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Abstract: Cattle manure is frequently used as an inoculum for the start-up of agricultural biogas
plants or as a co-substrate in the anaerobic digestion of lignocellulosic feedstock. Ruminal microbiota
are considered to be effective plant fiber degraders, but the microbes contained in manure do not
necessarily reflect the rumen microbiome. The aim of this study was to compare the microbial
community composition of cow rumen and manure with respect to plant fiber-digesting microbes.
Bacterial and methanogenic communities of rumen and manure samples were examined by
454 amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, respectively. Rumen fluid
samples were dominated by Prevotellaceae (29%), whereas Ruminococcaceae was the most abundant
family in the manure samples (31%). Fibrobacteraceae (12%) and Bacteroidaceae (13%) were the
second most abundant families in rumen fluid and manure, respectively. The high abundances
of fiber-degrading bacteria belonging to Prevotellaceae and Fibrobacteraceae might explain the
better performance of anaerobic digesters inoculated with rumen fluid. Members of the genus
Methanobrevibacter were the predominant methanogens in the rumen fluid, whereas methanogenic
communities of the manure samples were dominated by the candidate genus Methanoplasma.
Our results suggest that inoculation or bioaugmentation with fiber-digesting rumen microbiota
can enhance the anaerobic digestion of lignocellulosic biomass.

Keywords: ruminant microbiome; plant fiber fermentation; anaerobic digestion; bioaugmentation;
hydrolytic bacteria; methanogenic archaea; mcrA gene; 16S rRNA gene; 454 amplicon sequencing

1. Introduction

During the last decade, demand for livestock products, particularly in developing countries,
has massively grown as a result of population growth, urbanization, and rising income [1].
The increasing number and size of animal production plants creates the need for better waste
management in livestock farming. Biogas production from crop residues and animal manure by
anaerobic digestion is a sustainable approach for waste reduction and energy recovery. Hydrolysis
is considered as the rate-limiting step during the anaerobic digestion of these waste streams due to
their high content of lignocellulosic materials. Consequently, numerous studies have focused on the
development of feedstock pretreatment methods and inoculation strategies in order to improve the
hydrolytic efficiency and consequently enhance the rates of acidogenesis and methanogenesis.

Ruminants have unique digestive systems bearing on a symbiotic relationship between bacteria,
archaea, protozoa, and fungi within the rumen environment [2,3]. Plant polymers such as cellulose,
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hemicellulose, and lignin components are degraded by hydrolytic exoenzymes released or exposed by
microbes and subsequently converted by acidogenic fermentation into short chain fatty acids, which
are consumed as nutrient by the ruminant. Thus, ruminants can utilize plant material more effectively
and conserve more of its energy than other herbivores, which is due to the dense and diverse microbial
consortia in the rumen that carry out these metabolic activities [4]. Besides bacterial communities,
the rumen microbiota includes methanogens which utilize H2 and CO2 to produce methane and
reduce hydrogen accumulation [5]. The fermentation of plant materials in the ruminant digestive tract
and environmental conditions in the rumen, such as pH, temperature, and redox potential, resemble
the anaerobic digestion process in a biogas reactor, at least concerning the first steps of the process
(hydrolysis and acidogenesis) and hydrogenotrophic methanogenesis [6]. The use of rumen fluid
as an inoculum for anaerobic digesters fed with plant fibers is thus an approach that has gained
increasing attention in recent years. Inoculum selection is of major importance in the start-up period
of anaerobic digesters and the use of rumen fluid promises to increase the decomposition of plant
fibers [7–9]. Though cattle manure is a suitable substrate for anaerobic digesters, its recalcitrant fiber
structure and high water content results in a low methane yield in mono-digestion. The combination
of different substrates with manure facilitates the digestion by increasing the easily degradable
fraction and thus enhancing the methane yield [10]. Cattle manure is commonly considered as
an inoculum well-suited for the start-up of anaerobic digesters, since it contains a diverse microbial
community that can easily adapt to changing operational conditions [11,12]. Most studies on the rumen
environment focused on microbial community dynamics depending on the dietary differentiation
of animals [3,13,14]. However, the microbial diversity and especially possible differences between
the structures of microbial communities in the rumen and the manure of the same animal has not yet
received much attention. This knowledge, however, is required to identify the key microorganisms of
use for efficient lignocellulose degradation.

The microbial community composition of the rumen environment had been studied primarily by
cultivation-based methods for many decades until the 1980s, when these techniques were replaced
by molecular tools which facilitate the study of complex environments [15]. Recently, a considerable
literature on the microbial community composition of the rumen ecosystem arose thanks to the
development of precise molecular techniques [3,4,13,16–21]. However, only a few attempts have been
made to compare the rumen and manure microbial communities [20].

