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Abstract

Background: While there are many methods for predicting protein-protein interaction, very few can determine the
specific site of interaction on each protein. Characterization of the specific sequence regions mediating interaction
(binding sites) is crucial for an understanding of cellular pathways. Experimental methods often report false binding
sites due to experimental limitations, while computational methods tend to require data which is not available at
the proteome-scale. Here we present PIPE-Sites, a novel method of protein specific binding site prediction based
on pairs of re-occurring polypeptide sequences, which have been previously shown to accurately predict protein-
protein interactions. PIPE-Sites operates at high specificity and requires only the sequences of query proteins and a
database of known binary interactions with no binding site data, making it applicable to binding site prediction at
the proteome-scale.

Results: PIPE-Sites was evaluated using a dataset of 265 yeast and 423 human interacting proteins pairs with
experimentally-determined binding sites. We found that PIPE-Sites predictions were closer to the confirmed
binding site than those of two existing binding site prediction methods based on domain-domain interactions,
when applied to the same dataset. Finally, we applied PIPE-Sites to two datasets of 2347 yeast and 14,438 human
novel interacting protein pairs predicted to interact with high confidence. An analysis of the predicted interaction
sites revealed a number of protein subsequences which are highly re-occurring in binding sites and which may
represent novel binding motifs.

Conclusions: PIPE-Sites is an accurate method for predicting protein binding sites and is applicable to the

proteome-scale. Thus, PIPE-Sites could be useful for exhaustive analysis of protein binding patterns in whole
proteomes as well as discovery of novel binding motifs. PIPE-Sites is available online at http://pipe-sites.cgmlab.org/.

Background

In recent years, large-scale protein sequencing has gener-
ated a tremendous amount of data at the proteome level.
However, biomedical significance of these results relies
on the determination of protein function at this scale.
Protein-protein interactions (PPIs) are the main mechan-
ism behind biological pathways [1] and as such are at the
core of a functional understanding of the cell under nor-
mal and pathological conditions. Characterization of the
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sequence regions that give rise to protein binding sites
responsible for interaction (interaction or binding site)
opens the door to modulation of these pathways and is
crucial to targeted drug design.

Large-scale protein-protein interaction (PPI) studies
are bottlenecked by existing experimental and computa-
tional methods. Experimental assays such as yeast two-
hybrid (Y2H) [2,3] or TAP-tagging [4,5] have been
adapted to the proteome scale but lag in terms of
throughput and robustness. For example, Y2H underre-
ports interactions involving membrane and cytosol pro-
teins because the assay requires the proteins to interact
with the nucleus [6]. Deletion experiments, for binding
site determination, are even more time-consuming and
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often produce very coarse data unsuitable for detailed
study of binding sites. In addition, deletion experiments
may create false positives because the deletion of
assumed binding sites may alter the conformation of the
protein and thereby disable the protein interaction with-
out directly mediating binding of the two proteins.

Computational tools promise significant advantages in
response time and cost-effectiveness. However, molecu-
lar modelling approaches such as protein docking [7,8]
require 3D structure data not available at the proteome
scale and are computationally prohibitive at that scale.
3D structure prediction from primary structure is also
infeasible at this scale, requiring world-wide distributed
computing efforts for several months to process a single
protein [9].

Direct sequence-based methods are capable of over-
coming some of these limitations by performing binding
site prediction from domain motifs [10-13] or directly
from a machine learning model [14-17]. However, in
each case, model training is limited by available data
since consensus motifs must be manually curated, and
training sets in the form of high-quality binding site
location databases are scarce and costly to produce.
Additionally, methods based on domain-motif binding
alone cannot determine specifically which domain/motif
is responsible for binding when they occur multiple
times in either interaction partner. Also, such methods
do not permit discovery of novel motifs. Methods using
binary interaction data alone overcome some of the pro-
blems because binary interaction data sets are more
readily produced and aggregators of gold-standard con-
sensus data sets already exist [18].

