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ABSTRACT
◥

Purpose:Circulating tumor DNA (ctDNA) enables personalized
treatment strategies in oncology by providing a noninvasive source
of clinical biomarkers. In patients with low ctDNA abundance,
tumor-naïve methods are needed to facilitate clinical implementa-
tion. Here, using locoregionally confined head and neck squamous
cell carcinoma (HNSCC) as an example, we demonstrate tumor-
naïve detection of ctDNA by simultaneous profiling of mutations
and methylation.

Experimental Design:We conducted CAncer Personalized Pro-
filing by deep Sequencing (CAPP-seq) and cell-free Methylated
DNA ImmunoPrecipitation and high-throughput sequencing
(cfMeDIP-seq) for detection of ctDNA-derived somatic mutations
and aberrant methylation, respectively. We analyzed 77 plasma
samples from 30 patients with stage I–IVA human papillomavirus–
negative HNSCC as well as plasma samples from 20 risk-matched
healthy controls. In addition, we analyzed leukocytes from patients
and controls.

Results: CAPP-seq identified mutations in 20 of 30 patients at
frequencies similar to that of The Tumor Genome Atlas (TCGA).
Differential methylation analysis of cfMeDIP-seq profiles identified
941 ctDNA-derived hypermethylated regions enriched for CpG
islands and HNSCC-specific methylation patterns. Both methods
demonstrated an association between ctDNA abundance and
shorter fragment lengths. In addition, mutation- and methyla-
tion-based ctDNA abundance was highly correlated (r > 0.85).
Patients with detectable pretreatment ctDNA by both methods
demonstrated significantly worse overall survival (HR ¼ 7.5;
P ¼ 0.025) independent of clinical stage, with lack of ctDNA
clearance post-treatment strongly correlating with recurrence. We
further leveraged cfMeDIP-seq profiles to validate a prognostic
signature identified from TCGA samples.

Conclusions: Tumor-naïve detection of ctDNA by multimodal
profiling may facilitate biomarker discovery and clinical use in low
ctDNA abundance applications.

Introduction
Circulating tumor DNA (ctDNA) within plasma cell-free DNA

(cfDNA) provides tumor-derived biomarkers for use in liquid
biopsy applications. These tumor-specific features, which can
include both genetic (e.g., DNA mutations) and epigenetic (e.g.,
DNA methylation) aberrations, reflect intrinsic properties derived
from the tumor. In clinical scenarios with high ctDNA abundance
(e.g., advanced/metastatic solid tumors), a growing body of evi-

dence supports its use to aid with diagnosis, prognostication, or
monitoring response to therapy (1). However, these same applica-
tions often cannot be extended to clinical scenarios where ctDNA
abundance is low, which is the case for most non-metastatic solid
tumors. A tumor tissue-informed approach, in which tumor-
specific features to be analyzed in cfDNA are first selected by tumor
DNA profiling, can improve applicability of ctDNA for non-
metastatic solid tumors (2, 3). But this process has two major
drawbacks. First, access to tumor tissue may not always be feasible
due to increasingly competing demands for tumor tissue in research
and clinical practice. Second, practical considerations related to the
time and cost required for tumor DNA profiling can be significant
obstacles to clinical implementation.

To circumvent the need for paired tumor tissue profiling, alter-
native strategies have been proposed to improve the confidence of
tumor-naïve ctDNA detection. Mutations also found in co-isolated
peripheral blood leukocytes (PBL) or in healthy control plasma can
be removed, reducing the likelihood of false positive results (2, 4–6).
Separately, ctDNA can be enriched by analyzing relatively shorter
cfDNA fragments due to intrinsic differences in fragment lengths
compared with nonmalignant sources of cfDNA (7, 8). A strategy
that has not yet been described involves measurement of multiple
molecular features (i.e., multimodal profiling) from both plasma
cfDNA and PBLs. Through independent corroboration of ctDNA
detection using complementary platforms, this approach could
extend liquid biopsy applications and biomarker discover efforts
beyond what is currently possible.

Here, we simultaneously assessed multiple orthogonal properties
of ctDNA from patients with locoregionally confined human
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papillomavirus (HPV)-negative head and neck squamous cell carci-
noma (HNSCC) and risk-matched healthy controls. We profiled
plasma cfDNA mutations, methylation, and fragment lengths, and
we integrated PBL profiling to remove contaminating signals. Our
results demonstrate the complementarity of measuring each ctDNA
property for diagnostic, prognostic, and longitudinal monitoring
applications. Our results provide a roadmap for using this integrative
multimodal approach for further biomarker discovery and clinical
applications in many cancer types.

Materials and Methods
HNSCC and healthy control PBL and plasma acquisition

Patients diagnosed with locoregionally confined HPV-negative
HNSCC between 2014 and 2016 were identified from a prospective
Anthology of Clinical Outcomes (9). All studies were approved by the
Research Ethics Board atUniversity HealthNetwork and performed in
accordance with the principles of the Declaration of Helsinki. All
participants provided written informed consent. HNSCC patient
samples were obtained from the Princess Margaret Cancer Centre’s
HNC Translational Research program based on the following criteria:
(i) presentation of locoregionally confined disease (clinically staged
M0) at diagnosis, (ii) collection of blood at diagnosis and at least one
timepoint post-treatment, (iii) minimum follow-up time of 2 years
after diagnosis. All patients received curative-intent treatment con-
sisting of surgery with or without adjuvant radiotherapy. Healthy
controls matched by age, gender, and current smoking status were
identified from a prospective lung cancer screening program. A total of
5 to 10 mL of blood was collected in Ethylene-Diamine-Tetraacetic
Acid (EDTA) tubes. For patients with HNSCC, blood was collected at
diagnosis as well as 3 months after primary surgery.Where applicable,
additional blood was collected prior to adjuvant radiotherapy, mid
adjuvant radiotherapy, and/or 12 months after primary surgery (Sup-
plementary Fig. S1A). Plasmawas isolated from blood within 1 hour of
collection and stored at�80�Cuntil further processing. From the same
blood collection for patients with HNSCC at diagnosis or healthy
controls, PBLs were also isolated.

Cell culture
The HPV-negative HNSCC cell line, FaDu, was kindly provided by

Bradly Wouters (Princess Margaret Cancer Center, Toronto, Ontario,

Canada) and cultured in DMEM (Gibco) supplemented with 10% FBS
and 1%penicillin/streptomycin. FaDu cell cultures were incubated in a
humidified atmosphere containing 5% CO2 at 37�C. The identity of
FaDu cells was confirmed by short tandem repeat profiling. Cells were
subjected to Mycoplasma testing (e-MycoVALiD Mycoplasma PCR
Detection Kit, Intron Bio) prior to use.

Isolation of cfDNA and PBL genomic DNA
cfDNA was isolated from total plasma using the QIAamp Circu-

lating Nucleic Acid Kit (Qiagen) following manufacturer’s instruc-
tions. Genomic DNA (gDNA) was isolated from PBLs, sheared to 150
to 200 bp using the Covaris M220 Focused-ultrasonicator, and size
selected by AMPure XPmagnetic beads (Beckman Coulter) to remove
fragments above 300 bp. Isolated cfDNA and sheared PBL genomic
DNA were quantified by Qubit prior to library generation (Supple-
mentary Fig. S1B).