The aim of this study was to determine the composition of the microbiota in cow rumen
and manure to reveal similarities and differences between these two communities. Microbial
resources from these environments might help improve the efficiency of anaerobic digesters treating
lignocellulosic feedstocks.

2. Materials and Methods

Three mature, non-medicated healthy Jersey cows (average body weight 450 kg) used in this
study were cared for and handled in a barn of the Veterinary Faculty of Leipzig University, Germany.
All cows were fed the same diet, which consisted of 81% hay, 11% concentrated corn with minerals and
vitamins, and 8% soybean meal (based on dry matter). Rumen fluid was sampled via rumen fistulae
and feces were sampled from the rectum according to institutional animal care guidelines. From each
cow, 50 mL grab samples were taken and kept at 38 ◦C during transfer to the lab. Afterwards, samples
were aliquoted in Eppendorf tubes, frozen immediately, and stored at −80 ◦C until DNA extraction.
DNA was extracted from 400 µL aliquots using the NucleoSpin Kit for Soil (Macherey-Nagel, Düren,
Germany). Amplicon sequencing of bacterial 16S rRNA genes was done as described previously [22].
Methanogenic communities were analyzed based on mcrA amplicon sequencing using the primers mlas
and mcrA-rev [23]. Sequence data were analyzed with the QIIME pipeline (Quantitative Insights Into
Microbial Ecology; http://qiime.org) as described previously [24,25]. The bacterial and methanogenic
community profiles were visualized by Krona graphs [26]. Venn diagrams were prepared to show
the number of shared and unique operational taxonomic units (OTUs) between the samples by
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using Venny 2.1.0 [27]. Non-metric multidimensional scaling (NMDS) plots based on the Bray-Curtis
dissimilarity index were calculated as described previously [21].

Sequence data were submitted to the European Nucleotide Archive (ENA) under the accession
numbers PRJEB19600, PRJEB19601, and PRJEB19525.

3. Results and Discussion

3.1. Bacterial Communities of Rumen and Manure

The community compositions of rumen and manure samples as determined by 16S rRNA gene
amplicon sequencing are visualized as Krona charts generated from the combined sequence dataset
from the three animals (Figure 1). Krona graphs showing the individual community compositions are
shown in the Supplementary Material (Figure S1). The rumen community (Figure 1A) was dominated
by Bacteroidetes (54%), Fibrobacteres (12%), Firmicutes (10%), and Lentisphaerae (8%). Only 1.4% of
the sequence reads could not be assigned to any bacterial phylum (unclassified bacteria). The remaining
sequences were assigned to minor phyla, mainly Proteobacteria (4%), Tenericutes (4%), and candidate
phylum SR1 (2%). The bacterial community of the manure sample (Figure 1B) was dominated by
Firmicutes (46%), while Bacteroidetes was the second most abundant phylum (36%). The remaining
phyla comprised Lentisphaerae (6%), Proteobacteria (5%), and Verrucomicrobia (2%), besides other
minor phyla. Differently from rumen fluid, the abundance of the phylum Fibrobacteres was much
lower in the manure samples (<0.1%), which was one of the main differences between the rumen and
manure bacterial community profiles. As in the rumen samples, only a small portion (1%) of the reads
could not be assigned to any bacterial phylum (unclassified bacteria).
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Figure 1. Krona charts illustrating the bacterial community composition of (A) the rumen samples
and (B) the manure samples on phylum, class, order, and family levels. Sequence data from three
individuals were combined.

In line with previous studies, the bacterial communities of both the rumen fluid and manure
samples were dominated by the phyla Bacteroidetes and Firmicutes [3,19–21,28–30]. These findings are
supported by previous studies employing clone libraries and Sanger sequencing [13,15]. Similar to our
study, Liu and colleagues found a higher percentage of Firmicutes in feces than in rumen samples [20].
The changing ratios between the two major phyla show how the bacterial communities shift upon
passing through the digestive tract of the ruminant. The phylum Fibrobacteres was much more
abundant in our rumen samples compared to most previous studies, which found Fibrobacteres
belonging to the cattle rumen core microbiome, but in lower amounts of less than 1% [3] or up to
3–4% [18]. On the one hand, this deviation might be due to a methodical bias such as different PCR
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primers or coverage of the different databases used for taxonomic assignment. On the other hand,
it is known that the abundance of Fibrobacteres is affected by the fiber content of the diet. Several
studies have recorded higher portions of this phylum in cattle fed a dry roughage diet [19] or in beef
steers fed a higher percentage of hay compared to dairy cows, while including concentrate or starch
and oil additives in the diet decreased the share of Fibrobacteres [3,4]. In accordance with our data,
de Menezes et al. [21] detected up to 10% Fibrobacteres sequences in the solid phase of rumen content
of dairy cows that were fed total mixed ration including straw. As we did not sieve our samples but
included the particulate matter of rumen fluid in the analysis, this might further explain the high
percentage of Fibrobacteres in our rumen samples.

