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Abstract 

Background:  Sarcomas, cancers originating from mesenchymal cells, are comprehensive tumors with poor progno-
ses, yet their tumorigenic mechanisms are largely unknown. In this study, we characterize infiltrating immune cells 
and analyze immune scores to identify the molecular mechanism of immunologic response to sarcomas.

Method:  The “CIBERSORT” algorithm was used to calculate the amount of L22 immune cell infiltration in sarcomas. 
Then, the “ESTIMATE” algorithm was used to assess the “Estimate,” “Immune,” and “Stromal” scores. Weighted gene co-
expression network analysis (WGCNA) was utilized to identify the significant module related to the immune thera-
peutic target. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were 
performed using the “clusterProfiler” package in R for annotation and visualization.

Results:  Macrophages were the most common immune cells infiltrating sarcomas. The number of CD8 T cells was 
negatively associated with that of M0 and M2 macrophages, and positively associated with M macrophages in sarco-
mas samples. The clinical parameters (disease type, gender) significantly increased with higher Estimate, Immune, and 
Stromal scores, and with a better prognosis. The blue module was significantly associated with CD8 T cells. Functional 
enrichment analysis showed that the blue module was mainly involved in chemokine signaling and the PI3K-Akt 
signaling pathway. CD48, P2RY10 and RASAL3 were identified and validated at the protein level.

Conclusion:  Based on the immune cell infiltration and immune microenvironment, three key genes were identified, 
thus presenting novel molecular mechanisms of sarcoma metastasis.

Keywords:  Sarcomas, Immune infiltration, Prognosis, Weighted gene co-expression analysis, Tumor 
microenvironment
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Background
Sarcomas are a widespread, heterogeneous group of 
tumors that occur on the skin, under the skin, in the peri-
osteum, and on the ends of the long bones of adolescents 
and the elderly (overall incidence: 1–2/100,000 annually) 
[1], which is characteristic of cancers originating from 
mesenchymal cells [2]. Histopathologically, sarcomas are 

classified as either bone or soft tissue sarcomas [3]. To 
date, the etiology of sarcomas is not well characterized; 
however, their incidence appears to be associated with 
heredity [4], viral infection [5], trauma [6], environmen-
tal factors [7], and exposure to radiation [8]. Compared 
with other cancers, the degree of malignancy of sarcomas 
is relatively high [9], and hematogenous metastasis can 
spread to various organs, such as lung, brain, liver, and 
bone [10, 11]. Since sarcomas rarely display clinical mani-
festations in the initial stages of the disease, most sarco-
mas are diagnosed at more advanced stages.
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Standard of care for patients with sarcoma is mainly 
comprised of local surgery, chemotherapy, and radio-
therapy [12]. Among these, radical surgery or amputation 
is the most common [13]. Chemotherapy and radiother-
apy are also included before and after surgery to prevent 
recurrence [14]; however, the success rate of treatment is 
currently low, and many patients still have poor progno-
ses and die of cancer-related causes. For some patients 
with distant metastases, palliative local treatments are 
chosen to control and delay disease progression [15]. 
With the enhanced study of the immune system, immu-
notherapy has emerged as very promising method to 
treat sarcomas after surgery and chemotherapy [16]. 
Researchers have adopted various immunotherapy strat-
egies for different types of immune deficiency, but the 
main treatment obstacles are identifying the specific tar-
get antigen and dealing with the severe adverse effects 
of the selected treatment [17]. Additional research is 
urgently needed to identify ways to ameliorate the toxic 
response to immunotherapy, identify specific targets 
related to sarcoma, improve the effectiveness and safety 
of immunotherapy, and design new combinations of 
immune checkpoint inhibitors and other therapies [18]. 
Therefore, the characterization of sarcoma-specific bio-
markers and the molecular mechanisms responsible for 
the transformation of normal cells to sarcoma are essen-
tial for the success of sarcoma immunotherapy.