Sequencing library preparation
A total of 5 to 10 or 10 to 20 ng ofDNAwas used as input for cell-free

Methylated DNA ImmunoPrecipitation and high-throughput
sequencing (cfMeDIP-seq) or CAncer Personalized Profiling by deep
Sequencing (CAPP-seq), respectively. Input DNA was prepared for
library generation using theKAPAHyperPrepKit (KAPABiosystems)
with some modifications. Library adapters were utilized which incor-
porate a random 2-bp sequence followed by a constant 1-bp T
sequence 50 adjacent to both strands of input DNA upon ligation (10).
To minimize adapter dimerization during ligation, library adapters
were added at a 100:1 adapter:DNA molar ratio (�0.07 mmol/L per
10 ng of cfDNA) and incubated at 4�C for 17 hours overnight. After
post-ligation cleanup, input DNAwas eluted in 40 mL of elution buffer
(EB, 10 mmol/L Tris-HCl, pH 8.0–8.5) prior to library generation.

Generation of CAPP-seq libraries
Generation of CAPP-seq libraries were performed as described

from Newman and colleagues (2) with some modification. Libraries
were PCR amplified at 10 cycles, and up to 12 indexed amplified
libraries were pooled together at 500 to 1,000 ng. After the addition of
COT DNA and blocking oligos, pooled libraries were placed into a
vacuum concentrator (SpeedVac, Thermo Fisher Scientific) to evap-
orate all liquids and then resuspended in 13 mL resuspension mix
(8.5 mL 2�Hybridization buffer, 3.4 mL Hybridization Component A,
1.1 mL nuclease-free water). 4 mL of hybridization probes (i.e., HNSCC
selector) was added to the resuspensionmix for a total of 17 mL prior to
hybridization. After hybridization and PCR amplification/cleanup,
libraries were eluted in 30 mL of IDTE pH 8.0 (1� TE solution).
Multiplexed libraries were sequenced as paired-end 75/100/125 paired
runs on the Illumina NextSeq/NovaSeq/HiSeq4000, respectively.
Design of the HNSCC selector incorporated frequently recurrent
genomic alterations in HNSCC from The Cancer Genome Atlas
(TCGA) COSMIC database (Supplementary Table S3).

Alignment and quality control of CAPP-seq libraries
The first two base pairs on each 50 end of unaligned paired reads,

corresponding to the incorporated random molecular barcodes, were
extracted and collated to generate a 4-bp molecular identifier (UMI).
The third T base-pair spacer was also removed prior to alignment.
Paired reads were aligned to the human genome (genome assembly
GRCh37/hg19) by BWA-MEM (11), sorted and indexed by SAMtools
(ref. 12; v 1.3.1) and recalibrated for base quality score using the
Genome Analysis ToolKit (GATK) BaseRecalibrator (v 3.8) according
to best practices (13). Duplicated sequences from BAM files were

Translational Relevance

Circulating tumor DNA (ctDNA) detection at low fractional
abundance within plasma cell-free DNA can be challenging with-
out confirmation of shared molecular features within the tumor.
We evaluated the feasibility of tumor-naïve multimodal molecular
profiling of cell-free DNA by interrogating orthogonal genetic and
epigenetic features reflective of ctDNA biology. Within a cohort of
patients with head and neck cancer, we show that ctDNA-derived
mutations and methylation were highly correlated and that their
detection was associated with poor prognosis. Furthermore, we
show that lack of ctDNA clearance post-treatment by methylation
profiling is strongly associated with cancer recurrence. This work
will provide a blueprint for future studies in which blood but not
tumor is available, enable robust ctDNA detection at low abun-
dance, and lead to the discovery of new biomarkers that can be
leveraged for clinical applications.
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collapsed on the basis of their UMIs and labeled as Singletons,
Single-Strand Consensus Sequences (SSCS) or Duplex Consensus
Sequences (DCS) by ConsensusCruncher (10). Quality control of each
library was assessed by variousmetrics obtained from FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), as well as var-
ious scripts to obtain capture efficiency (CollectHsMetrics, Picard
2.10.9), depth of coverage (DepthOfCoverage, GATK 3.8), and base-
pair position error rate [ides-bgreport.pl (14)].

Detection of mutations and quantification of ctDNA
Removal of potential sequencing errors was performed by integrat-

ed Digital Error Suppression (iDES) as described by Newman and
colleagues 2016 (14). Background polishing was performed by utili-
zation of the 20 healthy control cfDNA samples as the training cohort
to identify candidate mutations (Supplementary Table S4). To prevent
the influence of outliers on downstream analysis, candidate mutations
within the lower 15th or upper 85th percentile of sequencing depth
(≤ 1,500�, ≥ 5,000�) across HNSCC cfDNA or PBL gDNA samples as
well as genes with an average sequencing depth ≤ 500� were excluded
from analysis. To account for clonal hematopoiesis, non-germline
mutations were defined as having a mutant allele fractions (MAF)
below 10% in plasma. Candidatemutations inHNSCC cfDNA samples
were identified on the basis of the criteria of ≥ 3 supporting reads with
duplex support and complete absence in matched PBL gDNA samples.
The MAF of each identified mutation was calculated by the number of
reads corresponding to the alternative allele, divided by the sumof reads
corresponding to the alternative and reference allele. For each HNSCC
cfDNA sample with identifiable mutations, the mean MAF across
mutations was calculated and used as a measure of ctDNA abundance.
In cfDNA samples with only one identifiable mutation, we used the
MAF for that single mutation. We note that many of the detectable
cancer-derived mutations may not be homozygous and may not be
clonal within the tumor, and for these reasons themeanMAFmay be an
underestimate of the true ctDNA abundance within cfDNA.

Generation of cfMeDIP-seq libraries
The cfMeDIP-seq protocol was performed as described by Shen

and colleagues 2019 with modifications to the library preparation
step as described in Sequencing Library Preparation. Multiplexed
libraries were sequenced as paired-end 75/100/125 on the Illumina
NextSeq/NovaSeq/HiSeq4000, respectively. For generalizability,
cfMeDIP-seq libraries are described as any MeDIP-seq preparation
method utilizing 5–10 ng of input DNA regardless of source (i.e.,
cfDNA, gDNA).

Alignment and quality control of cfMeDIP-seq libraries
Unaligned paired readswere processed, aligned, sorted, and indexed

as previously described in Alignment and Quality Control of CAPP-
seq Libraries. Duplicated sequences from BAM files were collapsed by
SAMtools. Quality control of each library was assessed by various
metrics obtained from FastQC (Babraham Bioinformatics), as well as
various metrics obtained from the R package MEDIPS (15) including
CpG coverage (MEDIPS.seqCoverage) and enrichment (MEDIPS.
CpGenrich).

Selection of informative regions in cfMeDIP-seq profiles
Fragments generated from paired reads of cfMeDIP-seq libraries

were counted within nonoverlapping 300 bp windows by MEDIPS
(MEDIPS.createSet), scaled by reads per kilobase per million (RPKM),
and exported as WIG format (MEDIPS.exportWIG). WIG files from
each sample were imported by R and collated as a matrix. Analysis was

limited to cfDNA and PBL samples from the 20 healthy control
samples to enable applications within a nondisease context. Informa-
tive regions were based on the criteria of CpG density and correlation
of RPKM values between cfDNA and matched PBLs. Employing a
sliding window based on CpG density (≥n CpGs), a minimum
threshold of ≥8 CpGs was selected.