At the family level, by far the greatest share of the sequences of the rumen fluid was assigned to
Prevotellaceae (phylum Bacteroidetes; 28%). Prevotella, which belongs to the Prevotellaceae family,
was the most dominant genus in the rumen fluid, coinciding with the results of previous studies
on rumen microbiota [15,18,20,21]. Members of this genus play an important role in breaking down
proteins and carbohydrates and represent the most numerous bacteria that are cultivable from the
rumen and hindgut of cattle [20]. Moreover, some of the Prevotella species isolated from rumen
produce cellulolytic enzymes like CMCase and xylanase [31]. Besides, it was suggested that Prevotella
species may act synergistically with other cellulolytic organisms and are involved in ruminal fibrolytic
activity [18,32]. In contrast, Prevotellaceae were not detected in the manure samples.

In the manure samples, Ruminococcaceae was the predominant family (31%), which includes
the genus Ruminococcus. Species of this genus were suggested to play a key role in ruminal
cellulose decomposition [33]. However, the abundance of Ruminococcus in the rumen was much
lower (4%) than that in the manure. This is in accordance with the study of Zened and colleagues,
who found that less than 1% of the rumen bacterial community was contributed by the genus
Ruminococcus [3]. The second most dominant families were Fibrobacteraceae (12%) in the rumen
and Bacteroidaceae (13%) in the manure samples. Members of the Bacteroidaceae family have been
described to ferment cellulosic material and produce acetic acid and hydrogen [34]. The family
Fibrobacteraceae (phylum: Fibrobacteres) includes two cultured species, Fibrobacter succinogenes and
Fibrobacter intestinalis, which have been suggested to be the main cellulose degraders in ruminant gut
systems [35,36]. Wu et al. found a 570-fold increased abundance of Fibrobacter in mature rumen
communities compared to the rumen of pre-ruminant calves, underpinning the importance of
Fibrobacteraceae for plant-fiber digestion in cattle rumen [18].

The shared and unique OTUs between total rumen and manure samples and between the
individual rumen and manure samples are presented in Figure 2. According to the Venn diagram in
the upper panel, 722 OTUs were compartment-specific, whereas only 42 OTUs were detected in both
rumen and manure samples. Comparing the individual animals, 247 OTUs were shared between all
manure samples and 103 OTUs between all rumen samples, while only 78 and 87 OTUs, respectively,
were individual-specific.

As Venn diagrams show only the number of shared and unique OTUs regardless of their
abundances, we compared the community profiles based on the Bray-Curtis dissimilarity index,
which considers the presence/absence as well as relative abundance of OTUs. As illustrated in
Figure 3a, the data points of the bacterial community profiles clustered according to the compartment
but not to the individual, with a higher variance of the rumen samples compared to the manure
samples. The higher variance of the manure bacterial communities compared to the rumen bacterial
communities is also visible in the individual Krona graphs (Figure S1).

The estimated bacterial richness and evenness are shown in Table 1. The bacterial community
of the manure was more diverse in terms of OTU number as well as Chao1 and Shannon indices
compared to the rumen community.
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and manure samples based on 16S rRNA sequences and (b) the methanogenic communities of rumen
and manure samples based on mcrA sequences.

Table 1. Summary of the estimated richness and evenness of the bacterial and methanogenic
communities of both compartments. Diversity indices were calculated with the QIIME pipeline,
except the Shannon index, which was calculated according to Lucas et al. [37].

