gene (GenBank number of JQ929914.1), ctxA (GenBank number of FJ641050.1 and FJ641047.1), tcpA 
and tcpB (GenBank number of AF516340.1) using Blastn suite (Align Sequences Nucleotide BLAST) 
on https://blast.ncbi.nlm.nih.gov/Blast.cgi. The results revealed that there was no significant 
similarity between toxic genes located on the genome of Φ-5. The annotation of the genomes of the 
Φ-5 indicated that no integrase, transposase or repressor genes were present. 

Figure 2. Transmission electron micrographs of the Vibrio bacteriophages isolated in this study. (a) Φ-5,
(b) Φ-6, (c) Φ-7.

S1 nuclease and RNase A endonuclease digestion did not result in the production of fragments or
degraded genomic DNA for any of the three isolated bacteriophages (results not shown), therefore,
it was concluded that the nucleic acids of all bacteriophage isolates were double stranded DNA.

Using combined results from the TEM imaging and the digestions of genomic DNA, the Φ-5, Φ-6,
and Φ-7 were deduced to belong to the Myoviridae viral family (Table 2).

Genomes of Φ-5 were aligned with toxic Vibrio genes: toxR, toxS gene (GenBank of AB372519.1),
tlh gene (GenBank number of JQ929914.1), ctxA (GenBank number of FJ641050.1 and FJ641047.1),
tcpA and tcpB (GenBank number of AF516340.1) using Blastn suite (Align Sequences Nucleotide
BLAST) on https://blast.ncbi.nlm.nih.gov/Blast.cgi. The results revealed that there was no significant
similarity between toxic genes located on the genome of Φ-5. The annotation of the genomes of the
Φ-5 indicated that no integrase, transposase or repressor genes were present.

Φ-5, which had strong lytic activity, was chosen for genome sequencing and it was found that
Φ-5 consisted of 238053 bp with an average GC content of 43.57%. There was no ncRNA gene in
the genome and a total of 217 ORFs were predicted for Vibrio Φ-5 (Table 2). ORF 46, predicted as
lysin, showed high level sequence similarity (95%) to other previously described bacteriophage lysins.
Putative thymidine kinase (92% identity), which is used in many antiviral drugs, was found in ORF 10
(Table S1).

Multiple sequence alignment revealed that Φ-5 was closely related to Vibrio bacteriophage
Aphrodite1 (GenBank number MG720308.1) with 95% similarity and belonged to the genus
Aphroditevirus.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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A proteomic tree (Figure 3) was produced based on TBLASTX genomic sequence of 26
bacteriophage genomes. The lengths of branches were logarithmically scaled. The tree was drawn by
using the method of Nishimura et al. [31] (https://www.genome.jp/viptree/). Vibrio bacteriophage pTD1
and Vibrio bacteriophage Aphrodite1 has NCBI accession numbers of AP017972.1 and MG720308.1,
respectively. Vibrio phage 2 and Vibrio phage 1 were isolated and stored at USC lab.
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Color bar (Figure 4) shows % identity of TBLASTX. The comparative genomes were drawn
by using a method of Nishimura et al. [31] (https://www.genome.jp/viptree/). Vibrio bacteriophage
pTD1 and Vibrio bacteriophage Aphrodite1 has GenBank numbers of AP017972.1 and MG720308.1,
respectively. Vibrio_phage_2 and Vibrio_phage_1 were isolated and stored at USC lab.Antibiotics 2020, 9, x FOR PEER REVIEW 6 of 14 
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2.4. Host Range and Bacteriophage Lytic Ability

Φ-6 and Φ-7 showed cross infectivity against V. harveyi (ATCC 14126) and V. alginolyticus (ATCC
17749), respectively (Table 3). Both isolated Vibrio spp. were susceptible to the bacteriophages.

https://www.genome.jp/viptree/
https://www.genome.jp/viptree/
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Table 3. Host range of the bacteriophage isolates determined against different Vibrio species.

Vibrio spp. Vibrio Φ-5 Vibrio Φ-6 Vibrio Φ-7

USC-26004 + + +
USC-26005 PH PH PH

ATCC 14126 - + -
ATCC 17749 - - +

“+”: susceptible to bacteriophage lysis; “-”: not susceptible to bacteriophage lysis; PH: propagation host.