Calculation of absolute methylation from cfMeDIP-seq libraries
Fragments frompaired reads of cfMeDIP-seq libraries were counted

as previously described in Selection of Informative Regions in
cfMeDIP-seq Profiles and scaled to absolute methylation levels by
the MeDEStrand R package (16). To calculate absolute methylation
from counts, a logistic regression model was used to estimate bias of
DNA pulldown based on CpG density (i.e., CpG density bias)
(MeDEStrand.calibrationCurve). On the basis of the estimated CpG
density bias, methylation within each window was corrected for
fragments from the positive and negative DNA strand. Windows with
corrected fragments were log transformed and scaled to values
between 0 and 1 to describe absolute methylation (MeDEStrand.
binMethyl). Absolute methylation levels from each cfMeDIP-seq
sample was exported as a WIG-like file (i.e., WIG file format without
a track line).

Design of in-silico PBL depletion and evaluation of performance
To enrich for windows within the disease setting, methylation from

PBLs was removed by a process termed “in-silico PBL depletion.”
Analysis was limited to PBL samples from our cohort of 20 healthy
control samples to enable applications within a non-cancer specific
context. Our strategy for the in-silico PBL depletion was performed as
followed:

(i) For each informative window as described in Selection of Infor-
mative Regions in cfMeDIP-seq Profiles, calculate the median
absolute methylation value across healthy control PBL samples.

(ii) Define PBL-depleted windows based on the criteria of a median
absolute methylation value < 0.1.

(iii) Restrict analysis of cfDNA samples within PBL-depleted
windows.

Performance of the in-silico PBL depletion strategywas evaluated by
comparing absolute methylation distributions in PBL samples before
and after depletion from the healthy control cohort used as the training
set, to the HNSCC cohort used as the validation set.

Differential methylation analysis
To enable robust detection of HNSCC-associated differentially

methylated regions (DMR), analysis was limited to patients with
HNSCC with detectable mutations in plasma by CAPP-seq (n ¼
20/30). Differential methylation analysis was limited to informative
regions after in-silico PBL depletion. A collated matrix of binned
fragment counts from HNSCC and healthy control cfDNA samples,
generated as previously described in Selection of Informative Regions
in cfMeDIP-seq Profiles, were utilized for identification of DMRs by
the DESeq2 R package (17). Pre-filtering was performed by removal of
regions with < 10 counts across all cfDNA samples. A single factor
defined as condition (HNSCC vs. healthy control) was used for
contrast during differential methylation analysis. Briefly, differential
methylation analysis was performed by scaling samples based on size
factors and dispersion estimates, followed by fitting of a negative
binomial general linear model. For each window, a P value was
calculated between the HNSCC and healthy control conditions by
Wald test. P values within regions above the default Cook distance
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cutoff were omitted from Padjusted calculation [Benjamini-Hochberg
(18)]. Significant hypermethylated or hypomethylated regions
(hyper-/hypo-DMRs) in HNSCC cfDNA samples are defined as
windows with an Padjusted < 0.1.

Enrichment of CpG features within HNSCC cfDNA
hypermethylated regions

CpG features such as islands, shores, shelves, and open sea
(interCGI) are defined as per the AnnotationHub R package
(hg19_cpgs annotation). ID coordinates of each hypermethylated
window (i.e., “chr.start.end”) within PBL-depleted regions were
labeled with an overlapping CpG feature using an inhouse R
package that utilizes the annotatr (19) and GenomicRanges R
packages (20) (Supplementary Table S5).

To determine the probability of enrichment for an observed overlap
of features versus a null distribution, 1,000 random samplings were
performed. For each sampling, an equal number of bins were chosen
based on the number hypermethylated windows, while maintaining
an identical distribution of CpGs. The observed number of overlaps
for each CpG feature across samplings were used to generate their
respective null distributions, which were subsequently transformed
onto a z-score scale. The observed overlap of hypermethylated regions
for each CpG feature were also z-score transformed, deriving summary
statistics from the null distribution. The estimated P value of the
observed overlap from hypermethylated windows was calculated as the
number of random samplings with overlap equal or greater/lesser than
the observed overlap of the null distribution.

Enrichment of HNSCC cfDNA hypermethylated regions with
cancer-specific hypermethylated cytosines from TCGA

File information from publicly available hm450k profiles of all
primary tumors from breast (BRCA), colorectal (COAD), head and
neck (HNSC), prostate (PRAD), pancreatic (PAAD), lung adeno
(LUAD), and lung squamous (LUSC) were downloaded from
TCGA. Because of the majority of our HNSCC cohort presenting
with tumors of the oral cavity, files from the HNSC group were
limited to patients with primary site at the “floor of mouth” (n ¼
55). An equal number of hm450k files were randomly selected from
each of the remaining cancer types, as well as from a separate
database of healthy PBLs (Supplementary Table S6, Gene Expres-
sion Omnibus series GSE67393).

To generate “tumor-specific” hypermethylated cytosines, differen-
tialmethylation analysis by Limma (21) was performed for each cancer
type, with individual comparisons with each other cancer type as well
as PBLs (i.e., contrast). For a given contrast, a linear model was fitted
for each probed cytosine incorporating the residual variance and
sample beta value, the P value of observed difference between contrasts
was then calculated by empirical Bayes smoothing. Hypermethylated
cytosines with elevated methylation in a given cancer type versus an
individual comparison was defined by a log fold change ≥ 0.25 and a
Padjusted value (Benjamini–Hochberg) < 0.01. Hypermethylated cyto-
sines unique to an individual cancer type were designated as “tumor-
specific.” For the cases of LUSC, LUAD, and PAAD, either no or very
little tumor-specific hypermethylated cytosines were identified (0, 15,
and 18, respectively) and therefore were omitted from subsequent
analysis. For comparison with cfMeDIP-seq libraries, base-pair posi-
tions from tumor-specific hypermethylated cytosines were overlapped
with informative windows after in-silico PBL depletion as described in
Design of In-silico PBL Depletion and Evaluation of Performance.

The enrichment of overlap for HNSCC cfDNA hypermethylated
regions with tumor-specific regions from TCGA was evaluated by

10,000 random samplings using the same methods described in
Enrichment of CpG Features with HNSCC cfDNA Hypermethylated
Regions.

ctDNA detection by cfMeDIP-seq
For cfMeDIP-seq libraries from our cohort of 30 HNSCC and 20

healthy control cfDNA samples, ctDNA detection was defined on the
basis of the observation of a mean RPKM value across HNSCC cfDNA
hypermethylated regions within an individual HNSCC cfDNA sample
greater than themaxmean RPKMvalue across healthy control cfDNA
samples.

Fragment length analysis of ctDNA detected by CAPP-seq and
cfMeDIP-seq

For each HNSCC cfDNA CAPP-seq library, the median fragment
length from all supporting paired reads of a specified mutation (i.e.,
singletons, SCSs, DCSs) as well as for paired reads containing the
reference allele was measured (Supplementary Table S7). In cases
where the median fragment length was reported for patients with > 1
mutation, the median value across the median fragment length from
each mutation was calculated. For each HNSCC cfDNA cfMeDIP-seq
library, themedian fragment length from all fragmentsmapping to the
previously determined HNSCC cfDNA hypermethylated regions was
calculated. Because of the relative absence of methylation within our
cohort of 20 healthy controls, the fragment length of each healthy
control cfMeDIP-seq library was collated prior to any calculations. In
both types of libraries, fragment length analysis was limited to cfDNA
within the first peak (i.e., <220 bp).