The protein-protein interaction prediction engine
(PIPE), previously developed by our group, performs
PPI prediction relying solely on query protein sequences
and a database of known interacting pairs (binary inter-
action data). The PIPE method is based on re-occurring
polypeptide sequences, which have been found to med-
iate a large fraction of PPIs [19,20]. By considering
every pair of sequence windows from query proteins A
and protein B, PIPE generates a three-dimensional land-
scape which represents the co-occurrence of each win-
dow pair among a database of known interacting
protein pairs. Peaks in this landscape (Figure 1a) signify
a high co-occurrence of the corresponding sequence
windows among interacting proteins and suggest an
interaction between the two query proteins. A flat land-
scape (Figure 1b) indicates that each pair of sequence
windows only co-occurs infrequently in interacting pro-
teins (as expected to occur by chance) and therefore
indicates no interaction. As shown in [19], PIPE has
been very successful at making binary predictions of
protein-protein interactions with better accuracy than
competing methods [21-23].
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In this paper, we describe PIPE-Sites, a new method
for analyzing peaks in the landscapes of co-occurrence
reported by PIPE in order to make protein specific bind-
ing site predictions. Previous anecdotal evidence from
simple “visual inspection” of PIPE landscapes for a small
set of examples [24] indicated some correspondence
between peaks and known binding sites. This work
explores the potential for site prediction at a large (pro-
teome) scale. We present PIPE-Sites, an automated way
of analyzing landscapes of co-occurrence reported by
PIPE in order to make protein specific binding site pre-
dictions. To verify PIPE-Sites’ predictions, we make use
of an experimentally confirmed validation set of protein
pairs and the mediating sites on each protein. We evalu-
ate our predictions quantitatively by measuring the dis-
tance between the predicted binding site ranges and the
experimentally confirmed ranges. Finally, we apply our
method to two data sets of novel protein interactions
with unknown sites and discuss the results. PIPE-Sites
appears to be highly accurate with respect to the experi-
mentally validated data set, and is the first such method
operating at proteome scale from binary interaction data
alone. In addition, PIPE-Sites shows improved perfor-
mance compared to existing domain-domain and
domain-motif based protein binding site prediction
methods such as Riley’s domain pair exclusion analysis
(DPEA) [12] and DOMINE ([25]. PIPE-Sites is available
online at http://pipe-sites.cgmlab.org/ where users can
enter two query proteins and, if the proteins are pre-
dicted to interact, receive a report of the top three land-
scape peaks and corresponding putative binding sites on
each protein.

Methods

Training and validation data sets

The PIPE method of protein interaction prediction uses
a database of known interactions as training data. These
known interactions are given simply as pairs of proteins;
no additional annotation is required. We carried out
experiments for two species: Homo sapiens (human) and
Saccharomyces cerevisiae (yeast). The known interac-
tions databases were taken from BioGRID [18] and con-
tain 41,678 and 39,899 pairs for human and yeast,
respectively.

To validate our site predictions, we used the DOM-
INO PPI site database [26], which provides specific
amino acid ranges for the binding site on each interact-
ing protein. DOMINO extracts results from peer-
reviewed articles, representing a wide range of experi-
mental methods. Many records originate from deletion
experiments, which have a high rate of false positives
due to possible conformational change as outlined
above. In some partial records, DOMINO reports a
binding site for one protein, but none for the other.
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Figure 1 PIPE landscapes for pairs of yeast proteins. (a) Interacting pair (015259 and Q13444); the peak represents the most likely site of
interaction on both proteins. (b) Non-interacting pair (YGLO55W and YBLO9OW); low matrix values represent random matches and do not

(b)

Hits

100

80

These instances and other degenerate cases were
excluded from our validation set.

Where DOMINO has binding site data for both pro-
teins, one or both binding sites may refer to an
extended region of the protein and hence the size of the
binding site is over-estimated. For example, in 5% of
records for yeast proteins, the binding site for at least
one protein was longer than 100 amino acids (whereas
the average yeast protein is 452 amino acids [27]). In an
additional 53% of records, phage display was used to
screen short peptide arrays for binding against a
domain, but the authors did not attempt to find the
minimal binding region and instead report the entire
domain as responsible for interaction. It is likely that
not all amino acids directly participate in binding and
thus the true binding site is a subset of the given ranges.
Our methodology was adjusted to account for these
properties of the validation set (detailed below in “Dis-
tance measure”). Despite these shortcomings, DOMINO
remains a comprehensive database of binding site
ranges, and, after filtering, provided 265 ranges in yeast
and 423 ranges in human protein pairs as our validation
set (complete lists are given in Additional Files 1 and 2).
Note that while 212 protein pairs in human and 67 in
yeast from those datasets were also present in our set of
known interactions, our training data does not contain
any information on binding sites and does not skew our
predictive performance. Additionally, while some protein
re-occur in the validation set, this is discussed in detail
in a later section (Balance In Validation Data), and is
shown not to have a significant effect on our results.

