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Abstract

Finding optimal markers for microorganisms important in the medical, agricultural, environ-

mental or ecological fields is of great importance. Thousands of complete microbial

genomes now available allow us, for the first time, to exhaustively identify marker proteins

for groups of microbial organisms. In this work, we model the biological task as the well-

known mathematical “hitting set” problem, solving it based on both greedy and randomized

approximation algorithms. We identify unique markers for 17 phenotypic and taxonomic

microbial groups, including proteins related to the nitrite reductase enzyme as markers for

the non-anammox nitrifying bacteria group, and two transcription regulation proteins, nusG

and yhiF, as markers for the Archaea and Escherichia/Shigella taxonomic groups, respec-

tively. Additionally, we identify marker proteins for three subtypes of pathogenic E. coli,

which previously had no known optimal markers. Practically, depending on the complete-

ness of the database this algorithm can be used for identification of marker genes for any

microbial group, these marker genes may be prime candidates for the understanding of

the genetic basis of the group’s phenotype or to help discover novel functions which are

uniquely shared among a group of microbes. We show that our method is both theoretically

and practically efficient, while establishing an upper bound on its time complexity and

approximation ratio; thus, it promises to remain efficient and permit the identification of

marker proteins that are specific to phenotypic or taxonomic groups, even as more and

more bacterial genomes are being sequenced.

Introduction

The first complete bacterial genome sequence was published in 1995 [1]. Since then, sequenc-

ing technology has developed rapidly, causing a dramatic reduction in the cost of sequencing,

which made bacterial genome sequencing affordable to a great number of labs [2]. The

PLOS ONE | https://doi.org/10.1371/journal.pone.0195537 May 2, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Segev E, Pasternak Z, Ben Sasson T,

Jurkevitch E, Gonen M (2018) Automatic

identification of optimal marker genes for

phenotypic and taxonomic groups of

microorganisms. PLoS ONE 13(5): e0195537.

https://doi.org/10.1371/journal.pone.0195537

Editor: Christos A. Ouzounis, CPERI, GREECE

Received: November 1, 2017

Accepted: March 23, 2018

Published: May 2, 2018

Copyright: © 2018 Segev et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0195537
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195537&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195537&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195537&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195537&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195537&domain=pdf&date_stamp=2018-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195537&domain=pdf&date_stamp=2018-05-02
https://doi.org/10.1371/journal.pone.0195537
http://creativecommons.org/licenses/by/4.0/


Ensembl database of whole genomes of bacteria has grown from about 9,000 to more than

40,000 in a few short years [3,4], and this number continues to increase exponentially each

year [5]. This large number of bacterial genomes enabled us, for the first time, to identify

marker genes for specific groups of microbial organisms based on the full complement of

genes in each genome [6]. Currently, molecular typing of specific microbial groups is mostly

done using either multi-locus sequence typing (MLST) or core genome MLST (cgMLST). In

MLST, 5–16 (usually 7–8) housekeeping genes are selected as molecular markers and their

sequence is compared between isolates [7]. However, the limited repertoire of highly con-

served genes, as well as their sequence conservation, may sometime limit the discriminative

power of this method, as evident in the typing of Enterococcus faecium [8]. The solution is usu-

ally to increase the number of genes, so in cgMLST, between 1500–3000 marker genes are

used, which increases the discriminative power but forces any new isolate to be fully sequenced

before it can be typed, thus requiring complex genomic analysis. A different way to improve

MLST is by discarding the usage of housekeeping genes in favor of small groups of genes that

are unique to specific taxonomic or phenotypic groups. This allows quick and affordable typ-

ing, using PCR instead of whole-genome sequencing, while retaining high discriminative

power.

When using non-housekeeping marker genes for the MLST scheme, choosing the right

ones is critical: non-representative or non-unique genes can lead to erroneous typing [8], or to

an inefficient process due to requiring too many marker genes per group in order to verify the

genomes’ membership. Genetic markers are often selected ad hoc, using too few reference

genomes and/or manual inspection of the results [9]. Therefore, an algorithm for finding opti-

mal markers for specific groups of organisms is of great value to ecological and medical

research [10,11]. Several software tools were developed for this purpose, but these are mostly

limited to a single pathogenic organism [12], are computationally intensive [13], or can only

identify marker genes for defined taxonomic groups [14,15]. Existing methods are not capable

of creating novel typing schemes for any group of genomes (from one to thousands) by user

choice, in a user-friendly manner while operating quickly and efficiently on any personal com-

puter. We use an innovative approach for this problem, mapping it using the well-known Hit-

ting Set (HS) mathematical problem. To increase the discriminative power of the approach, we

use polypeptides instead of genes. Given a set of bacteria where each bacterium is represented

by the set of the proteins it contains, a subset of bacteria to type will contain a minimum subset

of specific proteins not found in the other bacteria. This minimum subset of proteins is thus

present in every bacterium of the subset, marking the phenotype or taxon, while at least one

protein is missing in the other bacteria, which do not have the same phenotype or do not

belong to the taxon. The problem of typing a set of bacteria can thus be solved mathematically.