Since immune infiltration and the tumor microenvi-
ronment may predict potential molecular mechanisms 
of sarcomas, we used the CIBERSORT (Cell-Type Iden-
tification by Estimating Relative Subsets of RNA Tran-
scripts) algorithm to characterize differential expression 
patterns of immune cell infiltration between sarcoma 
samples and normal samples in 22 subpopulations of 
immune cells, and we used the “Estimate” algorithm to 
analyze the Stromal and Immune scores of differential 
gene expression. Then, we used weighted gene co-expres-
sion network analysis (WGCNA, https​://bmcbi​oinfo​
rmati​cs.biome​dcent​ral.com) to identify several key genes 
related to immune therapeutic target, to suggest novel 
molecular mechanisms responsible for the transforma-
tion and growth of sarcomas.

Materials and methods
Sample acquisition and prepossessing
The sarcoma transcriptome was downloaded from the 
TCGA database [19] via the Genomic Data Commons 
(GDC) data portal. Clinical information of sarcoma 
patients was also acquired from the TCGA. Filter crite-
ria for eligible samples were as follows: (1) samples with 
both transcriptome data and clinical information were 
included; (2) samples with duplicated data or null values 
were excluded.

CIBERSORT evaluation
The “limma” package in R was used to normalize the 
data to estimate the percentage of infiltrating immune 
cells, and then standardized gene expression data were 
uploaded to CIBERSORT [20, 21]. Of these, the LM22 
signature and 1,000 permutation were added [22], with 
CIBERSORT cases (p < 0.05) included in the survival 
analysis.

Estimation evaluation
Estimate-, Immune- and Stromal scores of sarcoma 
samples were calculated with the ESTIMATE algorithm 
of the “estimate” package [23]. The “limma” package in 
R [24] was applied to identify differentially expressed 
genes (DEGs) with p-values < 0.05, and |log fold change 
(FC)|> 1. Then, the relationship between DEGs and 
overall survival of the patients from whom the sarcoma 
samples were acquired was analyzed with the “survival” 
package in R [25].

Co‑expression analysis
Samples identified by both CIBERSORT and ESTIMATE 
were included in the co-expression analysis. The co-
expression analysis was performed using the WGCNA 
package in R language [26, 27]. To maintain the gene 
network level off to the scale-free topology and enough 
connectivity, four were identified as the best soft power 
threshold when the degree of independence was 0.8. 
Then, gene modules were detected based on a topologi-
cal matrix (TOM). Genes with high correlation were 
divided into one module (minimum module size = 20). 
To further evaluate the robust and reliability of the mod-
ules, the permutation test (50x) was performed with the 
“modulePreservation function.” [21]. As instructed, the 
modules with a Zsummary.qual < 5 were not considered 
stable in the co-expressed network. Modules with Zsum-
mary < 2 indicated “no preservation,” 2 < Zsummary < 10 
indicated “weak preservation,” and Zsummary > 10 indi-
cated “strong preservation” (which is recommended to be 
used as the significant module). Modules with a Zsum-
mary < 10, and a Zsummary.qual < 5 were excluded from 
the following analysis [28, 29].

Identification of significant modules and functional 
analysis
In this study, gene significance (GS) [30] was used to 
calculate the correlation coefficients. For example, the 
module significance (MS) was indexed as the average GS 
for the genes in given module. When the modules with 
the highest MS values were regarded as the significant 
modules. The analysis of genes in significant modules 
was performed using gene ontology (GO) enrichment 
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and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis, included in the “clusterProfiler” pack-
age [31] in R, with p-values < 0.05.

Gene identification and validation
Module connectivity (cor.geneModule Membership 
[MM]) and clinical trait relationship (cor.geneTraitSig-
nificance) of genes in the significant module were calcu-
lated. In addition, the genes identified as significant were 
uploaded to the STRING database (http://strin​g-db.org) 
(confidence > 0.1) [32], and Cytoscape was performed to 
establish the protein–protein interaction (PPI) network. 
The MCODE plug-in was utilized to identify the most 
significant sub-module, with a degree cut-off of 2, k-score 
of 2, and max. depth of 100. Then, we used the “Network 
Analyzer”to identify nodes in the network, in which the 
size and the color of the nodes represent MCODE scores. 
Genes with cor.geneModule > 0.8, cor.geneTraitSignifi-
cance > 0.2, and the largest MCODE sub-network were 
considered for further analysis. For further validation, 
identified genes were analyzed with the “survival” pack-
age in R, where p < 0.05 was considered statistically sig-
nificant. In addition, the Human Protein Atlas Database 
(HPAD) [33] was used to validate the protein -level of 
these genes.