Most existing interaction prediction methods operate
at the domain-domain or domain-motif level
[10-13,28]; some databases collect domain-domain data
from several experimental and computational sources
[25]. While to our knowledge there is no method

which directly predicts binding site amino acid ranges,
domain-domain methods can be applied to binding
site prediction. To achieve this, we consider every pair-
wise combination of domains from each query protein
and extract amino acid ranges for one or several high-
est ranking pairs. We applied this technique to com-
pare our method against two existing domain-domain
interaction predictors: Riley’s domain pair exclusion
analysis (DPEA) [12] and the DOMINE domain-
domain interaction database [25]. DPEA uses known
interacting protein pairs from several organisms to
infer domain-domain interactions and provides a log
odds score (E-value) for each pair. The published 3005
most statistically significant pairs were used as this
method’s predictions. DOMINE combines domain-
domain interaction data from two methods based on
observed physical association in experimental PDB
structures and 13 computational methods, including
DPEA. For each domain pair, the database specifies
which methods confirm the interaction. We produced
a simple consensus score by counting the number of
methods confirming any given pair, to compare against
our method.

Both DPEA and DOMINE identify domains using
their accession numbers in the Pfam protein family
database [29]. We applied Pfam to our validation set of
265 yeast and 423 human interactions. When compar-
ing against DPEA, we used the same version of Pfam
(14.0) because DPEA also makes predictions on a sub-
set of Pfam (Pfam-B) for which accession numbers are
not stable across versions. However, since the DOM-
INE database restricts itself to the stable subset of
Pfam (Pfam-A), the latest version of Pfam (version
24.0 released October 2009) was used in order to ben-
efit from the most up-to-date domain annotations
available.
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Lastly, we applied our method on data sets of interact-
ing proteins for which no protein-specific binding site
data is currently available, to demonstrate the potential
for detection of binding sites and discovery of novel
binding site motifs. First, we obtained from the Univer-
sity of Leuven (personal correspondence) a set of pro-
teins associated with congenital heart defects (CHD) in
H. sapiens. After screening for interaction every pair of
proteins, we applied PIPE-Sites to the 2347 pairs pre-
dicted to interact. We also applied PIPE-Sites to 14,438
high-confidence interactions in S. cerevisiae previously
reported by PIPE as a result of a proteome-wide all-to-
all screen [30]. Section “Binding sites in novel human
and yeast interactions” summarizes our results on these
data sets.

Distance measure for validation and comparison of
binding site predictors

The binding sites on two interacting proteins can be
represented as a rectangle on an overhead view of the
two proteins (Figure 2). These rectangles represent
either the sites predicted by our method, or the true
sites determined by experiments. In order to objectively
gauge the performance of our method, we developed a
quantitative method of comparing two rectangles (pairs
of interacting regions) for a given interaction Existing
prediction methods focus on participating residues on
only one side of the interaction, or make predictions at
the domain level. In image segmentation evaluation,
quantitative comparison of two regions is a well-known
problem, and various distance measures have been stu-
died in that context [31]. However, these methods are
focused on non-rectangular regions and adopt set-theo-
retical approaches which are difficult to interpret in a
biological context.
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We developed a distance measure (DM) between pre-
dicted and actual (lab confirmed) protein interaction
sites which accounts for overlap of sites on both pro-
teins and combines them into a single value between 0
and 1, where 0 indicates a perfect match and 1 indicates
that the rectangles cover opposite ends of the proteins
with no overlap (Figure 2). For two interacting proteins
A and B of length proteinA,., g, and proteinBie,g:p,
respectively, let startApsendAps, startBps, endBps denote
the location of the interaction sites predicted by PIPE-
Sites and B let startA;,;,,endA,,;,, startB;,,, endB;,,
denote the location of the actual (lab confirmed) inter-
action sites.