To solve this problem, we start from the set of all of the proteins that are present in all the

bacteria in our database. These proteins will be marked as P1, P2 etc. in our case; a bacterium is

defined as the set of proteins that it consists of.

For example, as seen in Fig 1A, bacterium no. 1 (denoted B1) is defined as the set of P1, P2

and P3, meaning that this bacterium contains only these three proteins, and bacterium B2 con-

tains only proteins P1, P2 and P4. Given that B1 and B2 form a group of interest which we wish

to identify, P1 or P2 can serve as marker proteins for this group of interest. Thus, the minimal

set of proteins which identify this group can be either P1 or P2. If a third bacterium exists,

which is not included in the group of interest and consists of P2 and P5, then P2 loses its identi-

fying property for the group of interest and the minimal set becomes P1 only (Fig 1B). Not

every group of interest can be exclusively identified by a set of proteins: in some cases, such as

Fig 1C, where B4 is not a part of the group of interest and contains P1, P2 and P5, there is no set

of proteins that can identify the B1 [ B2 group. As the number of proteins and bacteria
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increases, an exact solution for finding a minimal set of proteins out of millions of known pro-

teins in order to identify any group of interest out of thousands of organisms becomes impos-

sible to solve in a reasonable timeframe. We will show that this problem cannot be solved

efficiently since it is NP-hard [16,17], namely, no efficient algorithm for solving this problem

is known. The definition of the hitting set problem is the following: given a ground set S and a

collection C of subsets of S, find a hitting set with a minimum cardinality, i.e., a subset S0 � S

Fig 1. Graphical representation of the proteins (denoted P1, P2, P3, P4, P5) which can serve as markers for the bacterial

(denoted B1, B2, B3, B4) group of interest consisting of B1 and B2: (A) shows that P1, P2 can serve as a minimal set of

markers for the group of interest; (B) P1 only can serve as a marker for the group of interest; and (C) there are no

markers for the group of interest.

https://doi.org/10.1371/journal.pone.0195537.g001
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such that S0 contains at least one element from each subset in C. We will elaborate on the exact

connection between the hitting set problem and our problem of identifying a set of proteins in

the Materials and Methods subsection named Problem Definitions and Notations. In S1 Algo-

rithm, we show that even if we are willing to relax our problem to that of finding a hitting set

of a limited size, an exact approach is impractical. Since this problem is of great importance, a

lot of effort has been made to find efficient approximation algorithms to it. That is, efficient

algorithms that return a solution to the hitting set problem, which is at most r times the size of

a minimum set, where r is the approximation factor. Here, we apply an approximation algo-

rithm which finds relatively small sets of proteins that identify the group of interest. Obviously,

these sets are not necessarily minimal. For example, in Fig 1A, an approximate solution might

be the set containing both P1 and P2, whereas an exact (i.e. minimal) solution will be either P1

or P2.

To find an approximation algorithm to the hitting set problem, we explore approximation

algorithms to an equivalent problem, the “set cover” problem [16], which in addition to several

known approximation algorithms has many heuristics for solving it efficiently [18–27]. The

definition of the set cover problem is the following: given a ground set S and a collection C of

subsets of S, find a subset C0 � C such that every element in S is contained in some subset in

C0. When considering the most suitable algorithm for our work, we looked for algorithms that

will be both theoretically and practically efficient. It was proven that the set cover problem is

approximable within O(log|S|), where |S| is the size of the ground set S, using a greedy algo-

rithm [28–31]. Therefore, a greedy algorithm can achieve the same corresponding approxima-

tion ratio as the hitting set problem. Moreover, a randomized algorithm based on linear

programming achieves the same approximation ratio with a probability of at least 1-1/|S| [32].