In Luria-Bertani (LB) broth, concentrations of USC-26005 and USC-26004 increased gradually
and reached average OD600nm values of 0.665 and 0.677, respectively, during the 9 h incubation.
Application of the Vibrio bacteriophages resulted in a high inhibition of bacterial growth. After 4 h for
Φ-7 treatment and 7 h for Φ-5 treatment, bacterial growth recovered and reached much lower OD600nm

values compared to the untreated control (Figure 5a).Antibiotics 2020, 9, x FOR PEER REVIEW 7 of 14 
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Figure 5. Inactivation of Vibrio spp. by the bacteriophages. Initial concentrations of Φ-6 and Φ-7 were
×106 PFU/mL. (a) LB broth: The initial concentrations of the isolates USC-26005 + Φ-7, USC-26006
control, USC-2004 + Φ-5 and USC-2004 control were 6.21 ± 0.05 × 106, 6.11 ± 0.09 × 106, 4.04 ± 0.2
× 106 and 4.04 ± 0.2 × 106 CFU/mL, respectively. (b) A mixture of seawater and LB broth at a ratio
of 3:1: The initial concentrations of the isolates USC-26005 + Φ-7, USC-26006 control, USC-2004 +

Φ-5 and USC-2004 control were 6.24 ± 0.1 × 106, 5.92 × 106, 3.62 ± 0.05 × 106 and 3.59 ± 0.12 × 106

CFU/mL, respectively.

In seawater, during infection with Φ-5 and Φ-7, the OD value of isolated USC-26005 and USC-26004
remained stable at around 0.06 and 0.02. At the end of this experiment, the OD600nm value of USC-26005
control and USC-26004 control were at the highest levels of 0.584 ± 0.032 and 0.481 ± 0.027, respectively
(Figure 5b).



Antibiotics 2020, 9, 415 7 of 13

2.5. Laboratory Trial of Bacteriophages Against Vibrio spp.

There was no significant difference between control 1 and control 2 (p > 0.05), indicating that the
bacteriophage cocktail did not affect oyster larval health. Mortality rate (%) of larvae was 28.2 ± 3.5 in
the bacteriophage treatment group, compared to 77.9 ± 9.1 in the bacterial treatment group after 24 h
incubation (Figure 6).Antibiotics 2020, 9, x FOR PEER REVIEW 8 of 14 
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3. Discussion

Several Vibrio spp., including V. alginolyticus, are considered to be the most significant aquaculture
pathogens causing mortality of shellfish and crustaceans. Three antibiotics (oxytetracycline,
chloramphenicol and oxolinic acid) are commonly used in aquaculture [2]. Watts et al. [32] pointed out
that 90% of bacteria isolated from seawater were resistant to at least one antibiotic and 20% of bacteria
were resistant to five or more antibiotics. Kang et al. [14] reported on the pathogenic V. alginolyticus that
caused severe infection in shellfish in coastal areas of Korea where all of 15 isolates tested were resistant
to vancomycin and ampicillin and 33% of Vibrio isolates showed multiple antimicrobial resistance
to at least three antibiotics. Even though the use of antibiotics in some developed countries such as
Japan, North America, and Europe is strictly regulated or banned, there is a lack of regulation on
antibiotics use in developing nations where 90% of world aquaculture production occurs. This results
in high variability in the use of antibiotics in different regions and the potential accumulation of
antibiotic residues in the produce. Antibiotic residues in farmed salmon for example, ranged from
0.02–0.39 g/ton in Scotland and Norway, to 660 g/ton in Chile [32]. In line with the above information,
the most pathogenic isolate in the present study was USC-26004 which also displayed antibiotic
resistant properties. Antibiotic resistance was also observed for Vibrio isolates similar to those observed
by Kang et al. [14] and Karunasagar et al. [12], indicating that antibiotic resistant Vibrio species may
have increasing prevalence in the environment. Antibiotic resistance also occurs in aquaculture systems
that are considered “hotspots for antibiotic resistance genes” where recombination and gene exchange
can easily occur [32]. As a result, bacteriophage control that also eliminates the possibility of antibiotic
resistant bacteria, presents an effective potential control strategy.