We first calculate distances along each protein by sub-
tracting the start positions (startA,,, - startAps) and end
positions (endA,;, - endAps) and taking the maximum.
When the predicted site is contained within the lab site,
the distances are both negative and we clamp the
distance at 0 (perfect match) along that protein
(Equation 1). This accounts for cases where the experi-
mental data over-estimates the binding site. Then, we
combine the distances along each protein into a single
overall distance between the two rectangles. The dis-
tance along one protein (AA) is calculated. The dis-
tances for both query proteins are scaled by each
protein length and combined by vector addition to yield
the final DM (Equation 2). The /2 factor ensures that
the final value is between 0 and 1.

max {startAyy — startAps, endAps — endAjp, 0}
proteinAjengn

AA =

max {startBj,, — startBps, endBps — endBjap, 0}
proteinBiengn

AB =

-[ PIPE interaction

Lab interaction

T endBppe - endB,

Protein B
Interaction Site

v startB,,, - startBppe

startA,, - startAppe

\

endAppe - endA

—

Interaction Site
Protein A

N-terminus

1
C-terminus

Figure 2 Distance measure (DM) calculation. Along each protein, the distance is the maximum difference between start and end positions
(startAp - startApes, endAgs - endAps). When the predicted site is contained within the lab site, the differences are both negative and we clamp
the maximum difference at 0 (perfect match). Distances along each protein are scaled and combined vectorially to yield the DM.
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This measure has several useful properties: it penalizes
over-prediction of interaction area while rewarding
small, specific site predictions, in the presence of very
coarse lab data. It weighs boundary errors inversely with
protein length, and it is equally sensitive to prediction
errors on either protein. Finally, it is numerically com-

parable for predictions on proteins of arbitrary length.

PIPE-Sites: Walk algorithm

The primary features of PIPE landscapes are peaks and
their surrounding hills. Peaks indicate the location of a
site of interaction, while the hill leading up to the peak
represents the extent of the binding site on each pro-
tein. By walking down from the peak until a given
height threshold, we can algorithmically determine the
cross-sectional area of the peak, and thus, the size of
the binding site. The walk proceeds in the four axial
directions (up, down, left, right) until the height of the
landscape drops below a given threshold (Figure 3).
Since the peak height is highly variable, the threshold is
expressed as a percentage of the current peak height
(percentPeak). Lower values extend the predicted sites
by continuing the walk further along the hill surround-
ing a peak (Figure 3). This allows us to calibrate our
algorithm to give more specific site predictions by
increasing the percentPeak parameter.
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Figure 3 Walk algorithm. Starting from a peak, the walk algorithm
proceeds in all four axial directions until the landscape height is
below a pre-defined percentage of the peak height (percentPeak).
As the percentPeak parameter is relaxed, the predicted sites are
increasingly larger.

015259 amino acids 156-177
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PIPE-Sites: Multiple peak selection

Multiple peaks in PIPE landscapes may indicate multi-
ple binding sites (Figure 4). Multiple peaks can also be
the result of noisy predictions of interaction due to
random sequence window matches, an effect which
particularly affects prediction for landscapes with low
overall height. In both cases, it is interesting to extract
data about more than just the single highest peak in
each landscape. This data allows the use of additional
features to disambiguate between the peaks or to sug-
gest interesting areas for wet lab experimentation
which are likely to yield positive results. To afford the
greatest flexibility to the potential users of our method,
we generate a ranked list of potential binding sites,
ordered by decreasing peak height. Other features can
be introduced to improve the selection of a single
peak, or multiple experiments can be carried out with
higher overall probability of successfully validating the
true site(s).

PIPE-Sites: Handling noisy and spurious peaks
Some PIPE landscapes exhibit very sharp peaks with no
supporting hills. These may arise from random matches
when searching for similar sequences in the training set
and do not indicate a true interaction. In order to
exclude these from consideration, we enforce a mini-
mum of one walk step in each direction from the cur-
rent peak. This excludes spurious peaks without unduly
affecting prediction on peaks with significant support.
There are also many pairs for which the PIPE land-
scape indicates scattered but significant co-occurrence
of sequence windows in known interactions. These land-
scapes are sufficient to predict an interaction but do not
contain discrete features for the binding sites. In order
to exclude these landscapes from consideration, we
require that the tallest peak in the landscape satisfy a
given minimum threshold. We experimented with values
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5, 10 and 15. The value 10 provided a good compromise
between allowing too many noisy peaks and not having
tall enough peaks to make any predictions, and was
used for the remaining experiments.