It was shown that the set cover problem cannot be approximated in polynomial time to within

a factor of (1 − o(1)) � ln|S| (unless P = NP) [33,34]. This means that the greedy approximation

algorithm and the randomized algorithm theoretically achieve the best possible ratio. Thus,

we implemented the greedy algorithm and a randomized algorithm based on randomized

rounding of linear program constraints [35–38]. Both algorithms were used to identify non-

anammox nitrifying bacteria and predatory bacteria as phenotypic groups, Archaea and

Escherichia/Shigella as taxonomic groups, and 13 different pathogenic sub-groups of E. coli as

combined phenotypic/taxonomic groups.

Materials and methods

Biological Data. Genome and protein data were obtained as outlined in [6] from the 2016 ver-

sion of the orthologous protein cluster table created and maintained by the microbial genome

database (MBGD) [39] and freely available at http://mbgd.genome.ad.jp/htbin/view_arch.cgi.

This table is updated yearly and is arranged so that each row is an orthologous cluster (i.e. the

same protein) and each column is a genome. Ortholog identification and grouping is per-

formed by the DomClust [40] and DomRefine [39] procedures, with MergeTree [41] adding

new genomes to the table. Ortholog classification is based on all-against-all clustering with

local alignment of the protein domain sequences. The raw MBGD data were automatically

cleaned, as outlined in [6]: unnecessary and redundant data were deleted, and all protein

occurrences were transformed from protein names into binary data so that each datapoint in

the table contains either a one or a zero only (the protein is present or absent in the genome,

respectively). This reduces the file size by two orders of magnitude and enables efficient algo-

rithm usage. This approach enables one to make use of any orthologous group classification,

for example splitting or merging groups according to the biological system. In order to fully

challenge our methods and algorithms, we implemented the algorithm using 17 different
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microbial groups which represent a wide variety of classification criteria: non-anammox nitri-

fying bacteria and predatory bacteria as phenotypic groups, Archaea and Escherichia/Shigella
as taxonomic Groups, and 13 different subtypes of pathogenic E. coli as taxonomic/phenotypic

groups. First, of the 4742 complete (i.e. non-draft) genomes of bacteria and Archaea available

in the MBGD database, 12 belonged to non-anammox nitrifying bacteria from two groups:

ammonia oxidizers (Nitrosomonas europaea ATCC 19718, Nitrosomonas eutropha C71, Nitro-
somonas sp. AL212, Nitrosomonas sp. Is79A3, Nitrosospira multiformis ATCC 25196, Nitroso-
coccus halophilus Nc4, Nitrosococcus oceani ATCC 19707, Nitrosococcus watsoni C-113,

Nitrobacter hamburgensis X14, Nitrosomonas communis Nm2) and nitrite oxidizers (Nitrobac-
ter winogradskyi Nb-255, Nitrospira defluvii). Genomes of bacterial nitrifiers using anaerobic

ammonium oxidation (anammox) were not available. Second, MBGD contained 16 genomes

belonging to known predatory bacteria: Bdellovibrio bacteriovorus HD100, Bdellovibrio bacter-
iovorus 109J, Bdellovibrio bacteriovorus tiberius, Bdellovibrio bacteriovorus W, Bdellovibrio exo-
vorus, Bacteriovorax marinus SJ, Cytophaga hutchinsonii ATCC 33406, Flavobacterium
johnsoniae UW10, Herpetosiphon aurantiacus ATCC 23779, Micavibrio aeruginosavorus ARL-

13, Micavibrio aeruginosavorus EPB, Myxococcus xanthus DK 1622, Sorangium cellulosum So

ce 56, Sorangium cellulosum So0157-2, Saprospira grandis Lewin, Stigmatella aurantiaca DW4/

3-1. Third, we obtained all 226 archaeal genomes available at MBGD, comprising all archaeal

classes and families (Table A in S1 File); fourth, the 147 genomes belonging to the Escherichia/
Shigella bacterial genus (Table B in S1 File); and fifth, the genomes comprising 13 E. coli patho-

types (Table B in S1 File). The taxonomic and phenotypic identifications were based on the lat-

est published data[42]. E. coli strain pathogroup assignment was according to the EnteroBase

database freely available at https://enterobase.warwick.ac.uk

Problem Definition and Notation. Given a set B of bacteria, a subset B of B, and a set of

orthologous proteins P, we want to find a minimum subset P̂ of P that would identify the bac-

teria in B. Namely, all orthologous proteins in P̂ are in every bacterium in B, and for every bac-

