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We appreciate the opportunity to make some comments regarding the role of statisticians and modelers in responding
to infectious disease outbreaks, stimulated by the insightful review of these topics by our colleagues Susan Ellenberg
and Jeffrey Morris (E&M hereafter). The absence of core material on infectious disease topics in many epidemiology
and biostatistics syllabi is a historical artifact arising from the apparent success in controlling infectious diseases by the
mid-20th century through vaccines and therapeutics. In the past, the interplay between dynamic transmission models
and statistical analysis of infection data has reflected a symbiotic relationship, albeit one with some friction. However,
the research landscape has rapidly changed since the emergence of HIV in 1980, and we anticipate a growing demand
for training in infectious disease research in the immediate future, with needs extending to public policy and economics.
It is thus timely to consider what we have learned to date from modern infectious disease outbreaks such as HIV and
COVID-19 from a modeling and statistical perspective.

E&M focus on the contributions of applied mathematicians and statisticians to understanding transmission dynamics,
the natural history of infection, and prognostic factors for severe disease outcomes, as well as design and analysis issues
for the study of treatments and vaccines. We make here some additional remarks on these topics, supplemented by some
other considerations that we believe important to coordinated and effective public health responses to epidemics.

1 DIFFERING SCALES OF THE HIV AND SARS- COV-2 PANDEMICS

The HIV and SARS-CoV-2 pandemics differ substantially both in magnitude and natural history, which have contributed
to their specific public health responses. For example, the incubation period for SARS-CoV-2 is measured in days whereas
HIV can take years after infection to be diagnosed clinically. We now have antiviral treatments that delay the onset of
major clinical disease after HIV infection almost indefinitely; however, we do not yet have significant therapeutics after
SARS-CoV-2 infection that delay or eliminate severe disease although some vaccines operate in this way, at least in part.
Due to the nature of respiratory transmission, all individuals are generally exposed to COVID-19, as opposed to HIV, where
exposure was limited—at least at the beginning of the pandemic—to high-risk groups. Nevertheless, both epidemics
spread worldwide for similar reasons, despite differences in time scale and the nature of transmission. As HIV has a
very long incubation period with undetectable infection dates, transmission from infected persons can occur long before
clinical symptoms are obvious. On the other hand, COVID-19’s spread is rapid and largely respiratory, meaning that all
person-to-person contacts contain some risk of transmission. Similarly, though, the role of asymptomatic spread has made
control particularly difficult (as opposed to some other respiratory infections such as SARS-CoV-1); it is estimated that
more than 50% of SARS-CoV-2 transmissions occur from an asymptomatic or pre-symptomatic individual.
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Since the beginning of the HIV epidemic, 75.7M (55.9—100M) people have been infected, resulting in more than 32M
(24.8—42.2M) deaths worldwide.1 As of February 8, 2021 106M individuals have been infected with SARS-CoV-2 globally,
with more than 2.3M deaths,2 although these figures may reflect undercounts of the true numbers. SARS-CoV-2 is thus
already more widespread than HIV, although it has caused far fewer deaths as of yet.

2 MATHEMATICAL AND EMPIRICAL/STATISTICAL MODELS

Although mathematical modeling of infectious diseases was far less developed at the start of the HIV epidemic, dynamic
transmission models played a crucial role in understanding the outbreak. Excellent summaries by 1988 can be found in
Isham3 and May and Anderson.4 As with all outbreaks, with the constraint of very limited data in early stages, transmis-
sion models demonstrated the potential growth of infections and the relative impact of interventions in specific settings.5
At their core, however, mathematical models still require statistical estimates of key epidemiological parameters, such as
properties of the incubation distribution. General population models become less important as an epidemic matures in
part because it is difficult to effectively incorporate complex interventions that continuously change by region, time, and
in response to the outbreak itself. Nevertheless, models continue to provide valuable assessments of new data, including
the relative infectiousness of different variants of SARS-CoV-26,7 and the relative impact of different vaccine distribution
plans,8 for example.