Identification of known domains
The InterPro database [32] integrates protein annota-
tions from several large databases, including PANTHER,
Pfam, SMART, ProSite and Superfamily. The InterProS-
can tool [33] is used to identify domains and motifs in
an amino acid sequence without a priori knowledge of
the protein the sequence was from. InterProScan is
available for download for use on a large scale. Func-
tional annotation of predicted binding sites via Inter-
ProScan provides biological significance and context to
the predictions made by PIPE-Sites. Using the Inter-
ProScan tool, the predicted binding site sequences were
provided as input, and domains contained within the
sequence were the output. We used the latest version of
the InterPro database as of this writing (release 29.0).
Domain identification within interactions is significant
for two reasons. Identifying known domains confirms
that the peak selection algorithm and PIPE method is,
in fact, identifying potential binding sites, and not just
low-complexity regions within a protein’s primary struc-
ture. Secondly, the re-occurrence of domains from both
participants in the PPI can characterize what types of
interactions the method can accurately predict. Addi-
tionally, by carefully excluding sequence windows with
existing annotations, we are able to discover novel bind-
ing motifs that re-occur frequently among our known
interactions. Furthermore, if a sequence window does
not have any known annotations in InterPro, this means
that the sequence is not recognized by any of the consti-
tuent databases of InterPro (PANTHER, Pfam, SMART,
ProSite, and others) and provides strong evidence that
the motif is novel.

Results and Discussion

Prediction of binding sites in H. sapiens and S. cerevisiae
Our validation set, a filtered subset of DOMINO, con-
tains 423 human and 265 yeast interactions. For each
human and yeast protein pair, we ran the PIPE algo-
rithm to generate PIPE landscapes and retained only
those with PIPE peaks greater than 10 hits (363 for
human and 176 for yeast). We then applied PIPE-Sites
to predict binding sites for each of these landscapes and
selected the top three sites. For each predicted site (3
per protein pair), we calculated the DM with respect to
the DOMINO (i.e. lab-confirmed) site for that protein
pair. To provide a baseline performance metric, we also
generated random predictions by randomly choosing a
start location and an end location in the remaining
length of the protein and calculated the DMs for three
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random sites per pair. We analyzed the resulting set of
DM values by calculating the enrichment (compared to
random interval selection) for small DM values (e.g. 0%
< DM < 10%) and negative enrichment for large DM
values (e.g. 50% < DM).

We first analyzed DMs for the single highest peak
for each pair and compared it to the first random site
(Figure 5a). For example, the number of predicted
yeast binding sites which are within 10% of the DOM-
INO site (accurate prediction) is 6 times greater than
what would be expected by chance. Conversely, the
number of predicted site more than 50% away from
the DOMINO site (i.e. inaccurate prediction) is
approximately 80% less than what would be expected
by chance. While performance is similar between the
two species, and both perform significantly better than
random (P < 10! for human, P < 107° for yeast, Kol-
mogorov-Smirnov test), yeast does perform slightly
better than human. The sizes of our PIPE known
interactions databases are comparable for human and
yeast (41,678 and 39,899 protein pairs, respectively).
However, it has been suggested that the human inter-
actome is much larger than for yeast [34], which
would explain our improved performance on yeast in
terms of relative coverage of total interactions. DOM-
INE, on the other hand, may benefit from the larger
number of known domains annotated per human pro-
tein (3.4 domains per protein for the average protein
in our validation set) compared to the same value for
yeast proteins (2.1 domains per protein on average),
resulting in slightly improved performance on human
protein pairs. The remaining method, DPEA, is trained
on 26,032 pairs spanning 68 organisms, resulting in
much weaker single-organism coverage and suggesting
a possible justification for its lower performance in
general.

We also considered performance on multiple peaks by
comparing distributions of the single highest peak, mini-
mum DM of the two highest peaks, and minimum DM
of the three highest peaks (Figure 5b, 6¢). This repre-
sents an experiment where wet lab validation would be
attempted on the predicted interaction site correspond-
ing to the highest single peak, the highest two peaks
and the highest three peaks. The overall shift of the dis-
tribution toward lower DM as the number of peaks
increases indicates a general trend for individual DM
values to decrease. In particular, the bin “0% < DM <
10%” always increases because with each additional peak
considered, sites where the second or third peaks out-
perform the first peak are assigned to that bin. The
average distance between the predicted and lab con-
firmed site decreases with each additional peak, and is
in all cases significantly lower than for the random pre-
dictions (Table 1).
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Figure 5 Enrichment over random site predictions. Using highest peak only, for yeast and human (a), best of one, two, three peaks peaks in

yeast (b) and human (c). For both species, we predict significantly more sites close to the experimentally-confirmed site than random. Yeast
performs slightly better due to the much greater coverage of the species interactome by the PIPE known interactions database yeast (36,000

known pairs out of estimated ~50,000 [30]) compared to human (40,000 known pairs but much larger interactome).