terium in �B≔B ⧹B there is at least one ortholog protein in P̂ that is missing. We consider each

bacterium as a subset of the orthologous proteins it contains. Thus, the formal definition of the

problem is as follows: given a ground set of m elements P = {p1. . .,pm}, a collection B of n sub-

sets B ¼ fB1; . . . ;Bng, such that Bj� P and |Bj|� 1 for all 1� j� n, and a subcollection B �
B of size k, B = {B1. . .,Bk}, we want to find a minimum size subset of P, P̂, such that for each

p 2 P̂ it holds that p 2
Tk

j¼1
Bj, and for each Bj 2 B ⧹B it holds that there exists some p 2 P̂

such that p =2 Bj. Algorithm Development. We use a greedy approximation algorithm and a ran-

domized approximation that is based on Linear Programming for the hitting set problem. An

advantage for the random algorithm is that different runs of the algorithm may produce differ-

ent results in an efficient manner.

Algorithm 1, based on hitting set

1. P̂  B1:

2. for all p 2 P̂ do

(a) if p =2 B2 \ B3 \. . .\ Bk then P̂  P̂ ⧹fpg
3. for k + 1� j� n let ~Bj ¼ fp 2 P̂jp=2Bjg.

4. let ~B ¼ f~Bkþ1; . . . ; ~Bng.

5. if ~B contains an empty set–return "no hitting set".
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6. run an algorithm of the hitting set problem on the input P̂; ~B: Namely, sub algorithm 1 or 2 on
input P̂; ~B, respectively.

We can conclude that there is no possible hitting set for an instance of a problem in step 5

even before running an explicit sub-algorithm for the hitting set problem. Let P̂ and ~B be the

result sets at the end of stage 4 in algorithm 1. If at least one of the sets in ~B is empty, then obvi-

ously there is no hitting set. Notice that if all sets in ~B are not empty, there is always a hitting

set since we can take P̂. By the construction of sets in ~B; P̂ must hit each set Bi 2
~B if it is not

empty. As noted in the previous subsection, the hitting set problem is equivalent to the set

cover problem. Moreover, we can use any algorithm to the set cover problem to solve the hit-

ting set problem. Consider an instance S, C to the set cover problem. We define the following

instance to the hitting set problem. The ground set is defined to be Ŝ = C, namely, each element

is a subset of the instance to the set cover problem. For each element in e 2 S, we define a sub-

set of Ŝ which is the set of subsets of S that contain e. Therefore, a minimum cardinality cover

of S, C is a minimum cardinality hitting set of Ŝ; Ĉ. To solve Item 6 of Algorithm 1 we first use

the following greedy algorithm for the hitting set problem:

Sub algorithm 1, greedy algorithm for hitting set (S, C)

Input: universe S = {s1,. . .,sm}, C = {C1,. . .,Cn}, s.t. Ci� S for all 1� i� n.

Output: Ŝ � S.

1. Ŝ  ;:

2. Ĉ  C.

3. while Ĉ 6¼ ; do

a. Select s 2 S such that s hits the largest number of subsets in Ĉ (i.e. select s s.t. jfCi 2 ĈjCi \

fsg 6¼ ;gj is of maximum cardinality)

b. Remove the hit subsets from Ĉ, namely Ĉ  Ĉ ⧹fCi 2 ĈjCi \ fsg 6¼ ;g.

c. Ŝ  Ŝ [ fsg.

4. Return Ŝ.

Lemma 1 given an instance (S,C), sub-algorithm 1 finds a hitting set of size of at most

OPT � O(log|C|) = OPT � O(log n), where OPT is the size of an optimal HS, with time complex-

ity O(min{m,n} � n �m).

Proof The correctness and approximation ratio of the lemma follows from the correctness

and approximation ratio of the greedy algorithm for the set cover problem [29], and the tight

connection between the set cover problem and the hitting set problem [43]. To compute the

time complexity of the algorithm, let Ĉ j be the set that needs to be hit at step j, and let Ŝj be the

set of elements that have not been selected yet at step j. The most expensive operation in the

loop of Item 3 is Item 3a. In the worst case of Item 3a for every s 2 S, the algorithm goes over

all the subsets Ci 2 Ĉj to check whether s 2 Ci. Using a reasonable data structure, we can

assume that the access time for checking whether s 2 Ci is O(1). Therefore, the running time

of Item 3a at step j is jŜjj � ð
P

Ci2Ĉ jOð1ÞÞ ¼ jŜjj � jĈjj. Let ‘ be the maximum number of steps

the loop in Item 3 is performed. Obviously ‘ � minfm; ng. Thus, time complexity of Sub-
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Algorithm 1 is.