Enrichment of fragments (100–150 bp or 100–220 bp) within
hyper-DMRs was calculated as follows. A null distribution of
expected counts was generated from random 300-bp bins within
our previously designed PBL-depleted windows at identical number
and CpG density distribution, from a total of 30 samplings.
Observed counts for each sample were determined on the basis of
read counts across hyper-DMRs. For each sample, enrichment was
calculated on the basis of the mean observed count divided by the
mean expected count.

Metrics of ctDNAdetection andquantificationonHNSCCpatient
clinical outcomes

The prognostic association of ctDNA detection for overall survival
(defined as from the time of diagnosis to time of death by any
cause) was evaluated by three metrics: (i) detection of mutations by
CAPP-seq, (ii) detection of increasedmeanRPKM inhypermethylated
regions by cfMeDIP-seq. (iii) detection by both previous metrics. Cox
proportional hazards regression analysis was calculated between
patients with detectable or nondetectable ctDNA for each metric.
Patient characteristics are described in Supplementary Table S1.

Cross-validation of ctDNA-derivedmethylation by cfMeDIP-seq
analysis

To evaluate the robustness of cfMeDIP-seq for identifying ctDNA-
derivedmethylation, ROC curve analysis was performed. Tominimize
confounding results due to low/absent ctDNA, analysis was limited to
HNSCC patients with detectable ctDNA by CAPP-seq. Patient and
healthy control cfMeDIP-seq profiles were split into a training set
(HNSCC: n ¼ 12/20; healthy control: n ¼ 12/20) and testing set
(HNSCC: n ¼ 8/20; healthy control: n ¼ 8/20). Training and testing
sets were balanced for ctDNA abundance as determined by CAPP-seq
analysis. A total of 50 splits were performed with ROC curve analysis
performed on each iteration.

Tumor-Naïve Multimodal ctDNA Profiling
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Identification of prognostic regions in HNSCC by TCGA analysis
All available HNSCC cases from TCGA with matched legacy

hm450k and RNA expression data were selected (Supplementary
Table S8). Survival data were obtained from Liu and colleagues (22).
For processing hm450k data, methylation was summarized to 300-bp
regions as described previously by calculating the mean beta-value
between probe IDs within a particular region. To identify regions
hypermethylated in HNSCC primary tumors compared with adjacent
normal tissue, independent Wilcoxon tests were performed for
each region. We selected regions with a Padjusted < 0.05 [Holm
method (23)] as well as a log fold change ≥ 1 in primary tumors
compared with adjacent normal tissue for subsequent analysis. To
identify hypermethylated regions associated with prognosis, mul-
tivariate Cox regression was performed, incorporating age, gender,
and clinical stage, selecting regions with P < 0.05. Survival analysis

was limited to a maximum follow-up time of 5 years after diagnosis.
To further identify prognostic regions associated with changes in
gene expression, Spearman correlation was calculated for hm450k
primary tumor profiles for each region, to matched RNA expres-
sion profiles for transcripts within a 2-Kb window. Regions with
absolute R values > 0.3 and a FDR < 0.05 were selected, resulting
in the final identification of five prognostic regions associated
with ZNF323/ZSCAN31, LINC01395, GATA2-AS1, OSR1, and
STK3/MST2 expression.

For TCGA patient profiles, the composite methylation score (CMS)
was obtained by calculating the sum of beta values across all five
prognostic regions. For cfMeDIP-seq profiles, RPKM values across all
943 hyper-DMRs were scaled to a total sum of 1 and the CMS was
obtained by calculating the sum of these scaled RPKM values across all
five prognostic regions.

HNSCC and risk-matched healthy control cohorts

Multi-modal profiling of paired plasma cell-free DNA and PBL genomic DNA
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Figure 1.

Multimodal profiling strategy of ctDNA inHNSCC.
We identified ctDNA-derived mutations (CAPP-
seq) and methylation (cfMeDIP-seq) in a cohort
of locoregionally confined HPV-negative HNSCC
(n ¼ 30) and risk-matched (age, sex, smoking
status, smoking pack-years) healthy controls
(n ¼ 20). For both methods, we isolated plasma
for ctDNA detection and used matched PBL
profiling to remove noninformative regions
(i.e., mutations derived from clonal hematopoie-
sis and regions that are methylated within PBLs).
We characterized the mutation- and methyla-
tion-based ctDNA results according to their
concordance with TCGA datasets, correlation
between the two methods, and inferred physical
properties (i.e., fragment length). We assessed
feasibility of these detection strategies for clinical
applications in diagnosis, prognosis, and disease
monitoring.
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Longitudinal monitoring of post-treatment plasma samples by
cfMeDIP-seq

cfMeDIP-seq libraries were successfully generated from post-
treatment plasma samples for 28 of 30 patients (Supplementary
Table S9). For the remaining 2 patients, insufficient material was
isolated from plasma and/or did not pass quality metrics. Eligible
patients for longitudinal monitoring were further selected on the basis
of the criteria of having detectable ctDNA in baseline samples by
CAPP-seq (n ¼ 18/30). ctDNA quantification of post-treatment
cfMeDIP-seq libraries was performed as described previously, calcu-
lating the mean RPKM values across identified hypermethylated
regions by differential methylation analysis. For ease of interpretation,
both baseline and post-treatment cfMeDIP-seq libraries were con-
verted to percent DNA values based on linear regression against mean
MAF within matched baseline CAPP-seq profiles. To achieve high-
confidence detection of residual disease, a minimum ctDNA fraction
of 0.2% was required in post-treatment samples, corresponding to the
maximum of mean RPKM values observed across all healthy controls.

Data and code availability
MeDIP-seq sequencing data generated from the FaDu cell line

is accessible at BioProject ID PRJNA729472. Sequencing data for
clinical samples are restricted to processed BED files due to privacy
concerns and to comply with institutional ethics regulation. Data
of cfMeDIP-seq profiles generated from patients and controls have
been processed and deposited on Zenodo (10.5281/zenodo.4698004
and 10.5281/zenodo.4698867; Supplementary Table S10). Source
data tables used to generate Fig. 2B–F, Fig. 4A and B, and Fig. 6A
and B, are provided in Supplementary Tables S4, S7, S10, and S9,
respectively. Scripts used to generate the findings described in
this study are available within the “HNSCC multimodal” repository
at https://github.com/bratmanlab/multimodal-hnscc. The Code
Ocean capsule containing the reproducible analysis used can be
found at https://codeocean.com/capsule/7176142/tree/v1 (DOI:
10.24433/CO.6511868.v1).

Results
Multimodal profiling of cfDNA and leukocyte DNA frompatients
with locoregionally confined HPV-negative HNSCC and healthy
controls

To examine the ability of multimodal profiling to characterize
ctDNA in the setting of locoregionally confined (non-metastatic)
cancer, we recruited 30 newly diagnosed patients with HPV-
negative HNSCC into a prospective observational study in which
peripheral blood samples were collected at serial timepoints (Supple-
mentary Fig. S1A; Supplementary Table S1). All patients were treated
with surgery, with a subset also receiving adjuvant radiotherapy
(n ¼ 14) or chemoradiotherapy (n ¼ 11). With a median follow-up
of 41.5months (range: 7–57months), 9 of 30 patients (30%) developed
recurrence (actuarial 2-year recurrence-free survival: 73%).