Genetic alterations
CBio Cancer Genomics Portal [34, 35] is an open-access 
website used for the visualization and analysis of various 
cancers. In this study, this platform was utilized to inves-
tigate and compare the genetic alternations of the hub 
genes.

Results
Workflow analysis and data description
The analytical workflow is shown in Fig.  1. First, we 
evaluated the differences in immune cell infiltration and 
tumor microenvironments of sarcoma tissues and nor-
mal, adjacent tissues. Next, we characterized the signifi-
cant module associated with CD8 T cells by WGCNA, 
and hub genes were identified and validated. Samples 
from 263 patients with sarcoma and two samples of nor-
mal, adjacent tissues were obtained from the TCGA data-
base for further analysis.

The percent of tumor‑infiltrating lymphocytes in sarcoma 
samples and clinical correlation
CIBERSORT is an algorithm, based on the machine-
learning, highly sensitive and specific discrimination 
of 22 human immune cell phenotypes in several cancer 
types [36, 37]. To estimate the immune cell composi-
tion, the CIBERSORT was used to quantify the relative 

Fig. 1  Flow chart of the analytical process

http://string-db.org


Page 4 of 11Zhu and Hou ﻿Cancer Cell Int          (2020) 20:577 

levels of distinct tumor-infiltrating lymphocytes (TILs). 
In this study, we used CIBERSORT algorithm to assess 
the composition of immune cells in sarcoma and normal 
samples (Fig. 2a, b, Additional file 1: Figure S1). Among 
these TILs, the macrophages were the predominant 
immune cell type in sarcoma tissues. The fraction of CD8 
T cells was negatively associated with M0 macrophages 
(R = −0.43) and M2 macrophages (R = −0.41), and 
positively associated with M1 macrophages (R = 0.51) 
and follicular, helper T cells (R = 0.6) (Fig.  2c). we per-
formed a Kaplan–Meier survival analysis to evaluate 
the correlation between the 22 immune cell subtypes 
and the prognosis of patients from whom the tumors 
were acquired. The fraction of activated dendritic cells 
(p = 9.293e−04), resting dendritic cells (p = 0.031), M2 
macrophages (p = 1.668e−04), neutrophils (p = 0.046), 
and plasma cells (p = 0.031) were significantly different 
among disease types. The fractions of activated den-
dritic cells (p = 0.04) and M2 macrophages (p = 0.023) 

were significantly different among disease recurrence, 
and the fraction of activated dendritic cells (p = 0.021), 
resting NK cells (p = 0.007), and follicular helper T cells 
(p = 0.028) were also significantly different among total 
necrosis percent (Additional file  2: Figure S2). In addi-
tion, the fractions of activated NK cells (p = 0.049), CD8 
T cells (p < 0.001), regulatory T cells (p = 0.003), M0 mac-
rophages (p = 0.002), and M1 macrophages (p = 0.038) 
were significantly correlated with overall survival (Fig. 3).

Immune‑, stroma‑ and estimate‑ scores correlated 
with clinical parameters
To evaluate the microenvironment infiltration of immune 
and stromal, we applied the “ESTIMATE” package in R 
to match and calculate the Immune-, Stromal-, and Esti-
mate- scores of 263 patients. As shown in Table  1, the 
stromal scores ranged from −1336.63 to 2476.22, the 
Immune scores ranged from −1722.08 to 3499.2, and the 
Estimate scores ranged from −2977.43 to 5336.41. The 

Fig. 2  a Composition of immune cells. b Violin plot of immune cells. c Co-expression patterns among fractions of immune cells

Fig. 3  Survival curves of the fraction of a activated NK cells, b CD8 T cells, c regulatory T cells, d M0 macrophages, and e M1 macrophages
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“survival” package in R was utilized to analyze the cor-
relations of Estimate, Immune, and Stromal scores with 
overall survival (Fig.  4). The patients with tumors that 
had high Estimate, Immune, and Stromal scores had a 
significantly better prognosis than patients with tumors 
that had low Estimate, Immune, and Stromal score 
group (p = 0.004, p = 0.007, p = 0.017, respectively). Fur-
thermore, the relationship among Estimate-, Immune-, 
Stromal- scores and clinical parameters were evaluated 

(Additional file  3: Figure S3). The clinical parameters 
disease type, gender significantly increased as Estimate-, 
Immune-, and Stromal- scores increased (p < 0.05).