Ackermann [33] reported that from a total of 227 tailed Vibrio bacteriophages, 67 (29.5%) and
86 (37.9%) belonged to the Siphoviridae and Myoviridae viral families, respectively. In the present
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study, the Vibrio bacteriophage isolates were also classified into the Myoviridae viral family. Moreover,
the sizes of the Vibrio bacteriophages corresponded to those reported by Ackermann [34], where capsid
and tail size of tailed bacteriophages were from 30 to 160 and 10 to 800 nm, respectively. The three
bacteriophage genomes could not be digested by S1 nuclease or RNase A, confirming that they were
all double stranded DNA bacteriophages, and again, these findings were consistent with results
from Sasikala and Srinivasan [35]. The genome of Φ-5 was relatively large, compared to PVA1 Vibrio
alginolyticus bacteriophage, in which the genomic sequence contained 41529 bp with a GC content of
43.7% [36].

For acceptance of the use of bacteriophages as biological control agents in aquaculture,
better understanding of the genetics and the biology of bacteriophages is required. One of the
potential obstacles can be related to temperate bacteriophages, that can transduce virulence factors to
host bacteria [37]. Many researchers have reported that bacteriophages can encode toxins or other
toxicity factors which could increase the virulence of their host bacteria. This obstacle could be removed
by selecting virulent bacteriophages. Moreover, in order to be an effective biological control candidate,
the genome of selected bacteriophages should not contain any of the known virulence-associated or
antibiotic-resistance genes [37]. Therefore, bacteriophage genome analysis has to be carried out to
determine that none of the putative proteins would have significant similarities to hypothetical factors
or genes known to play roles in bacterial pathogenicity. The annotation of the genome of Φ-5 indicated
that no integrase, transposase or repressor genes were present in the genome. Therefore, the truly
lytic nature of Φ-5 implied that it is a suitable candidate for biological control of V. alginolyticus (USC
26001, USC 26004, ATCC 17749). Another potential obstacle to the use of bacteriophages as biocontrol
agents is to ensure that they do not perform generalized or specialized transduction [38]. Based on the
genome analysis and the subsequent growth experiments, it was concluded that the bacteriophages
described in this paper were unlikely to be involved in the specialized transduction of host bacterial
DNA. The GC content of Φ-1 was very close to that for bacteriophage V. alginolyticus Vp 670 (GC
content of 43.4%) [39] with no ncRNA gene in the genome [38]. Bacteriophages with tails and a dsDNA
genome larger than 200 kb are classified as Jumbo bacteriophage [40]. Φ-5 is a jumbo bacteriophage.
Similar to other Jumbo phages, which are often isolated from aquatic environments, they mostly infect
Gram-negative host bacteria (95.6%) [40].

Until now, 578 Vibrio bacteriophage genomes have been sequenced (http://millardlab.org/

bioinformatics/bacteriophage-genomes/phage-genomes-april-2019/) and the data obtained have paved
the way to new approaches relating to the utilization of Vibrio bacteriophage lysins as potential
antimicrobial agents. However, due to the outer-membrane protection of Gram-negative bacteria,
lysins can only act effectively against Gram-positive bacteria and they work less effectively against
Gram-negative bacteria. Lysins might be more effective against Gram-negative bacteria if the bacteria
were pretreated with the outer membrane proteins (CHCl3, EDTA or Triton X-100) [41–44]. In order to
apply in aquaculture settings, large volume and cost-effective scale-up of lysin production is required.
These factors are currently significant obstacles against cost-effective implementation of the use of
lysins for disease control in aquaculture. Therefore, in this study, phage lysin was not investigated.