As themajority of patients exhibited a heavy smoking history, which
is well described to alter the genomic/epigenomic landscape of somatic
tissues and contribute to premalignant lesions (24–27), we also
analyzed blood samples from 20 risk-matched healthy controls (age,
sex, smoking status/pack-years; Supplementary Table S1). cfDNA
from plasma as well as gDNA from PBLs were co-isolated from blood
and subjected to parallel analyses (Supplementary Fig. S1A; Supple-
mentary Table S2). Total plasma cfDNA levels were similar between
patients with HNSCC and healthy controls (one-way ANOVA;
P ¼ 0.53; F ¼ 0.82; Supplementary Fig. S1B).

We conductedmultimodal profiling of cfDNAandPBL gDNA from
patients and healthy controls (Fig. 1).Mutations andmethylationwere
independently profiled using CAPP-seq and cfMeDIP-seq, respective-
ly. In addition, we utilized paired-end sequencing for both method-
ologies to obtain the lengths of sequenced cfDNA fragments.

Tumor-naïve detection of mutation-based ctDNA
To evaluate the sensitivity of ctDNA detection in HPV-negative

HNSCC without prior knowledge from the tumor, we first measured
the abundance of mutations in baseline plasma samples (Fig. 2A).
CAPP-seq was conducted with a sequencing panel designed to max-
imize the number of HNSCC-associated mutations (Supplementary
Table S3; Supplementary Fig. S2). We also employed established error
suppression methodologies to remove background base substitution
errors (10, 14).

Next, we compared candidate mutations detected in cfDNA with
matched PBL gDNA profiles to assess the contribution of mutations
from clonal hematopoiesis. Of the 24 patients with identifiable cfDNA
mutations, 10 demonstrated identical mutations within their matched
PBL profile with highly correlated MAFs (Pearson r¼ 0.94, P¼ 1.4�
10�7; Fig. 2B). With the exception of PIK3CA (n ¼ 2), genes within
these PBL-derivedmutations were unique to each patient (Fig. 2C). Of
note, canonical clonal hematopoiesis genes such as DNMT3A, TET2,
and ASXL1 (28), were not observed as they were not included within
the CAPP-seq capture panel. Attesting to the contribution of clonal
hematopoiesis to false positive detection, cfDNA samples from 4
patients only contained PBL-derived mutations (Fig. 2D). Thus,
matched PBL profiling greatly minimizes false positive detection of
ctDNA at low abundance in HPV-negative HNSCC patient plasma.

After accounting for clonal hematopoiesis, ctDNA was detected
within plasma of 20 patients (range ¼ 1–10 mutations per patient;
median ¼ 3). To evaluate the plausibility of these mutations being
tumor derived, we compared our results with whole-exome sequenc-
ing data from 279HNSCC tumors fromTCGA (29). Canonical cancer
driver genes in HNSCC primary tumors had similar somatic mutation
frequencies in the population when compared with our CAPP-seq
data, including TP53 (72% vs. 65%), PIK3CA (21% vs. 20%), FAT1
(23% vs. 15%), andNOTCH1 (19% vs. 10%; Fig. 2E). We also detected
mutations in ctDNA that were not foundwithin the canonical HNSCC
driver genes (GRIN3A andMYC; Supplementary Fig. S3), illustrating
how including genes without known driver effects in a particular
cancer type can increase sensitivity of ctDNA detection (30).

The abundance of detectable ctDNA fragments, which provides a
relative measure of ctDNA abundance, was calculated from the mean
MAF of mutations identified in each patient and ranged from 0.14% to
4.83% (Fig. 2F). The lowest detected ctDNA fraction of 0.14% resembles
that previously found utilizing tumor-naïve CAPP-seq analysis (14, 31).
Including patients with undetectable ctDNA, our HNSCC cohort had
a median ctDNA abundance of 0.49%—similar to previous CAPP-seq
observations in locoregional non–small cell lung cancer (14, 30).

Tumor-naïve detection of methylation-based ctDNA from
baseline plasma

Next, we sought to define ctDNA-associated methylation patterns
in the HNSCC and healthy control samples. As the CAPP-seq results
illustrated the impact of false positive mutations arising from PBLs, we
reasoned that a reduction of false positive ctDNA-associated methyl-
ation could be achieved by removal of PBL-derived DNAmethylation
signals. Therefore, we usedmatched PBLMeDIP-seq profiles from the
HNSCC and healthy control samples to suppress their contribution to
the cfDNA methylation signal (Fig. 3A).
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Figure 2.

PBL filtering for detection of ctDNA by CAPP-seq. A, Schematic describing detection and filtering of ctDNA-derived mutations by CAPP-seq. B, MAF of candidate
mutations identified in HNSCC patient baseline plasma and PBLs. Dashed red box: 69 of 84 candidate mutations found only in plasma. Mutations found in both
matched plasma and PBLs have strongly correlated MAFs (Pearson r¼ 0.94). C,Oncoprint of 15 candidate mutations identified in both matched patient plasma and
PBLs. Top histogram: number of mutations per patient; right histogram: number of patientswith one of 13 specified genesmutated. Color indicates type ofmutation:
missense (red), nonsense (blue), or silent (orange).D,MAFof 69 candidatemutations across HNSCCpatient cfDNA (red circle) and PBLs (blue circle) before removal
of PBL-associatedmutations, and 43mutations after this removal. The removedmutations represent false positive candidatemutations in ctDNA. Black bar: median
of expected overlaps. Box: interquartile range (IQR) of expected overlaps. Whisker: most extreme value within quartile�1.5 IQR of expected overlaps. E,Oncoprint
highlighting frequently mutated genes in HNSCC by TCGA analysis (rows) and their frequency of detection across 30 HNSCCplasma samples (columns). Colors as in
B,with additional splice sites (green), and nonhighlighted genes (gray).F,Mutation-based ctDNA levels in HNSCCpatient baseline plasma samples as determined by
mean MAF of PBL-filtered mutations. Dashed line: median mean allele fraction across all patients with HNSCC.
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To enrich for ctDNA-derived methylation in the analysis, we
identified 702,488 nonoverlapping 300-bp windows with ≥8 CpGs.
These regions showed similar enrichment inMeDIP-seq profiles from
both healthy control PBLs and the HNSCC cell line FaDu (Supple-
mentary Fig. S4A). Next, we compared cfMeDIP-seq profiles from the
30 HNSCC samples and 20 healthy controls with MeDIP-seq profiles
generated from their PBLs. Specifically, for each cfMeDIP-seq sample,
methylation levels across the 300-bp windows with ≥8 CpGs were
compared with their paired PBL sample, and to the remaining 49
unpaired PBL samples, resulting in 2,500 total comparisons. The
cfMeDIP-seq samples strongly correlated with their matched PBLs
(median Pearson r ¼ 0.92) and unmatched PBLs (median of medians
r¼ 0.90; Fig. 3B). The strengths of these correlations likely reflects the
known outsize contribution of PBLs to plasma cfDNA.

We used MeDEStrand (16) to convert cfMeDIP-seq enrichment
profiles to absolutemethylation levels between 0 and 1.We selected the
99,994 300-bp windows with amedian absolutemethylation < 0.1 (i.e.,
10% signal compared with the top methylated 300-bp window) across
PBLs from our 20 healthy controls. Importantly, these regions dem-
onstrated a similar range of absolute methylation when applied to the
30 held-out HNSCC PBLs (Fig. 3C; Supplementary Fig. S4B). Taken
together, these results confirm that the main source of cfDNA meth-
ylation in both control and locoregionally confined HPV-negative
HNSCCplasma are derived fromPBLs and that bioinformatic removal
of PBL-derived methylation may limit signals that confound ctDNA
quantification.