The cornerstone of any epidemiological description of an emerging outbreak is an understanding of how many indi-
viduals have been infected by a pathogen, and who they are with regard to basic demographics and risk factors. At the
outset of the HIV epidemic, this task was complicated by the fact that most infections did not cause observable clinical
disease and therefore remained undetectable until symptoms occurred, often many years later. Brookmeyer and Gail9,10

introduced the back-calculation method which allowed estimation of a real-time truncated distribution of infection times
based on current incidence counts of AIDS cases, supplemented by knowledge of an assumed incubation distribution.
This, in turn, allowed short-term projections of new cases of AIDS in the future. Back-calculation used in this way is
much less relevant for COVID-19 due to the much shorter time frame between infection and symptom onset. However,
back-projecting infection counts from information on hospitalizations have nevertheless been useful to assess short-term
health care demands associated with COVID-19.11

In modeling, statisticians are challenged by the fact that different epidemics often display unique characteristics,
despite general transmission principles. It is worth repeating the old maxim that “if you have seen one epidemic … you
have seen one epidemic.” That is, epidemic patterns are not sampled at random from some superpopulation of epidemic
distributions. This is not to say that we cannot learn something from past epidemic patterns, particularly in understanding
effective transmission interventions. In addition, as more data becomes available, it opens the door to more empirical
models of epidemic curves across multiple regions that may share some similarities. Purely empirical modeling attempts
to achieve this goal have been widely criticized both in the HIV and COVID-19 setting, as noted by E&M.12,13 In both
cases, attempts to use Farr’s Law for epidemics were used injudiciously. Alternative approaches for COVID-19 have mixed
empirical models with versions of compartmental models with somewhat more success.14,15

Several gaps exist in our application of mathematical models to the COVID-19 pandemic, not least models that link
different risk communities—for example, the connection between community transmission and risk within long-term
care facilities. This linkage of transmission between distinct at-risk communities was ultimately recognized to be very
important in understanding HIV transmission. Recent policy decisions for COVID-19 have also suffered from a paucity of
effective means of linking human transmission patterns with economic models of the impact of intervention strategies.

Ultimately, no single model is likely to be completely reliable throughout an epidemic. For this reason, both the CDC
in the United States16 and the Scientific Advisory Group for Emergencies (SAGE) in the United Kingdom use an ensemble
of outputs from various models for COVID-19.17,18 Epidemic models differ fundamentally from many apparently similar
complex efforts (such as national meteorological models) since human behavior and governmental policies are influenced
by predictions that necessarily modify expected outcomes.

3 THE ROLE OF SURVEILLANCE DATA

It is first and foremost essential to determine both the amount and characteristics of infections, and this remains necessary
throughout an epidemic. Routine surveillance allows for targeting of intervention responses and effective mobilization
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of health care resources. This information is best obtained through adaptable and integrated disease surveillance sys-
tems that can capture both new and past infections. E&M correctly note a “lack of consistency in reporting COVID-19
data.” With regard to infection counts, testing rates have varied substantially over geography and time, making patterns
of reported infection counts hard to interpret and compare, as also noted by E&M. In addition, there is often a substan-
tial reporting delay for death counts. In addition, deaths are not counted in equivalent fashion across the globe or even
with countries or regions.5 Initially, reporting delays understate the growth of mortality curves. Infection and mortality
counts—at least as commonly reported in the United States—remain statistically unadjusted for these kinds of phenom-
ena, often causing confusion. There is also a lack of comparable national and state hospitalization data due, in part, to the
fragmented nature of the health care system in the United States. In the United Kingdom, the Office of National Statistics
(ONS) has been more proactive with regard to reporting infection and death counts.19

There has, as yet, been no US national survey estimates of SARS-CoV-2 seroprevalence although some local estimates
exist (perhaps Indiana is the only state to have attempted this rigorously), and some probability samples are available
in other countries. Early opportunities to launch seroprevalence surveys in the United States were missed, in part due
to a lack of supply of test kits early in the epidemic. A natural option for capturing blood samples from a nationally
representative sample would have been the annual National Health and Nutrition Examination Survey (NHANES), but
this was suspended on March 6, 2020 due to COVID-19.

It is quite remarkable that this was not the case in earlier pandemics when resources, technology, and understanding
of survey methodology were much less advanced. In the winter of 1918/1919, the US Public Health Service carried out
a large door-to-door survey (with a sample size that exceeded 145 000) to measure the morbidity and mortality of the
1918/1919 influenza pandemic.20 With the emergence of HIV, an enormously influential random sample survey of men
in San Francisco21 provided key insights into the extent and nature of HIV infection in the city, a study launched before
any available blood test was available for virus detection.