O
X‘

j¼1

jŜjj � jĈjj

 !

¼ O
Xminfm;ng

j¼1

ðm � jÞ � ðn � jÞ

0

@

1

A ¼ Oðminfm;ng � n �mÞ

Notice that the theoretical upper bound on the time complexity can be reduced for specific

instances of the problem. For example, if every element in S appears in many subsets in C then

the number of steps ‘, of performing the loop in Item 3 of Sub-Algorithm 1 is much smaller

than n.

Lemma 1 implies the following theorem:

Theorem 1 Algorithm 1 finds a set of proteins P̂ such that jP̂j ¼ Oðlogðn � kÞ � jPOPTjÞ,

where POPT is an optimal set of proteins that identifies B, with time complexity of O(m2 � n).

Proof: We first note that the initial set P̂ is an intersection of all the subsets of proteins in

the tested set {B1,. . .,Bk}. Therefore, any set returned by the algorithm to identify the tested set

must be a subset of the initial P̂ Moreover, the returned set must not identify the control set

{Bk+1,. . .,Bn}, Since Sub-Algorithm 1 returns a subset of P̂ that is a hitting set of ~B, for each bac-

teria Bj of the control set {Bk+1,. . .,Bn} the returned P̂ must include at least one protein that

does not exist in Bj. This implies the correctness of the algorithm.

By lemma 1, with S = B1 \. . .\ Bk and C ¼ ~B, it holds that jP̂j ¼ OPT � Oðlogj~BjÞ ¼
OPT � Oðlogðn � kÞÞ, where OPT is an optimal solution to the HS problem on the given S, C.

Notice that by the definition of our problem, every optimal solution for identifying B needs to

find a HS of ~B as well. Thus, it holds that OPT = |POPT|, so jP̂j ¼ jPOPT j � Oðlogðn � kÞÞ, as

claimed.

To prove the bound on the time complexity, it must be noted that the running time of Item

2 of Algorithm 1 is OðjB1j �
Pk

j¼1
jBjjÞ. The running time of Item 3 of Algorithm 1 is

O jP̂j �
Xn

j¼kþ1

jBjj

 !

¼ O jB1 \ . . . \ Bkj �
Xn

j¼kþ1

jBjj

 !

¼ O jB1j �
Xn

j¼kþ1

jBjj

 !

:

By Lemma 1 the time complexity of finding the hitting set in item 5 on ðP̂; ~BÞ is

OðminfjB1 \ . . . \ Bkj; ðn � kÞg � jB1 \ . . . \ Bkj � ðn � kÞÞ
¼ OðminfjB1j; ðn � kÞg � jB1Þ � ðn � kÞÞ:

Therefore, the total time complexity of the algorithm is

O jB1j �
Xn

j¼1

jBjj þminfjB1j; n � kg � jB1j � ðn � kÞ
 !

¼ Oðm2 � nþminfm;nÞ �m � ðn � kÞ ¼ Oðm2 � nÞ:

This completes the theorem.

Notice that again, in practice, the actual time complexity is smaller than our upper bound,

which makes our algorithm very fast in reality, as demonstrated in the next section. We now

show another version of Algorithm 1 in which we replace Sub-Algorithm 1 by a Linear Pro-

gramming randomized algorithm for the hitting set problem. For 1� i�m set xi = 1 if si 2 Ŝ
and xi = 0 otherwise. Thus, finding a hitting set can be formulated as an integer linear pro-

gram. We relax the integer linear program to a fractional one, and then use randomized

rounding to get an integer solution.
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Sub Algorithm 2, linear programming randomized algorithm for hitting

set (S, C)

Input: universe S = {s1,. . .,sm}, C = {C1,. . .,Cn}, s.t. Ci� S for all 1� i� n.

Output: Ŝ � S.

1. Solve the following fractional linear programming problem:

Minimize
Pm

i¼1
xi

subject to
P

i:si2Cj
xi � 1; 8Cj 2 C

0 � xi � 1; 1 � i � m

2. For all 1� i�m let x̂i be the value assigned to xi, in an optimal fractional solution of the pre-
vious linear program.