Finally, we applied a similar methodology on predic-
tions made by the DPEA and DOMINE domain-oriented
methods and report average DM for their predictions
relative to DOMINO experimental binding sites. We first
obtained domain annotations for all proteins in our vali-
dation set from Pfam, using specific versions depending
on the method, as previously described in Section “Train-
ing and validation data sets”. Then, for each pair, we
retrieved the domain pair predicted most likely to inter-
act according to each method. The amino acid ranges of
the domains on each query protein were taken as the
predicted binding sites and compared, using DM, to the
DOMINO data. We present the average DM for each
method applied to each species. Note that as a result of
Pfam lookup and the limited number of DPEA strong
predictions, some protein pairs had no matching
domain-domain interaction. These pairs were simply
excluded and average DM was calculated only on those

protein pairs for which the method could make a predic-
tion. As DPEA was only able to make predictions for two
human protein pairs, we do not consider the sample suf-
ficiently large and do not report results for that experi-
ment. This demonstrates the shortcomings of relying on
domain annotations for binding site prediction, as com-
pared to PIPE-Sites, which was able to make predictions
on nearly all pairs in the validation set, sacrificing some
pairs only to increase the average accuracy of the remain-
ing predictions. See Table 2.

PIPE-Sites itself is not very computationally intensive.
We benchmarked the performance of the PIPE-Sites
algorithm on modern Intel Core i7 hardware. The aver-
age time required for site analysis of pairs in our valida-
tion set was 239 ms per yeast pair and 340 ms per
human pair (human landscapes are on average larger
than yeast landscapes). This is less than half the time
required to compute the landscape itself (526 ms on
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Table 1 Binding site prediction errors (average DM) for
human pairs, yeast pairs, and random predictions

Peaks Human Yeast Random
1 0.246 0218 0402
2 0213 0.168 0320
3 0.188 0.151 0.269

Error is expressed as average distance between the predicted site and lab-
confirmed site, averaged over all pairs. Random predictions were made for
both human and yeast protein pairs, and the corresponding error is average
DM over all pairs.

average per yeast pair and 1704 ms per human pair); no
attempt has been made to optimize the site analysis
code. The theoretical worst case complexity of the site
analysis is O(proteinAie,g x proteinBie,qy,), which is
due to the search for the location of the maximum
value in the landscape. This operation requires a single
pass through the landscape and in practice is quite fast.

Balance in validation data

There are proteins participating in multiple interactions
in the dataset of lab-confirmed binding sites. Of the 423
confirmed binding sites in the human dataset, there are
364 unique participating proteins, with one protein
involved in 58 PPIs. The yeast dataset contains 265 PPIs
with 140 unique participating proteins, and the single
most frequently occurring protein is involved in 72
PPIs. Duplication of participants in PPIs could poten-
tially skew the DM scores favourably in the case of an
easy prediction and unfavourably in the case of a consis-
tently poorly predicted protein. A consistently poor pre-
diction can arise from a variety of sources, including
poor performance of the method on a significant num-
ber of landscapes involving the mispredicted protein, a
mistake in the lab, the reuse of a single binding site in

Table 2 Binding site prediction error for two domain-
oriented methods and PIPE-Sites (this work)

Species Pairs originally =~ Method Pairs with Error
in validation set available (average

predictions DM)

Yeast 265 DPEA 32 0.718

Yeast 265 DOMINE 144 0.363

Yeast 265 PIPE-Sites 174 0.218
(this work)

Human 423 DPEA 2 N/A *

Human 423 DOMINE 266 0.306

Human 423 PIPE-Sites 363 0.246
(this work)

DPEA [12] is a standalone statistical inference method, while DOMINE [25] is a
database combining several experimental and computational domain-domain
interaction sources. We used a consensus approach to combine the 13
constituent data sources of DOMINE to arrive at a single binding site
prediction. Error is expressed as average distance between the predicted site
and lab-confirmed site, averaged over all pairs. * Due to the small sample size
(only 2 available predictions), it was impossible to calculate a statistically
significant average DM for DPEA predictions.
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DOMINO records where multiple in fact exist, or a
binding site that changes in the different PPIs a protein
is involved in. In order to determine if there was a
group of proteins skewing the DM scores in either
direction, we measured separately, for each protein pair
in the validation set, the contributions from each pro-
tein (AA and AB) to the DM of the highest peak. Then,
for each individual protein, we counted its number of
occurrences in protein pairs and calculated the average
of its individual DM scores.