Sadly, the United States has not been as effective thus far in the COVID-19 pandemic. In the United Kingdom, how-
ever, there are two national sources of information on current and past SARS-CoV-2 infections. The first has again been
carried out by the ONS—the Coronavirus (COVID) Infection Survey UK22—and a second effort is known as the REACT-1
and REACT-2 studies.23 There is additional incentive to target population surveys to high-risk groups, such as essential
workers who experience high levels of exposure to COVID-19. It was important that such high-risk groups were quickly
identified during the HIV epidemic.

A widespread method to avoid uncertainty in counts of deaths attributed to COVID-19 has focused on the calculation
of excess all-cause deaths beyond what was seen in past comparable years. This too is an old methodology. In the midst of
World War II, Major Greenwood read a discussion paper before the Royal Statistical Society24 that assessed the British loss
of life amongst civilians both in the Napoleonic wars and also World War I, referencing there another remarkable piece of
scholarship in 1923 that discussed excess death methodology to estimate mortality associated with wars including World
War I.25 Ironically, Greenwood noted that mortality assessment due to World War I was confounded by mortality due to
the influenza epidemic of 1918, speculating whether the latter could be attributed to the war or not.

There are several other areas where we have been hampered by a lack of high quality and systematic surveillance data
in the United States. In the United Kingdom, the new and fast-spreading SARS-CoV-2 variant (B.1.1.7) was only identified
quickly because of the implementation of regular, systematic sequencing of a large sample of positive SARS-CoV-2 tests.
There was no such timely systematic attempt in the United States, although more sequence data is being obtained now
due to the appearance of several additional variants of concern across the world. Further, coordinated contact tracing
data—which is extremely useful in assessing transmissibility and factors that affect transmission—has been generally
lacking. One year into the epidemic in the United States, we remain largely blind as to where infections are occurring.

4 TESTING

We have little to add to the key issues around testing raised by E&M. Pooled testing is complex due to concerns regarding
sensitivity of tests to diluted pooled samples. Interesting statistical problems remain regarding the effective use of more
complex pooled testing regimens where individual samples are pooled in multiple arrays allowing rapid identification of
positive samples with fewer consecutive tests (that can compromise pooled testing if positive identification is delayed by
repeated testing).26,27 One area that has received some epidemiological attention relates to the testing of sewage samples
for SARS-CoV-2,28 and such processes have been used in several locations, although the epidemiological value of these
measurements remains open.
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5 NATURAL HISTORY

E&M have pointed to the importance of understanding natural history for both the HIV and COVID-19 diseases. With
regard to the latter, a complete picture of the role of children in community transmission remains uncertain, and this has
hampered the implementation of evidence-based return-to-school policies. In the future, there will clearly be the need for
long-term longitudinal studies of “long covid” patients, resembling the many cohorts of HIV-positives that were followed
in the United States and elsewhere in the 1980s and thereafter.

6 LACK OF RANDOMIZATION IN ASSESSING INTERVENTION EFFICACY

There have been considerable and commendable efforts to exploit statistical tools associated with randomized clinical
trials to quantify the efficacy of both therapeutics and vaccines. It is somewhat surprising, however, that there have been
no significant attempts to assess the impact of non-pharmaceutical interventions to reduce infections or to consider the
impact of easing various social distancing policies. For many intervention questions associated with reducing the risk of
COVID-19 infection, there is clear evidence of equipoise, mitigating ethical concerns for using randomization. However,
very few such randomized trials have been suggested, yet alone implemented. In Norway, there was a small, randomized
experiment regarding the safe opening of gyms.29 There was also an early plan to randomize school re-openings in Norway,
but this was later abandoned by the government.30,31 Several randomized studies—some ill-designed—have evaluated the
use of face masks to prevent infection32 including the infamous Danish mask study.33 But these examples are surprisingly
few and far between. The lack of desire to use randomized experimentation may reflect another example of what is known
as experiment aversion.34 It is unclear the extent to which this also was evident for non-pharmaceutical HIV interventions.