Identification of DEGs and clinical correlation
To further investigate the function of pivotal gene in 
microenvironment infiltration, the gene expression pro-
files were differentiated into two groups via differentially 
genes analysis (high vs. low, Additional file 4: Figure S4). 

Table 1  Estimate scores, Immune scores, Stromal scores, and clinical parameters of sarcoma samples

Characteristic N Estimate score (range) Immune score (range) Stromal score (range)

Age

  < 61.5 135 −2977.42 to 5336.40 −1722.08 to 3499.29 −1336.63 to 2476.22

  ≥ 61.5 128 −2142.73 to 5178.61 −1135.92 to 3382.39 −2142.73 to 5178.61

Gender

 Female 144 −2886.10 to 5336.41 −1722.09 to 3499.29 −1336.63 to 2032.58

 Male 119 −2977.43 to 4985.82 −1646.75 to 3382.38 −1330.67 to 2476.22

Disease type

 Fibromatous 40 −504.94 to 5336.41 −962.99 to 3499.29 153.81 to 2157.00

 Lipomatous 60 −1889.11 to 5187.61 −1110.77 to 3382.39 −778.34 to 2476.22

 Myomatous 106 −2114.77 to 4221.40 −1520.77 to 2998.72 −727.47 to 1727.86

 Nerve sheath 10 −490.23 to 3520.43 −733.46 to 2271.22 −122.82 to 1249.22

 Soft tissue 37 −274.38 to 4985.82 −496.70 to 3348.72 106.11 to 1731.42

 Synovial-like 10 −2977.43 to 726.05 −1722.08 to −174.09 −1336.63 to 900.13

Tumor total necrosis (%)

 0% 71 −2886.10 to 5336.41 −1722.08 to 3499.29 −1336.63 to 2230.57

  < 10% 38 −1645.38 to 4600.14 −1067.28 to 3027.08 −628.27 to 1985.01

  ≥ 10, < 50% 62 −2977.43 to 4510.53 −1646.76 to 3140.17 −1330.67 to 1793.80

  > 50% 12 −2114.77 to 3725.37 −1520.77 to 2293.27 −727.46 to 1707.18

 Unknown 80 −1889.11 to 5178.61 −1110.77 to 3199.34 −778.34 to 2476.22

Disease recurrence

 Yes 29 −2647.50 to 4104.67 −1722.08 to 2386.97 −925.41 to 1985.01

 No 146 −2977.43 to 5336.41 −1646.76 to 3499.29 −1336.63 to 2230.57

 Unknown 88 −1889.11 to 5178.61 −1110.77 to 3199.35 −778.34 to 2476.22

Fig. 4  The association between a Estimate-, b Immune-, c Stromal scores of sarcoma tumors and the overall survival of patients harboring these 
tumors
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Using the Immune scores, a total of 2199 DEGs between 
the high-score and low-score group were identified in 
which 1070 genes were upregulated, and 1129 genes were 
downregulated. Similarly, for stromal scores, 995 DEGs 
were upregulated and 1498 DEGs were downregulated 
between the high-score and low-score groups. The genes 
differentially upregulated and downregulated in the high 
vs. low immune and stromal scores groups were further 
analyzed. Of these 1509 genes, 729 were upregulated and 
780 were downregulated (Additional file 5: Figure S5).