Further studies could be conducted to determine whether or not bacteriophage treatments
would be effective in aquaculture facilities. Moreover, the performance of bacteriophages under the
range of environmental conditions that might be experienced in aquaculture systems needs to be
investigated to enable generation of an improved understanding of appropriate and sub-optimal
conditions under which bacteriophage treatment might be successfully applied. Further research
should also be carried out on bacteriophage-resistant bacteria to confirm that mutant bacteria are not
likely to be pathogenic [45].

http://millardlab.org/bioinformatics/bacteriophage-genomes/phage-genomes-april-2019/
http://millardlab.org/bioinformatics/bacteriophage-genomes/phage-genomes-april-2019/
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4. Materials and Methods

4.1. Isolation and Characterization of Vibrio spp. Isolated from Oyster Hatcheries

Vibrio spp. were isolated from water within larval culture tanks at an oyster hatchery (Port
Stephens Fisheries Institute, New South Wales, Australia), by concentrating samples from the cultures
on Whatman filter papers (Merck, Macquarie Park NSW, Australia) followed by an enrichment.
Isolates were then identified using conventional biochemical tests in the form of commercial kits
API®20NE (BioMerieux, Durham, NC 27712, USA) (https://www.biomerieux-usa.com/clinical/api).
After incubation, colony morphology on the agar plates was examined, isolations were conducted,
and the resulting pure bacterial cultures were stored at −80 ◦C in the DMB supplemented with
15% glycerol.

The DNA of isolated bacteria was extracted according to the manufacturer’s instructions, using the
GenElute bacterial genomic DNA kit (Merck, Macquarie Park NSW, Australia). Universal primers
U1492R and Bac27F [46] were used to amplify the partial 16S rDNA gene, using thermal cycles,
based on the method of Pang et al. [47]. The resulting PCR products were sequenced by the Macrogen
Company in the Republic of Korea (http://www.macrogen.com/en/main/index.php) and the sequences
were subsequently analyzed using BLAST analysis (https://blast.ncbi.nlm.nih.gov). The resulting
sequence of USC-26004 was deposited in Genbank (accession number of MK334309).

The disk diffusion method [48] on Müller–Hinton agar (Thermo Scientific, Scoresby, Vic, Australia)
was used to determine the antibiotic resistance patterns of the Vibrio isolates against the following
antimicrobials: aztreonam (30 µg), tetracycline (30 µg), nalidixic acid (30 µg), cefoxitin (30 µg),
erythromycin (15 µg), gentamicin (10 µg), streptomycin (10 µg), ampicillin (10 µg), imipenem (10 µg),
and penicillin (10 units) (Edwards Group Pty. Ltd., NSW, Australia). Plates were incubated for 24 h
at 37 ◦C. Because no breakpoints are defined for Vibrio, the zone diameter interpretive standards for
the Enterobacteriaceae [48] was used in this study and the E. coli strain (ATCC 25922) was used as the
control during the test.

4.2. Pathogenicity Test and Prophage Induction

All isolated Vibrio spp., V. harveyi (ATCC 14126), and V. alginolyticus (ATCC 17749) were tested
for their possible pathogenicity against oyster larvae using the method described by Prado et al. [30].
Healthy Sydney rock oyster (Saccostrea glomerata) larvae (200 µm size antero-posterior shell size) were
used at a density of 8–12 larvae/mL in 2.5 mL wells (total of 24–30 larvae per well) and the final
concentration of Vibrio spp. administered to larval cultures was ~105 CFU/mL. Mortalities lower than
10% indicated that the bacteria were not pathogenic [30]. All tested groups were performed in triplicate.

The prophage induction test of Vibrio spp. was carried out as described by Clokie and
Kropinski [49].

4.3. Isolation and Characterization of Bacteriophages

Bacteriophage isolation and genome sequencing was carried out as described by Clokie and
Kropinski [49].

Rectangular proteomic tree and genomic alignment were created by using method of
Nishimura et al. [31].

Genome of Φ-5 was aligned with toxic Vibrio genes: toxR, toxS gene (GenBank of AB372519.1),
tlh gene (GenBank number of JQ929914.1), ctxA (GenBank number of FJ641050.1 and FJ641047.1),
tcpA and tcpB (GenBank number of AF516340.1) using Blastn suite (Align Sequences Nucleotide
BLAST) on https://blast.ncbi.nlm.nih.gov/Blast.cgi.