3. Let Xi, 1� i�m be independent random variables such that

Pr½Xi ¼ 0� ¼ ð1 � x̂ iÞ
c�log n

; for constant c; and

Pr½Xi ¼ 1� ¼ 1 � ð1 � x̂ iÞ
c�logn

:

4. Ŝ  fsi 2 SjXi ¼ 1g:

5. Return Ŝ.

According to [35–38] Sub-Algorithm 2 returns a hitting set of size c � log n times the size of

an optimal solution, with a probability of at least 1 � 1

2c
. Therefore Algorithm 1, when using

Sub-Algorithm 2, achieves, with high probability, the same theoretical approximation ratio of

Algorithm 1 when using Sub-Algorithm 1. As the constant c presented in item 3 of the algo-

rithm grows, the probability that the result is indeed a valid HS grows, but the expected size of

the result also increases. Based on our experience, choosing the constant c = 1 gives us a rela-

tively small error probability, while not increasing the received HS size. In each case the ran-

dom algorithm returned a HS, we verified that it is indeed a HS. The time complexity of Sub-

Algorithm 2 is derived mainly from the time complexity of solving the Linear Program of the

problem in step 1. We have used Dantzig’s Simplex method [44] to solve linear programs. This

method has an exponential time complexity in the worst case but is highly efficient in practice.

It is possible to rerun this sub algorithm efficiently as we note that once we have solved the lin-

ear program, we are left with assigning a binary value for each variable and then deciding

whether the result is an actual hitting set, so the time complexity of a single rerun for an

instance of this algorithm is n �m. For our purposes, we have found that 10,000 reruns of this

algorithm per instance produces reasonably low runtime and at the same time produces a

large variety of interesting outcomes. In some occasions, the result of the randomized algo-

rithm may be optimal and deterministic. If the solution for the linear program is binary, that

is, each variable receives either 0 or 1, then we have found a hitting set without the need for lin-

ear relaxation. That is the optimum value for the integer program of the given instance for

exact hitting set program. In that case, it is redundant to rerun the algorithm as it will generate

the same optimal result. This randomized approach presents several different hitting sets.
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An overview representation of the software structure is presented in Fig 2. This section

details the description of the algorithm. The source code can be downloaded directly from

https://www.dropbox.com/sh/s6u8fh69ygzkuuk/AABLpFPyWjY3kLGID6H2cG-Ja?dl=0

The algorithm may produce three types of solutions: (i) Optimal minimal solutions. It is

sometimes possible to guarantee for a result set to be minimal (rather than an approximation)

as a result of a possible optimal solution for the linear program for the HS formulation with

sub-algorithm 2. (ii) Collection of approximated solutions. One or more hitting sets that are

no larger than OPT � O(log n) where OPT is the minimal solution and n is the number of sets

to hit (microbial groups in our case). (iii) No solution. In the process of algorithm 1, it is possi-

ble to say whether there is no set that exclusively hits all of the tested groups of an instance of

the problem.

Results and discussion

Our algorithms were employed to find the hitting set of 17 different microbial groups repre-

senting a wide variety of classification criteria (Table 1): 1) The non-anammox nitrifying bac-

teria, a group distinct from all other bacteria by its metabolic phenotype; 2) The second

phenotypic group was the predatory bacteria, a group distinct by its trophic phenotype; 3) The

third tested group was a taxonomic one–Archaea, a group distinct from Bacteria by domain-

level taxonomy; 4) The fourth tested group was a taxonomic one: the Escherichia/Shigella
groups, distinct by genus-level taxonomy, and; 5) The other 13 tested groups were of patho-

genic E. coli. each distinguished from all other bacteria by both taxonomy and phenotype. In

all cases where hitting sets were found, one of the hitting sets found by the random algorithm

was identical to the hitting sets found by the greedy algorithm. The non-anammox nitrifiers

used in this study are a group of 12 bacteria with a known genome, which perform the ni-

trification of ammonia or ammonium to nitrite. Five minimal HS were discovered, each

Fig 2. Software structure and output.

https://doi.org/10.1371/journal.pone.0195537.g002
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containing five proteins (Table C in S1 File). Among these proteins were nitrite reductase

(NirK)[45], an enzyme that catalyzes the reduction of nitrite to nitric oxide; siroheme synthase

(CysG), an enzyme involved in the synthesis of siroheme, a heme-like prosthetic group used

by the nitrite reductase [46]; Formate/nitrite transporter (NirC), a transmembrane channel

that transports nitrite in and out of the cell [44]; and a nitric oxide reductase activation protein