Weighted gene co‑expression network construction 
and module preservation analysis
WGCNA focused on transforming gene expression data 
into co-expressed module and screening out hub genes, 
providing insights into correlation between genes in dif-
ferent samples [26]. After validation, the 1509 DEGs were 
used to create a co-expression network using WGCNA. 
The analysis was performed as previously described [27]: 
Briefly, the gene expression profile matrix of all samples 
was transformed into a Pearson’s correlation coefficient 
matrix, and the distribution of connections among these 
genes indicated that the profile met the criteria of a scale-
free network. Then we constructed network based on the 
scale-free network (Additional file  6: Figure S6A). We 
assigned a power value of 4 with a 0.8 degree of inde-
pendence (Additional files 6, 7: Figure S6, S7). The size of 
the seven modules ranged from 21 to 338 genes. Genes 
that were not co-expressed were assigned to the grey 
module, and were not further analyzed. Furthermore, the 
results of module stability analysis demonstrated that the 
Zsummary.qual for module preservation of gold modules 
was < 5, and the Zsummary statistic for module preser-
vation of the blue, green, yellow, turquoise, and brown 
modules was > 10 (Additional file  6 Fig.  6c, Additional 
file  8: Table  S1). Based on these data, the gold module 
was not considered stable in these analyses, and it was 
not used in subsequent analyses.

Identifying significant modules and module functional 
annotation
The association of the six modules with types of immune 
cell infiltration was analyzed (Additional file 9: Figure S8), 
and the blue module was identified as having the highest 
correlation with CD8 T cells compared with other mod-
ules (cor = 0.9, p = 7.7e−63). The eigengenes and adja-
cencies were calculated according to their correlation 
(Additional file 9: Figure S8), and the five modules were 
divided into two main clusters. Furthermore, a heatmap 
was produced based on the interaction relationship of 
the six modules (Additional file 9: Figure S8). CD8 T cells 
recognize and kill cancer cells by expressing cytokines 
and cytotoxic molecules and, thus have been identified as 

a key target for immunotherapy. The blue module had the 
highest correlation with CD8 T cells, which suggested 
that the genes in blue module were candidates for immu-
notherapy biomarkers of sarcoma (Additional files 9, 10: 
Figure S8, S9).

To further elucidate the function of the significant 
module, all genes in the blue module were analyzed with 
the “clusterProfiler” package in R to identify representa-
tive KEGG pathways and GO terms. As shown in Addi-
tional file 11: Figure S10, the most significantly enriched 
pathways of the blue module following KEGG pathway 
analysis were enhanced in chemokine signaling, the 
PI3K-AKT signaling pathway, and the JAK-STAT sign-
aling pathway (Additional file 12: Table S2). GO enrich-
ment analysis showed that the blue module contained 
biological processes mainly involved in chemokine-
mediated, and complement receptor-mediated signaling 
pathways; and response to interferon-gamma, lipopoly-
saccharide, interferon-gamma, and chemokines. The 
cellular component (CC) was bent on the plasma, lyso-
somal, lytic vacuole membrane. Molecular function (MF) 
mainly enriched on the chemokine activity (Additional 
file 12: Table S2).

Identification and validation of hub genes
Based on the following criteria (|MM|> 0.8, |GS|> 0.2, 
and the largest sub-network), four genes with high con-
nectivity in the clinically significant modules were iden-
tified as hub genes (Additional file  13: Figure S11). The 
“survival” package in R was performed to calculate the 
survival analysis (p < 0.05 as statistically significant). 
Table  2 shows that the survival analysis of hub genes 
identified CD48 antigen (CD48), putative P2Y purino-
ceptor 10 (P2RY10), and RAS protein activator like-3 
(RASAL3). Figure  5 shows that these three genes were 
significantly and positively associated with overall sur-
vival. In addition, immunohistochemistry (IHC) staining 
data acquired from the HPAD also confirmed the differ-
ential expression of the predicted genes (CD48, P2RY10, 
RASAL3) in sarcoma samples (Additional file 14: Figure 
S12).