Tables 3 and 4 show the most frequently occurring
proteins in the lab-confirmed dataset: the protein name
in column one, the number of occurrences in column
two; and the average DM score in column three. The
average DM score of the most frequently occurring
human protein (P04626 with DM score of 0.233) is
close to the overall human average of 0.246. Subsequent
entries are also close to the average DM, indicating that
these frequently-occurring proteins in general do not
skew overall DM results. Some entries, however,
Q13444 in particular, show very accurate binding site
predictions with a DM of only 0.012. A similar pattern
can be seen in yeast proteins, where the most frequently
occurring protein has a DM score of 0.149 compared to
the average of 0.218. YHRO016C is particularly well pre-
dicted with a DM score of 0.069. We later discuss the
domain associated with the predicted and lab-confirmed
binding site of this protein.

Binding site domains

While predicting the binding site subsequence is itself
an important problem, relating the subsequence to
existing protein annotations is also of great interest to
the biology community. Domains provide context for
the potential functional uses of a peptide sequence.
Identifying domain pairs which were previously not
known to interact, or ones that are known to mediate
interaction, confirms our hypothesis that our method
accurately finds the binding site between two proteins.
The co-occurrence of certain domains can explain why
two proteins are known to interact. Conversely, pre-
dicted sites which are not mapped to existing domains

Table 3 Most frequently occurring human proteins and
their average DM scores in the validation data set

Protein Freq. Error (avg. DM score)
P04626 58 0.233
P00533 48 0.097
P21860 35 0.240
Q13444 21 0012
P62993 13 0.022
Q15303 11 0.210
095400 10 0447
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Table 4 Most frequently occurring yeast proteins and
their average DM scores in the validation data set

Protein Freq. Error (avg. DM score)
YFR024C-A 72 0.149
YHRO16C 48 0.069
YDR388W 33 0.119
YCRO88W 25 0.128
YMR109W 24 0.040
YER118C 17 0.150
YBLOO7C 13 0.198
YBLOB5W 13 0.138

represent potentially novel, undiscovered interaction-
mediating domains or motifs.

We used the InterPro database to annotate all human
and yeast proteins in the DOMINO dataset and
extracted the domain on each protein which most over-
laps with the protein’s predicted binding site. In order
to strengthen conclusions drawn from interacting
domain pair analysis, we chose to examine here only
those sites for which the prediction’s DM with respect
to DOMINO data is less than 0.20. These represent pre-
dictions where the binding site has been found both
experimentally and by PIPE-Sites, and are considered
high confidence binding sites. In Tables 5 and 6, we
present the top ranked co-occurring interacting domains
in high confidence binding sites. For each domain pair,
we additionally report whether it is present in DOMINE,
a combined database of domain-domain interactions
[25]. We later report similar results on a dataset of
novel interactions with no experimental binding site
information.

In Table 5, a number of human domains co-occur,
including pairs involving PDZ, a common domain
known to mediate protein-protein interactions [35].
Yeast co-occurring domains are highly enriched in Src
homology-3 domain (SH3), which is also a ubiquitous
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domain involved in protein-protein interactions [36]. In
particular, SH3 dimerization has been previously shown
experimentally [37]. For both human and yeast, approxi-
mately half of domain interactions are previously
reported [25]. This reflects the ability of PIPE-Sites to
elucidate protein binding based on the domain-domain
interaction model. Domain pairs not reported by DOM-
INE could represent novel domain-domain interactions,
and can be used to produce an exhaustive list of domain
ligands. Table 6 illustrated the ability of PIPE-Sites to
enumerate all putative partners of a given binding
domain.