(NorD)[45], involved in reducing nitric oxide to nitrous oxide. Although it may appear that

these proteins are only relevant to the first group of non-anammox nitrifiers (i.e. nitrite oxidiz-

ers), it was actually discovered that the second group (ammonia oxidizers) also depend on the

nitrite reductase enzyme for efficient growth by its oxidation of ammonia to nitrite via hydrox-

ylamine [47]. Thus, many of the HS proteins that our algorithm discovered are highly relevant

to the biological phenotype that is unique to all non-anammox nitrifying bacteria, serving as a

kind of "positive control" for our algorithm. The second phenotypic group, predatory bacteria,

was not found to have any hitting sets proteins when compared to other (i.e. non-predatory)

bacteria. This confirms previous studies (e.g. Pasternak et al. [48]), which also concluded that

bacterial predation is not facilitated by unique proteins, and serves as a kind of "negative con-

trol" for our algorithm. In many examples bacteria performing similar metabolic functions

(e.g. nitrification) all use similar enzymes to carry out the process. However, predation is func-

tionally a more diverse process, and there are no molecular signatures specific to bacterial pre-

dation. Indeed, several features were shown to be highly enriched in predators, including

adhesins, proteases and particular metabolic proteins, used for binding to, processing and con-

suming prey, respectively; in addition, most predators use the mevalonate pathway of isopren-

oid biosynthesis, whereas almost all other bacteria use the DOXP pathway [48]. However, all

Table 1. Hitting sets (marker proteins) of 17 microorganism groups. HS, hitting set. Min., minimal. Greedy and random refer to the algorithm type. Phen., phenotypic.

Tax., taxonomic. AIEC, adherent-invasive E. coli. EPEC, enteropathogenic E. coli. UPEC, uropathogenic E. coli. STEC, Shiga toxin-producing E. coli. NMEC, neonatal

meningitis-associated E. coli. ExPEC, extra-intestinal pathogenic E. coli. ETEC, enterotoxigenic E. coli. EIEC, enteroinvasive E. coli. EHEC, enterohemorrhagic E. coli.
EAEC, enteroaggregative E. coli. APEC, avian pathogenic E. coli. EAHEC, enteroaggregative hemorrhagic E. coli.

Group name Group

distinction

Run time

(sec)

No. of HS genes

(greedy)

Min. no. of HS genes (random) with

representative genes

No. of HS with min. no. of HS

genes (random)

Proven optimal

HS

Nitrifying

bacteria

Phen. 7.32 5 5 (NirK, NirC) 5 0

Predatory

bacteria

Phen. 7.11 - - 0 -

Archaea Tax. (domain) 7.28 1 1 (NusG) 1 1

Escherichia/
Shigella

Tax. (genus) 7.38 2 2 (YhiF) 10 0

All pathogenic E.

coli
Phen. and tax. 7.35 - - 0 -

AIEC Phen. and tax. 7.35 3 3 (TnpR) 9 0

EPEC Phen. and tax. 7.73 5 5 (YedK, ImpC) 7 0

UPEC Phen. and tax. 7.39 - - 0 -

STEC Phen. and tax. 7.36 - - 0 -

NMEC Phen. and tax. 7.31 - - 0 -

ExPEC Phen. and tax. 7.37 - - 0 -

ETEC Phen. and tax. 7.37 - - 0 -

EIEC Phen. and tax. 7.43 - - 0 -

EHEC Phen. and tax. 7.30 - - 0 -

EAEC Phen. and tax. 7.34 - - 0 -

APEC Phen. and tax. 7.37 - - 0 -

EAHEC Phen. and tax. 7.38 4 3 (FliC) 1 1

https://doi.org/10.1371/journal.pone.0195537.t001
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of these proteins are also found in the genomes of non-predatory bacteria, and the differences

might not lie in their presence or absence but rather in transcriptional and/or post-transcrip-

tional regulation.

The next group, Archaea, was compared to all the bacterial genomes in the database and an

optimal single protein (NusG) HS solution was found to sufficiently distinguish the groups.

NusG is a transcription elongation factor that binds to RNA polymerases and assists in RNA

synthesis from a DNA template[49]. RNA polymerases are under strong evolutionary pressure

to maintain their structure; therefore, the structure and sequence of NusG should also be con-

served. In fact, this protein is considered to be the only transcription elongation factor whose

sequence is universally conserved in all three domains of life: Bacteria, Archaea and Eukarya

[50]. Surprisingly, our analysis found the amino-acid sequence to be very distinct between

Archaea and the other two domains, and a consequent phylogenetic analysis of 500 NusG pro-

tein sequences (Fig 3) clearly confirmed this difference. Since this solution is an optimal solu-

tion the algorithms are deterministic—meaning there might be other genes specifically

conserved only in Archaea in the current database which the algorithm ignores.