Table 2  Hub genes in the significant module

Gene symbol Co-expression 
analysis

MCODE analysis

GS MM Connectivity 
degree

MCODE_score

CD48 0.51 0.95 24 18

P2RY10 0.50 0.89 17 16.83

RASAL3 0.58 0.95 23 16.83
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Genetic alterations
Analyzing multi-dimensional cancer genomics changes 
and clinical data. In this study, we used the CBioPortal 
database to estimate the genetic alterations in CD48, 
P2RY10, and RASAL3. Fig.  6a shows that the frequency 
of mutations in CD48 was 11% in P2RY10 it was 9%, and 
in RASAL3 it was 12%. The three genes were altered in 
22% (45/206) of the patients (Fig. 6b).

Discussion
Sarcomas, originating from mesenchymal cells, are com-
prehensive tumors with poor prognoses. There are no 
obviously clinical symptoms at the early stage of the dis-
ease, and distant metastasis occurs at the late stage. How-
ever, its potential molecular mechanism is still unclear. 
Among the available therapeutic strategies, immuno-
therapy is considered the safest and most effective. In this 
study, tumor-infiltrating immune cells and the tumor-
microenvironmental scores were used to construct a 

co-expression network to identify genes associated with 
the prognosis and metastasis of sarcomas (Fig. 1).

We used the CIBERSORT algorithm to identify dif-
ferent patterns of tumor-infiltrating lymphocytes in sar-
coma samples, and characterize corresponding clinical 
traits. TILs are an indicator of tumor inflammation infil-
tration, and it has been shown that TIL subsets perform 
essential functions in the development of malignancies. 
In the sarcoma tumors, 35–40% of the TILs were mac-
rophages. Among the various TIL parameters, the mac-
rophages were the predominant immune cell type in 
sarcoma tissues. Macrophages are myeloid immune 
cells that are strategically positioned throughout body 
tissue and they can present antigens on their external 
membrane, which can promote the release of inflamma-
tory cytokines by sarcoma tumors [38]. Macrophages 
are major components of the tumor microenvironment 
and orchestrate various aspects of the immune response 
to sarcomas. Cells differentiate into uncommitted mac-
rophages (M0), and subsequently activated into pro-(M1) 

Fig. 5  Overall survival in relation to the three genes. a CD48; b P2RY10; c RASAL3

Fig. 6  Genetic alterations. a Alteration frequency of each of the three hub genes in sarcoma tumors; b Visual summary of genetic alternations in 
the three hub genes
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and anti-inflammatory (M2) phenotypes, which affect 
tumorigenesis by either promoting cytokine release by 
immune cells or by enhancing the antitumor response 
[39, 40]. Of these subtypes, M1 macrophages involved 
in inflammation and anti-tumor response [41], and M2 
macrophages promote tumor growth in sarcoma. The 
accumulated immune regulatory cells from peripheral 
monocytes in the tumor microenvironment (TME) not 
only prevents T lymphocytes from attacking the tumor 
but also secrete cytokines to nourish, leading tumor 
metastasis [42]. The Kaplan–Meier analysis suggests that 
macrophages are associated with disease type, overall 
survival, and percent necrosis in sarcoma tumors (Figs. 2, 
3). In addition, our results shown that the fraction of CD8 
T cells was negatively associated with M0 macrophages 
(R = −0.43) and M2 macrophages (R = −0.41), and posi-
tively associated with M1 macrophages (R = 0.51) and 
follicular, helper T cells (R = 0.6)(Fig.  2c). As previous 
reported, in various cancer types, the numbers and acti-
vation states of immune effectors cells, in particular, CD8 
T cells, are the primarily cell type responsible for immune 
therapies responses, as they could specifically recognize 
and kill cancer cells by secreting cytokines and cytotoxic 
molecules [43]. Among sarcomas subtypes, CD8 T cell 
immunity varies significantly and may better explain the 
varied clinical effects of immunotherapies [44]. Previ-
ous report showed that TGF-β suppresses CD8+ effector 
T-cell function, inhibits the Th1 phenotype, and activates 
M2 macrophages polarization, driving immune cells 
from the tumor compartment [45]. We found that the 
CD8 T cell fraction was negatively associated with M0 
and M2 macrophages, and positively associated with M1 
macrophages in sarcomas samples, consistent with the 
previous reports [46, 47], suggesting that CD8 T cells and 
macrophages may be potential markers for the prognosis 
of patients with sarcoma.