Finally, there remain a number of pressing questions regarding vaccine effectiveness that may not benefit from ran-
domized comparisons now that several vaccines have been approved for emergency use. These include the need to
understand the comparative effectiveness of various vaccine delivery schedules (ie, the timing between first and second
doses), the impact of the length of time since vaccination completion (how quickly does vaccine-induced immunity wane),
and the effectiveness of vaccines both by brand, and combinations of brands, and against various SARS-CoV-2 variants
of concern. There are some efforts in the United Kingdom to investigate some of these questions using follow-on ran-
domized trials. Absent randomized trials, we must rely on post-approval vaccine effectiveness studies. In the past, such
efforts for the seasonal influenza vaccine have used test-negative designs (TND) that recruit participants with presenting
symptoms who are tested for the pathogen of interest. Test-positives and test-negatives are then compared with regard to
past vaccination exposure and the characteristics of the vaccine used, although considerable care must be taken in defin-
ing positives and negative tests.35 Many such TND studies are now emerging for COVID-19 vaccines. Unfortunately, no
vaccine yet exists for HIV despite decades of effort.

7 CONNECTIONS WITH OTHER INFECTIOUS DISEASES

It is important to note that neither HIV nor SARS-CoV-2 occurred in a vacuum. The arrival of the HIV epidemic set off
a resurgence in tuberculosis, for example, and the two diseases remain closely intertwined in sub-Saharan Africa. The
rapid global spread of the COVID-19 pandemic will likely have many indirect repercussions, including posing a threat to
the control of other infectious diseases like HIV. Lockdowns have already caused disruption to HIV testing and voluntary
medical male circumcision services, as well as access to antiretroviral therapy (ART).36 Modeling has predicted that a
six-month ART interruption for half of individuals on treatment could lead to an excess 300 000 deaths in sub-Saharan
Africa from HIV alone.37 Similarly, disruptions due to COVID-19 are predicted to lead to increased deaths for tuberculosis
and malaria, as well as reductions in childhood vaccinations, potentially setting back progress by decades,38,39 particularly
in low- and lower middle-income countries where HIV also remains a persistent threat.40

8 RESEARCH INFRASTRUCTURE/SCIENTIFIC PUBLICATION

It has been widely observed that the appearance of the COVID-19 pandemic shone a light on many pre-existing, underly-
ing societal issues, particularly with regard to inequities in access to health services and economic resources. Such light
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has also exposed concerns within scientific communities. In addition to inequities in scientific output associated with
work-at-home restrictions, there is a need to consider the academic incentive structure that often fails to reward the very
kind of work that is most needed to successfully respond to a pandemic. Inflexibly basing career advancement on standard
publication metrics will be detrimental.41,42 There is also a clear need for training scientists in effective scientific commu-
nication with the media and the public in an era of disaggregated news and information sources. An enormous amount
of effort has been devoted to combating misinformation about COVID-19 that has often been propagated at the highest
levels of both science and government. This was also present to some extent after the arrival of HIV, but that occurred in
an era without the influence of social media in amplifying “bad science.” In the United Kingdom, the Royal Statistical
Society has had a more effective voice in responding to government policy than has been the case for any statistical or
epidemiological organization in the United States. It is equally important to consider the role of the scientific research
infrastructure and funding that will permit effective responses to future pandemics that will likely occur with increasing
regularity. The group, OPCAST, a subgroup of former members of President Obama’s Council of Advisors on Science and
Technology, gave a considerable amount of thought to this issue and their provocative recommendations, amongst many
others, are worthy of our attention.43 It is patently clear that we have all paid a price for a collective failure to invest sig-
nificantly in the public health systems in both the United States and the United Kingdom. Will we persist of making the
same mistakes again?

Amongst scientists, including statisticians, there is often great unease about their work being politicized. From the
beginning, HIV was prone to politicization, in part due to high transmission rates among marginalized populations, but
COVID-19 has shown on a bigger scale that politicization of epidemics cannot be avoided. With HIV, collisions of science
and politics were common and, in some cases, led to improvement in the scientific method. Ultimately, all epidemics are
political,44 and statisticians and epidemiologists need to learn how to navigate these waters so that we are better prepared
next time.
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