Utilizing the 99,994 300-bp windows depleted for methylation in
PBLs, we identified ctDNA-derived DMRs by comparing the
20 HNSCC patients with CAPP-seq–detectable ctDNA to the 20
healthy controls.We found 997DMRs (Fig. 3D): 941 hypermethylated
in HNSCC (hyper-DMRs) and 56 hypomethylated in HNSCC
(hypo-DMRs).

Of the 300-bp hyper-DMRs, 47.5% resided in contiguous blocks of
hypermethylation signals extending up to 1,800 bp in length (Sup-
plementary Fig. S5A), indicative of CpG islands that typically span
300–3,000 bp in length. Indeed, CpG islands were significantly
enriched for hyper-DMRs (Fig. 3E). In contrast, CpG islands were
significantly depleted for hypo-DMRs (Supplementary Fig. S5B).

Unlike mutation data alone, cfDNA methylation data can distin-
guish different tissues of origin for a tumor (32–35). Thus, we
investigated whether the hyper-DMRs we identified contain regions
reflective of HNSCC. Using TCGA primary tumor tissue methylation
array data, we identified hypermethylated CpGs specific forHNSCC as
well as for breast cancer, colon cancer, and prostate cancer when
compared with publicly available PBL methylation array data from an
independent study (Supplementary Fig. S6). As expected, the plasma-
derived hyper-DMRs from the HNSCC cohort were significantly
enriched for HNSCC-specific hypermethylated CpGs as well as sig-
nificantly depleted for the remaining cancer-specific hypermethylated
CpGs (Fig. 3F). The overlap between hyper-DMRs in HNSCC patient
plasma and known hyper-DMRs from primary tumors supports the
notion that many plasma hyper-DMR regions indeed derive from
hypermethylated regions within tumor tissue.

Fragment length–informed analysis of ctDNA by CAPP-seq and
cfMeDIP-seq

Agrowing number of studies have described ctDNA tobe associated
with decreased fragment length compared with healthy sources of
plasma cfDNA, potentially providing an additional metric for robust
tumor-naïve detection (4, 7, 8, 36–38). As targeted sequencing has
been previously shown to detect ctDNA at reduced fragment

length (4, 7), we first utilized CAPP-seq profiles to determine whether
we could observe similar trends within HNSCC patients. For each
identified mutation per patient, we measured the median length of
cfDNA fragments containing the mutant allele as well as the corre-
sponding reference allele (Fig. 2E). For caseswheremultiplemutations
were identified within a patient sample, we determined the median
fragment lengths across all mutations and their corresponding refer-
ence alleles. In accordance with previous findings, we observed a
consistent decrease in ctDNA fragment length compared with healthy
cfDNA across patients [median (range) D ¼ �17.5 (�58 to �1) bp]
(Fig. 4A). Therewas no significant association between themeanMAF
of these mutations and fragment length (Supplementary Fig. S7A).

Unlike bisulfite-based DNAmethylation approaches, cfMeDIP-seq
does not cause DNA degradation and, therefore, preserves the original
fragment size distribution. This provides a novel opportunity to map
DNAmethylation and fragment lengths concomitantly. Therefore, we
assessed the distribution of cfDNA fragment lengths within the
previously identified 941 hyper-DMRs for each patient. Because of
the nature of these regions having low methylation within healthy
controls, we combined the cfDNA fragments across all control sam-
ples. Similar to the mutation-based analysis, we observed a relative
reduction in fragment length from 19 of 20CAPP-seq positive patients
compared with grouped healthy controls [median (range) D ¼ �7
(�21 to �1) bp] (Fig. 4B). This represented a smaller reduction in
fragment lengths comparedwith themutation-based analysis, possibly
due to partial contribution by healthy tissues of cfDNA fragments
within the hyper-DMRs. Supporting this notion, the samples with the
shortest hyper-DMR fragments displayed higher methylated ctDNA
abundance (Pearson r ¼ �0.64, P ¼ 0.002; Supplementary Fig. S7B).

We next investigated whether fragment lengths were concordant
between ctDNA molecules identified by both CAPP-seq and
cfMeDIP-seq, potentially providing an additional layer of validation
toward our multimodal approach. To minimize the possibility of
background DNA fragments confounding the calculated fragment
length of ctDNA within cfMeDIP-seq profiles, we limited analysis
to patients above the median methylation levels across hyper-DMRs
(n¼ 10 patients withHNSCC). Strikingly, ctDNA fragment lengthwas
highly concordant between paired CAPP-seq and cfMeDIP-seq pro-
files for each patient (Pearson r ¼ 0.86, P ¼ 0.0016; Fig. 4C) despite
entirely different genomic regions being represented with these two
profiling approaches (CAPP-seq: 43 distinct mutations, cfMeDIP-seq:
941 hyper-DMRs).

On the basis of these observations, we evaluated whether we
could enrich ctDNA within cfMeDIP-seq profiles by limiting anal-
ysis to cfDNA fragments of reduced length. We assessed the
proportion of cfDNA fragments within hyper-DMRs consisting of
small (100–150 bp) fragments, as similar methods have been
described to enrich for ctDNA using non-methylation–based
approaches (7, 37). Indeed, this resulted in ctDNA enrichment
across the majority of CAPP-seq positive HNSCC samples [median
(range) ¼ 28 (�8 to 63) %] but not for any of the healthy controls
(Fig. 4D). Thus, in silico size selection of cfDNA fragments enriches
for ctDNA within cfMeDIP-seq libraries and could contribute to
tumor-naïve multimodal ctDNA analysis.

Application of multimodal ctDNA detection for prognostication
To evaluate the potential clinical applications of tumor-naïve

multimodal ctDNA analysis, we compared ctDNA with clinical out-
comes in the HNSCC cohort. Fragment length–informed (i.e., limited
to 100–150 bp) cfMeDIP-seq profiles were strongly associated with
MAFs inmatched CAPP-seq profiles (Pearson r¼ 0.85, P¼ 3� 10–9),
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Figure 3.