The GenBank numbers of Φ-1 (or Vibrio phage USC-1) and Φ-5 were MK905543 and
MK358448, respectively.

https://www.biomerieux-usa.com/clinical/api
http://www.macrogen.com/en/main/index.php
https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.4. Bacteriophage Lytic Activity

Vibrio species were streaked onto Tryptone Soya Agar with 1.5% salt agar (TSAS) and incubated
at 28 ◦C overnight, then harvested onto LB broth (Thermo Fisher Scientific, Scoresby, VIC, Australia).
An aliquot (6 mL) of the Vibrio spp. in LB broth (~106 CFU/mL) was added into 2 mL of a bacteriophage
solution (concentration of ~106 to ~108 PFU/mL) and incubated at 28 ◦C and 150 rpm. A control using
only Vibrio spp. was also included in the test. Samples were removed from the broth every hour for 9 h
and the optical density of the cells measured at 600 nm. A similar experiment to that as detailed above
was carried out with the exception that the LB broth was replaced with sterile seawater to measure
bacteriophage lytic activity in a mixture of sterile seawater and LB broth at a ratio of 3:1. All tests were
performed in triplicate.

4.5. Bacteriophage Control of Vibrio spp. with Oyster Larvae

Vibrio sp. (USC-26004) was used for challenge tests in 12-well sterile tissue cell-culture plates
(Thermo Fisher Scientific, Scoresby, VIC, Australia) [30,50]. Oyster (S. glomerata) larvae with an
antero–posterior shell size of around 200 µm, were placed at a stocking density of 8–12 larvae/mL
into each 2.5 mL well (total of 24–30 larvae per well). A bacteriophage cocktail composed of a 1:1:1
mixture of the bacteriophages Φ-5, Φ-6 and Φ-7 was prepared. The challenge included a positive
control group (larvae with exposure to USC-26004), a bacteriophage control 1 (mixed phages cocktail),
control 2 (larvae only with sterile seawater) and a bacteriophage treated group. An aliquot (0.1 mL)
of mixed bacteriophage cocktail (final concentration of 108 PFU/mL) was first added at 0 h and then
added with another 0.1 mL of the same bacteriophage suspension after 12 h. Vibrio USC-26004 was
added to give a final concentration of 105 CFU/mL in the well. The challenges were run for a period of
24 h. Larval mortality was determined every 12 h using a light microscope (4×–10×) and mortality
was characterized by the lack of identifiable movement of larval tissues. Larvae were fed every 12 h
during the challenge test with live microalgae (Tetraselmis chuii, Dunaliella tertiolecta and Nannochloropsis
oculata) following standard culture procedure for Sydney rock oyster larvae(https://www.dpi.nsw.gov.
au/__data/assets/pdf_file/0014/261041/Output-1084_Hatchery-Manual_FORMATTED.pdf). All tested
groups were performed in triplicate.

4.6. Statistical Analysis

Single factor ANOVA was used to test for differences in larval mortality rates in treatments with
and without the bacteriophage suspension. Data were analyzed using SPSS Statistics 20 software
(IBM SPSS Statistics 20, USA) (https://www-01.ibm.com/support/docview.wss?uid=swg24029274) and
difference was considered significant at p < 0.05.

5. Conclusions

A bacteriophage cocktail composed of three newly isolated bacteriophages investigated in this
study successfully reduced levels of Vibrio spp. contamination and improved the survival of oyster
larvae exposed to pathogenic Vibrio spp. On this basis, bacteriophage treatment may be regarded as
having potential as an effective biocontrol agent that prevents the onset of vibriosis in oyster hatcheries
and, potentially, in other aquaculture settings. The genome of Φ-5 was found to contain lysin genes.
Findings presented increase our understanding of bacteriophage biology, genomics, and bacteriophage
lysins, and they highlight the potential of bacteriophage biocontrol as an alternative treatment for
vibriosis in aquaculture facilities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/7/415/s1,
Table S1: Predicted ORFs for Φ-5 and homology to proteins.

https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0014/261041/Output-1084_Hatchery-Manual_FORMATTED.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0014/261041/Output-1084_Hatchery-Manual_FORMATTED.pdf
https://www-01.ibm.com/support/docview.wss?uid=swg24029274
http://www.mdpi.com/2079-6382/9/7/415/s1
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