The fourth tested group is a taxonomic one; the bacterial genus Escherichia/Shigella was

characterized by ten hitting sets, all with two proteins, where one of them is the YhiF protein

which is a transcription regulator (Table D in S1 File). YhiF takes part in modulating levels of

expression of LEE (locus of enterocyte effacement) proteins—a group of proteins responsible

for attaching and effacing to the intestine of the host. Through the mechanisms of control of

LEE expression, YhiF appears to play a central role in Escherichia/Shigella colonizing the host

intestinal epithelium [51]. However, as it is present in all Escherichia/Shigella strains, including

commensal ones, it is a taxonomic marker rather than a pathogenicity marker.

Finally, we searched for hitting sets which define 13 different subgroups—or pathotypes—

of pathogenic E. coli bacteria. These pathotypes are defined according to their clinical symp-

toms (e.g. enterohemorrhagic) and therefore most do not have perfect marker proteins, i.e.

ones that exist in all the strains of a specific pathotype and only in those strains [49]. Indeed,

our analysis found that 10 of these 13 pathogroups showed no hitting sets, confirming that

Fig 3. Maximum-likelihood phylogenetic tree of the NusG protein. All archaeal NusG sequences were taken from

the GenBank database, along with their most similar bacterial and eukaryotic homologs for a total of 500 protein

sequences. The bootstrap consensus tree inferred from 100 replicates was taken to represent the evolutionary history of

the taxa analyzed. Branches were merged at the domain level.

https://doi.org/10.1371/journal.pone.0195537.g003
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genomes within each group do not necessarily have taxonomic or phenotypic affiliation with

each other and therefore non-housekeeping marker proteins are impossible to find in most

groups. Even so, three important pathotypes could be efficiently defined: adherent-invasive E.

coli (AIEC) with minimal hitting sets containing three proteins (Table E in S1 File), entero-

pathogenic E. coli (EPEC) with five proteins (Table F in S1 File) and enteroaggregative hemor-

rhagic E. coli (EAHEC) with three proteins (Table G in S1 File). EPEC is an important cause of

diarrhea and premature death in children, especially in developing countries [51]; currently,

the major diagnostic marker for EPEC is the eae gene (coding for intimin, an outer membrane

adhesive protein), yet genomes from other pathotypes also possess this gene [52], making it a

non-optimal marker. AIEC is not associated with diarrhea but is thought to contribute to the

development of Crohn’s disease, a chronic inflammatory bowel syndrome [53]. It currently

has no known diagnostic markers [52]. EAHEC is associated with food poisoning in the devel-

oped world [54]. Many of the hitting sets proteins that we found are either uncharacterized

(i.e. ’hypothetical’) or are from a viral (bacteriophage) source with DNA cut-and-paste func-

tionality, e.g. transposases and integrases. One of our EAHEC HS members, FliC, has been

used before as a marker for this group [54]. E. coli subtyping schemes are invaluable in identi-

fying outbreaks and treating infection patients, but the current subtyping technology is impre-

cise and potentially misleading because E. coli genomes constantly change and evolve.

Our algorithm enables the accurate identification of marker genes for any microbial group,

depending on the completeness of the database. Once marker genes are established and con-

firmed, new and unknown genomes can quickly be assigned to their group via MLST, without

the need for whole-genome sequencing. specifically, our study found potential marker genes

which in the future may enable reliable diagnosis of the EAHEC, EPEC and AIEC strains of

pathogenic E. coli, thus improving the treatment of E. coli-related diseases. In addition to

microbial identification, such analysis may help uncover novel genes pertinent to the group-

ing, such as virulence-associated or habitat-specific genes. As these genes are group-specific,

they are prime candidates for further research which aims to understand the genetic basis of

the group’s phenotype as well as possible targets for antibiotic treatment. Finally, our algo-

rithm may also help discover novel functions which are uniquely shared among a group of

microbes. For example, several uncharacterized ("hypothetical") genes were found in this

study to be pathogroup-specific; further investigation of these genes and proteins may reveal

their possible function in connection to their specific group, leading to improved understand-

ing and specific antibacterial treatments.
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