Identification of informative regions for detection of ctDNA by cfMeDIP-seq. A, Schematic of ctDNA-derived methylation detection by DMR analysis following
depletion of PBL-derived DNAmethylation.B, Kernel density of Pearson correlation coefficients from the comparison between all 50 (patients and healthy controls)
baseline cfDNA cfMeDIP-seq profiles (RPKM values within 702,488 300-bp nonoverlapping windows from chromosomes 1–22 with ≥8 CpGs) and either unmatched
PBL gDNA (1 vs. 49 comparisons) or matched PBL gDNA (1 vs. 1 comparison) MeDIP-seq profiles. C,MeDEStrand absolutemethylation scores in the 702,488 300-bp
windows from 20healthy controls (left) and 30HNSCC samples (right). Blue: 702,488windows before PBL depletion. Red: 99,994windows after both PBL depletion
and an additional filter where themedian absolutemethylation across healthy control PBLs is < 0.1. Black bar: median. Box: IQR.Whisker: most extreme value within
quartile�1.5 IQR. Blue/red circles: individual MeDEStrand absolutemethylation scores acrosswindows ≥8CpGs and PBL-depletedwindows, respectively. Absoluate
methylation scores were subsampled to a total of 100,000 observations for clarity. D, Left, Workflow of ctDNA detection by differential methylation analysis of
HNSCC and healthy control cfMeDIP-seq profiles. We compared cfMeDIP-seq profiles from 20 patients with HNSCC with detectable mutations by CAPP-seq to 20
risk-matched healthy controls within the PBL-depleted windows for each sample. This procedure identified HNSCC-associated cfDNAmethylation. (Continued on
the following page.)
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suggesting that methylation intensity within the 941 hyper-DMRs is
indeed reflective of ctDNA abundance (Fig. 5A). Importantly, cross-
validation analysis confirmed the robustness of these hyper-DMRs for
detecting ctDNA (Supplementary Fig. S8A). Patients with ctDNA
detected in baseline plasma by both mutation- and methylation-based
methods (n ¼ 19) were significantly more likely to have advanced
disease (i.e., stage III–IVA; n ¼ 18/19) when compared with patients
with no detectable ctDNA (n ¼ 8/13; Fisher exact test P ¼ 0.028) and
displayed dramatically worse overall survival [HR ¼ 7.55, 95% con-
fidence interval (CI)¼ (0.95–59.94), log-rank P¼ 0.025] (Fig. 5B). In
comparison, stage alone was unable to predict patients with worse
overall survival [HR¼ 2.59, 95%CI¼ (0.32–20.46), log-rank P¼ 0.35]
(Supplementary Fig. S8B), further demonstrating the potential clinical
utility of multimodal ctDNA profiling.

DNA methylation can impact gene expression and resultant func-
tional activity of cancer drivers (39, 40), so we reasoned that cfMeDIP-
seq profiles may provide additional prognostic value independent of
ctDNA abundance. To evaluate whether the previously identified
hyper-DMRs may be of functional and prognostic significance in
HNSCC, we interrogated DNA methylation, RNA expression, and
clinical outcome data provided by TCGA for all available patients with
HNSCC (n ¼ 520; Fig. 5C). Of eligible plasma-derived hyper-DMRs
(n ¼ 764), the majority (n ¼ 483; 63%) overlapped with regions
hypermethylated in HNSCC primary tumors compared with adjacent
normal tissue. Of note, several of these regions included methylated
CpGs targeted by commercially available ctDNA diagnostic tests,
including SEPT9, SHOX2, TWIST1, and ONECUT2 (Supplementary
Fig. S9A).

Next, we used TCGA HNSCC cohort to identify a subset of the 483
DMRs that were associated with (i) prognosis (22) in multivariable
Cox regression and (ii) expression of neighboring gene transcripts.
Five DMRs satisfied both criteria, representing regions nearby
ZSCAN31, LINC01391, GATA2-AS1, STK3, and OSR1 (Supplemen-
tary Fig. S9B–S9F).We constructed aCMS from the sumof beta-values
across these five DMRs. In TCGA HNSCC cohort, patients with a
higher CMS displayed inferior survival [HR ¼ 1.67, 95% CI ¼ (1.25–
2.21), log-rank P ¼ 3.4 � 10–4] (Fig. 5E).

Finally, we evaluated whether the CMS was prognostic when
applied to plasma cfDNA methylation profiles from patients with
HNSCC with detectable ctDNA. To account for the relative contri-
bution of ctDNA methylation levels provided by the five putative
prognostic markers, we normalized fragment-length informed meth-
ylation values from these regions to the entire 941 hyper-DMRs. As
with TCGA analysis, patients with a higher CMS again displayed
inferior survival [HR ¼ 3.79, 95% CI ¼ (0.925–15.5), log-rank
P¼ 0.048] (Fig. 5F). CMS was not associated with ctDNA abundance
as determined by methylation or mutations (Welch two sample t test:
P¼ 0.61 and P¼ 0.82, respectively; Supplementary Fig. S9G and S9H),
suggesting that increased methylation of these putative prognostic

regions identified from TCGA may also be informative within
cfMeDIP-seq profiles. Moreover, these results highlight how plasma
cfDNA methylome profiling can be leveraged in combination with
existing multi-omic cancer databases for biomarker discovery.

Disease surveillance after definitive treatment by cfMeDIP-seq
As cfMeDIP-seq achieved sensitive and quantitative ctDNA detec-

tion in patients with HNSCC, we reasoned that as with CAPP-
seq (2, 14, 30, 41), cfMeDIP-seq may also be capable of monitoring
therapy-related changes in ctDNA abundance. To quantify percent
ctDNA within post-treatment cfMeDIP-seq profiles, we applied a
linear transformation of mean RPKM across the previously identified
plasma-derived hyper-DMRs (n ¼ 941), limiting fragment size
between 100 and 150 bp to further enrich ctDNA. We conservatively
calculated the detection threshold of 0.2% ctDNA based on the
maximum of mean RPKM values observed across all healthy controls.

Measuring changes in ctDNA abundance by cfMeDIP-seq during
and after treatment, we observed a variety of kinetics indicative of
complete clearance, partial clearance (>90% reduction), or no clear-
ance (increase or ≤90% reduction) at the last sample collection (i.e.,
mid-radiotherapy or post-treatment; Fig. 6A; Supplementary
Fig. S10). Among 18 eligible patients, 5 (28%) demonstrated no
clearance (Fig. 6B). No clearance patients were more likely to expe-
rience disease recurrence compared with those with complete or
partial clearance [HR ¼ 8.73, 95% CI ¼ (1.5–50.92), log-rank
P ¼ 0.0046] (Fig. 6C). Interestingly, all patients with ctDNA abun-
dance greater at last sample collection than at diagnosis demon-
strated disease recurrence. In addition, the only patient who did not
have documented disease recurrence within this group was lost to
follow-up but died within a year after treatment from unknown cause.

For the 13 patients with undetectable post-treatment ctDNA
by cfMeDIP-seq, 9 remained disease free with amedian of 44.4months
of follow-up (min ¼ 12.2, max ¼ 58.7). Among the other 4 patients,
1 had persistent disease within regional lymph nodes, and the others
experienced relapse 3.5 to 7.7 months (median, 7.4 months) after
last collection. Of note, these relapses among the patients with
undetectable post-treatment ctDNA were considerably more
delayed compared to the 4 relapses among the patients with
detectable post-treatment ctDNA [median (range): 3.0 (1.7–5.2)
months] after last collection. Taken together, these results demon-
strate that plasma cfDNA methylome profiling by cfMeDIP-seq can
be used to assess response to definitive treatment and identify
patients at high risk of rapid recurrence.