Sample No. of Reads No. of OTUs Chao1 Shannon Simpson Pielou’s Evenness

Rumen bacteria 6998 217 293 5.26 0.99 0.92
Manure bacteria 12,232 402 513 5.89 0.99 0.94

Rumen methanogens 9906 190 292 4.09 0.97 0.76
Manure methanogens 7915 91 161 2.39 0.78 0.51

3.2. Methanogenic Communities of Rumen and Manure

The compositions of the methanogenic communities as determined by amplicon sequencing
of mcrA genes are presented in Figure 4. Krona graphs showing the individual mcrA compositions
are shown in the Supplementary Material (Figure S2). The rumen methanogenic community was



Microorganisms 2018, 6, 15 6 of 10

dominated by the genera Methanobrevibacter (order Methanobacteriales) and the candidate genus
Methanoplasma (order Methanomassiliicoccales), which together accounted for 85% of all mcrA
reads. Minor percentages of the sequences were assigned to Methanococcales and Methanomicrobia.
Differently from the rumen, Methanocorpusculum (order Methanomicrobiales) was the most abundant
genus in the manure community with 66%, while only 5% of the manure sequences were assigned
to Candidatus Methanoplasma. Compared to the bacterial communities, the methanogenic community
profiles showed a much higher variance between the three individuals but still formed distinct
compartment-specific clusters in the NMDS plot (Figure 3b). The genera Methanobacterium,
Methanobrevibacter, and Methanomicrobium have been described as characteristic hydrogenotrophic
rumen methanogens [6]. In accordance with our results, Methanobrevibacter was also found as
the dominant genus among the rumen methanogens [38,39]. The other abundant genus in the
rumen samples, Candidatus Methanoplasma, has been described as an H2-dependent methylotrophic
methanogen [40].
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and (B) the manure samples on phylum, class, order, and family levels. Sequence data from three
individuals were combined.

As shown in Table 1, the rumen methanogenic communities had higher OTU numbers as well
as higher Chao1 and Shannon indices compared to the manure samples. Compared to the bacterial
communities, the methanogenic communities displayed a more uneven species distribution, and the
manure communities were more uneven than the rumen communities.

3.3. Functional Implications of the Differences in Rumen and Manure Microbiomes

The main function of the rumen microbiome is the hydrolysis and fermentation of plant polymers,
resulting in the formation of short chain fatty acids with CO2 and H2 arising as by-products. While
fatty acids are consumed by the ruminant, rumen methanogens use CO2 and H2 to produce CH4.
Thus, they act as a hydrogen sink, thereby supporting the activity of fermentative bacteria. Moreover,
post decomposition of cellulosic compounds occurs in the large intestine and the colon in foregut
ruminants [41]. The digestate passes through the large intestine where water is absorbed and eventually
remainders are excreted. Thus, the microbial community of manure reflects the large intestine’s
microbiome including the same taxa generally found across the gastrointestinal tract of cattle. However,
the abundances of these taxa change across the digestive tract [42]. It has been suggested that the
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lignocellulolytic bacteria in the residual feed may be involved in downstream fermentation in the
lower part of the digestive tract [43]. However, methane is mainly produced in the rumen, whereas
only a small portion (11%) of the total methane is formed in the lower part of the digestive system [44].

The microorganisms in the rumen excrete specialized enzymes for lignocellulose degradation.
When rumen fluid is used as an inoculum for anaerobic digesters treating lignocellulosic biomass,
this adds hydrolytic activity due to the capability of the microbial community to produce the necessary
enzymes [45]. Several studies have shown that adding rumen fluid has a positive effect on the
performance of anaerobic digesters treating lignocellulosic biomass [7,46].

4. Conclusions

The results of our study revealed substantial differences in the bacterial communities of rumen
and manure microbiomes with regard to the hydrolytic bacteria known to be involved in plant fiber
degradation. Although Bacteroidetes was a dominant phylum in both environments, the families
Prevotellaceae and Fibrobacteraceae, both of them dominant in the rumen and known as key
cellulose degraders, were not detected in the manure samples, whereas the latter contained a
higher proportion of hydrolytic bacteria assigned to the Ruminococcaceae family. Additionally,
the methanogenic communities in both environments showed different profiles. The findings of this
study provide insights to the rumen microbiome that can be used as seed for anaerobic digesters
treating lignocellulosic feedstock due to the high abundance of lignocellulose-degrading bacteria.
Although cattle manure is a suitable inoculum for anaerobic digesters providing hydrogenotrophic
methanogens and hydrolytic/fermenting bacteria of the orders Clostridiales and Bacteroidales, rumen
fluid might be more effective by introducing plant fiber-degrading specialists. However, rumen fluid is
not as readily available as manure and therefore inoculation or bioaugmentation with rumen microbiota
is difficult on a practical scale. An option to overcome this limitation could be the enrichment and
propagation of high-performance lignocellulolytic consortia from rumen samples for inoculation
or bioaugmentation with the aim of enhancing biogas production in anaerobic digesters treating
lignocellulosic feedstock.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/6/1/15/s1.
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