TME is a complex, integrated system, which is differ-
ent from the microenvironment established by normal 
cells and their surrounding tissue [48]. The TME plays 
a pivotal role in tumor progression and metastasis, and 
may significantly influence therapeutic response to can-
cer treatment [49, 50]. In this study, we calculated the 
Immune-, Stromal- and Estimate- scores for sarcoma 
samples by applying the ESTIMATE algorithm. As 
shown in Fig. 4 and Table 1, disease type and gender sig-
nificantly increased with higher Estimate, Immune, and 
Stromal scores. These data suggest that the high scoring-
groups have a better prognosis. Then, genes differentially 
expressed between low- and high- immune/stromal score 
groups were identified and characterized as having more 
or less DEGs.

WGCNA is a systematic biological algorithm [26], 
which is used to reveal the association between genes 

and clinical phenotypes [51]. It has been widely used 
to identified potential biomarkers for Alzheimer’s dis-
ease [52], breast cancer [27], and osteoarthritis [53]. 
In this paper, we identified 7 modules via WGCNA 
(Additional files 6 7, 9: Figures  S6-S8). Among these, 
the blue module was significantly associated with 
immune cell subtypes related to CD8 T cell. KEGG 
analysis revealed that the genes in blue module were 
mainly enriched for cytokine/cytokine receptor inter-
action, chemokine signaling pathways, the PI3K-AKT 
signaling pathway, and the JAK-STAT signaling path-
way (Additional file  11: Figure S10). Proinflamma-
tory cytokines are involved in cancer progression, and 
cytokine/cytokine receptor interactions may be essen-
tial mediators of inflammation in the development 
and prognosis of sarcomas [48]. Our data indicate 
that the cytokine/cytokine receptor signaling pathway 
is involved in sarcoma progression [54]. Chemokine 
signaling helps coordinate cell migration [55]. The 
JAK-STAT signaling pathway transfer signals from cell 
membrane receptors to the nucleus in sarcoma tumors 
[56]. It modulates the activity of immune system, espe-
cially the fate of helper T cells [57]. Zhang et al. found 
that downregulated expression of HGDF promotes 
tumor development and progression by coordinat-
ing the PI3K-AKT signaling pathway in sarcomas. In 
addition, GO analysis has shown that the blue mod-
ule is predominantly involved in chemokine-mediated 
and complement receptor-mediated signaling and 
chemokine activity. Previous studies have confirmed 
that the plasma, lysosomal, and lytic vacuole mem-
branes may be potential targets for treating sarcomas 
[58–61].

In the blue module, CD48, P2RY10, and RASAL3 
were identified as differentially expressed (Figs.  5, 6, 
and Table 2). They were associated with survival analy-
sis results and were validated at the protein level. CD48, 
a member of CD2 immunoglobulin superfamily (IgSF) 
participates in activation and differentiation pathways 
in CD84, CD150, CD229 and CD244 [62]. Liu et  al. 
[63] suggested CD48 as a key gene for the induction of 
histiocytic sarcoma in mouse skeletal muscle. P2RY10 
belongs to the family of G -protein -coupled recep-
tors, which are activated by adenosine and uridine [64]. 
Wang et al. found that P2RY10 was potentially involved 
in the immune response and the development of sarco-
mas [65]. RASL3, a novel member of the RasGAP Rasal 
family, is predominantly expressed by T cells [66, 67], 
and RasGAP activity stimulates ERK phosphorylation. 
Previous studies have not linked RASL3 to the cancer 
[68]; therefore, it may be a novel immunotherapy target 
for the treatment of patients with sarcoma.
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Conclusions
In this study, we demonstrated novel insights into 
immune infiltration and immune microenvironment 
of sarcomas. CD8 T cell and macrophages infiltration 
revealed important associations with sarcomas, and 
immune scores significantly correlated with sarcomas. 
Three hub genes (CD48, P2RY10, and RASAL3) asso-
ciated with immunotherapy and the development of 
sarcomas were analyzed and presented, as potential 
prognostic biomarkers and/or therapeutic targets of 
immunotherapy for sarcomas.
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