Discussion
Broad implementation of ctDNA in clinical settings would be

accelerated by methods that can be applied across patients and in the
absence of tumor material. Tumor-naïve ctDNA detection currently

(Continued.) Right, Volcano plot of 79,043 genomic regions, with > 10 reads across all samples, displaying�log10 P value of differential methylation against log2 fold
change of relativemethylation (RPKMs) fromhealthy controls to patientswith HNSCC. Gray: regionswithout significant differentialmethylation (FDR≥10%). Blue: 56
hypomethylated 300-bp regions,with significantly lowermethylation in theHNSCCcohort compared to healthy controls. Red: 941 300-bp hypermethylated regions,
with significantly higher methylation in the HNSCC cohort. E, Permutation analysis measuring the observed overlap of the 941 300-bp hypermethylated regions to
300-bpwindowswithin CpG islands, shores, shelves, or open seas, relative to a distribution of the expected overlap generated by random sampling of the genome. F,
Permutation analysis measuring the observed overlap of the 941 300-bp hypermethylated regions to hypermethylated regions within tumor-specific methylated
cytosines from TCGA (n ¼ 10,000 permutations total). BRCA: breast invasive carcinoma; COAD: colon adenocarcinoma; HNSC: head and neck squamous cell
carcinoma; PRAD: prostate adenocarcinoma. E and F, The expected overlap from 1,000 random samples was transformed to a Z-score distribution (gray circles)
and used to calculate the Z-score of the observed overlap (diamond). P values were calculated based on the probability of the observed overlap relative to the
distribution generated from the expected overlaps. Red: significant enrichment,P <0.05. Blue: significant depletion, P <0.05. Gray: nonsignificant. Black bar:median
of expected overlaps. Box: IQR of expected overlaps. Whisker: most extreme value within quartile �1.5 IQR of expected overlaps. Above: histogram of number of
DMRs for each CpG geography.
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encounters several limitations due to low ctDNA abundance. Recent
studies have profiled paired PBLs and/or healthy control plasma to
identify mutations derived from clonal hematopoiesis, a main con-
tributor to false positive detection of ctDNA; however, the incorpo-
ration of orthogonal metrics may further improve accuracy and
clinical applicability. Here, we evaluated the capabilities ofmultimodal
genome-wide cfDNA profiling techniques for tumor-naïve ctDNA
detection within a cohort of HNSCC patients with low ctDNA
abundance. We demonstrated a high degree of concordance between
ctDNA metrics (abundance and fragment lengths) detected by muta-
tion-based and methylation-based profiling methods. Moreover, we
showed that tumor-naïve multimodal ctDNA profiling can provide
value by identifying putative prognostic biomarkers independent of
ctDNA abundance, as well as by monitoring ctDNA abundance in
serial samples.

Tumor-naïve detection of ctDNA has numerous practical advan-
tages in both research and clinical settings. Although tumor muta-
tional profiling can identify patient-specific markers for ctDNA
detection at low abundance (42, 43), such personalized approaches
rely on high-purity tumor samples from cancer types with sufficient
mutational load. Mutational profiling for personalized assay design
can be costly and time consuming, and it rarely accounts for genomic
heterogeneity within primary tumors or across metastatic clones (3).
In addition, ctDNA detectionmethods that depend on access to tumor
tissue diminish a key advantage of noninvasive liquid biopsies. By
integrating independent cfDNA properties, we achieved sensitive
ctDNA detection in early-stage cancers without the disadvantages of
tumor-informed methods.

In our study, the combination of CAPP-seq and cfMeDIP-seq
enabled an in-depth molecular characterization of low-abundance

Figure 4.

Fragment length analysis between CAPP-seq and cfMeDIP-seq profiles.A,Median fragment length of detectedmutations across patients with HNSCC by CAPP-seq.
For each patient, the median fragment length of each mutation and matched reference allele was measured. The distribution of median fragment length for each
mutation or matched reference allele is shown per patient. Black bar: median of fragment lengths. Box: IQR of fragment lengths. In cases with a single mutation, the
colored line denotes the median length of fragments containing the mutation or matched reference allele, respectively. B, Fragment length distributions within
HNSCC hypermethylated regions by cfMeDIP-seq. Fragment lengths from healthy controls were pooled prior to analysis, where each subsequent box denotes an
individual HNSCC cfMeDIP-seq profile.þ symbols denote HNSCC patients with detectable ctDNA by CAPP-seq (CAPP-seq positive). Black bar: median of fragment
lengths. Box: IQR of fragment lengths. Individual HNSCC samples are ordered on the basis of increasing mean methylation (RPKM) within the hypermethylated
regions. Dashedblue line defines themedian fragment length across all healthy controls.C,Comparisonofmedian fragment lengths fromCAPP-seq and cfMeDIP-seq
profiles. Points define individual HNSCC samples with methylation values above the median (n¼ 10). Solid red line: fitted linear regression model. Gray boundaries:
95% CI. D, Ratio of enrichment for hyper-DMR regions by fragments between 100 and 150 bp compared with enrichment for hyper-DMR regions by fragments
between 100 and 220 bp. þ symbols denote patients with HNSCC with detectable ctDNA by CAPP-seq (CAPP-seq positive).
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Figure 5.

Prognostic utility of multimodal profiling by CAPP-seq and cfMeDIP-seq. A, Relationship of mean MAF and mean RPKM from identified mutations and
hypermethylated regions by CAPP-seq and cfMeDIP-seq (limited to 100–150 bp), respectively. Points denote individual samples from HNSCC or healthy control
plasma. Solid red line: fitted linear regression model. Gray boundaries: 95% CI. B, Kaplan–Meier analysis depicting overall survival of patients with detectable ctDNA
both by CAPP-Seq and cfMeDIP-seq (mean methylation above healthy controls within hyper-DMRs). C, Schematic describing the analytic framework for evaluating
prognostic regions in ctDNAby utilization of TCGAdata.D, Forest plot of selected prognostic regions based onmultivariate Cox proportional hazards regression and
gene co-expression analysis.E,Kaplan–Meier analysis depictingoverall survival of patientswithHNSCC-TCGAbasedonaCMSdetermined from the totalmethylation
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were normalized to RPKM values across all previously identified 941 hyper-DMRs.
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ctDNA. Mutation-based ctDNA quantification contributed to the
discovery of HNSCC-specific hyper-DMRs in plasma, some of which
were confirmed to be prognostic even after adjusting for ctDNA
abundance. Thus, simultaneous profiling of mutations and methyla-
tion may complement one another by revealing quantitative, tissue-
specific, and prognostic ctDNA biomarkers. Moreover, methylome
profiling may prove particularly useful in cancer types with few
recurrent or clonal mutations.

This study makes multiple notable contributions. It is the first to
combine analyses of cfDNA mutations, methylation, and fragment
lengths. Moreover, we methodically profiled plasma samples and
paired PBLs from both patients with HNSCC and risk-matched
healthy controls. These analyses have revealed key insights regard-
ing the optimal handling of multimodal profiling for ctDNA detec-
tion and characterization. For instance, our unique approaches to
removing the contributing methylation signals from leukocytes and
using fragment length characteristics to enrich for tumor-derived
methylation will prove useful for future studies. We note that the
cohorts in this study were not large enough to rely exclusively on
machine learning approaches for signature generation as has been

demonstrated in prior cfMeDIP-seq studies (32–34). Instead, we
showed in modestly sized cohorts that incorporating mutational and
PBL analyses could produce a robust and biologically plausible
methylation signature. Finally, to our knowledge no study has pre-
viously identified prognostic methylated regions in cfDNA inde-
pendent of ctDNA abundance. Taken together, our discovery
framework could be widely applicable to other clinical settings
where tumor tissue availability may be limited.

Future larger studies will be needed to validate specific signatures,
thresholds, and prognostic models. Only interventional studies in
which the ctDNA result is used in real time to influence patient
management can definitively prove its clinical utility as a therapeutic
biomarker. Nonetheless, as we have now demonstrated the clinical
feasibility and potential use cases for locoregionally confined HPV-
negativeHNSCC,we envision thatmultimodal profiling of ctDNAwill
contribute to accelerated biomarker discovery and ultimately clinal
utility for patients with a variety of cancer types. We expect this to be
particularly beneficial in cases of low ctDNA abundance where
personalized treatment regiments can lead to meaningful improve-
ments in patient outcomes.
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