Binding sites of one protein (YHR016C)

While it remains of interest to identify co-occurring
domains at a global scale, there are also insights to be
gleaned when confirmed and predicted sites are compared
at the individual protein level. A candidate protein was cho-
sen (YHRO16C) to demonstrate the practical applications
and accuracy of the prediction of binding sites via PIPE-
Sites. YHR016C and YCRO88W are actin-binding,
YLR144C may also have a role in actin cytoskeleton assem-
bly, while YMR192W and YPL249C are GTPase activating
proteins. Certain GTPases are known actin cytoskeleton
regulators [38]. Table 7 displays DM scores for several pro-
tein pairs where YHRO16C participates. Also included in
the table are the domains within the predicted binding site,
obtained from the Saccharomyces Genome Database (SGD)
[39], and the predicted sequence ranges. All four PPIs are
nearly exact predictions (low DM scores). Figure 4 provides
a visual depiction of a DM score of 0.02, where the pre-
dicted range largely overlaps the lab-confirmed range.

In all the PPIs, approximately the same range is
predicted for YHR016C. When compared with the lab-
confirmed (411-468, [39]), they are all very near matches.
The predicted range contains the SH3 domain, known to
be a conserved sequence. It is worth noting that the site
predicted in YMR192W (Figure 7) is conserved globally

Table 5 Top ranking co-occurring domains in high confidence binding sites from human

Domain Name A Domain Name B DOMINE
SH2 motif Serine-threonine/tyrosine-protein kinase Known
Serine-threonine/tyrosine-protein kinase Insulin receptor substrate-1, PTB Known
PDZ/DHR/GLGF Cyclic AMP-dependent chloride channel Novel
Serine-threonine/tyrosine-protein kinase Phosphotyrosine interaction domain Known
Serine-threonine/tyrosine-protein kinase Serine-threonine/tyrosine-protein kinase Known
PDZ/DHR/GLGF Tyrosine-protein kinase, Novel
CSF-1/PDGF receptor
Src homology-3 domain Serine/threonine-protein kinase-like domain Known
SH2 motif SH2 motif Known
Src homology-3 domain T-cell adhesion molecule CD2 Novel
7TM GPCR, rhodopsin-like PDZ/DHR/GLGF Known

Binding sites included in this analysis had DM < 0.20. Among interacting domain pairs in all sites, 22 out of 47 (46.8%) pairs are reported in the DOMINE

database.
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Table 6 Top ranking co-occurring domains in high confidence binding sites from yeast

Domain Name A Domain Name B DOMINE
Src homology-3 domain Src homology-3 domain Known
Src homology-3 domain Uncharacterised conserved protein UCP037464, actin patch protein 1 Novel
Src homology-3 domain Adenylate cyclase-associated CAP, N-terminal Known
Src homology-3 domain EF-Hand 1, calcium-binding site Novel
Src homology-3 domain Protein of unknown function DUF3210 Known
Src homology-3 domain BTB/POZ fold Novel
Src homology-3 domain Septin Known
Src homology-3 domain C2 calcium/lipid-binding domain, Cal.B Novel
Src homology-3 domain Serine/threonine-protein kinase-like domain Known

Homeobox Transcription factor, MADS-box Known

Binding sites included in this analysis had DM < 0.20. Among interacting domain pairs in all sites, 10 out of 15 (66.7%) pairs are reported in the DOMINE

database.

(because of the high PIPE matrix score, see landscape for
the pair YHR016C-YMR192W in Figure 6). However, it
has not been identified as a recognized domain or motif
by ProSite or by other large sequence annotation databases
including Pfam [29], SMART [40], or PANTHER [41].
The ability of PIPE to accurately predict confirmed inter-
acting regions not previously known to be domains or
motifs is novel and not possible for motif-based binding
site predictors.

Binding sites in novel human and yeast interactions

In this section, we explored the ability of our method to
identify novel interaction sites in two datasets of pre-
dicted PPIs of interest (one human, one yeast), intro-
duced in Section “Training and validation data sets.” In
collaboration with the University of Leuven, a list of
2347 human PPIs of interest in congenital heart defects
(CHD) was obtained. A dataset of 14,438 novel interact-
ing yeast proteins was obtained from a previous all-to-
all screen [30]. As with the DOMINO dataset, we
removed landscapes with peaks less than 10. Of the
2347 CHD interactions, 1927 had peaks above 10, while
5216 of 14,438 PPIs remained from the novel yeast data-
set. For each site in each pair, we queried the InterPro
database for annotations on the interacting proteins to
find sites where the binding ranges do not overlap with
any known annotations on either interacting protein
(Table 8). For 2347 human protein pairs, in which we
examined 3 sites per pair, we found 180 sites which
have no annotations and could represent novel binding

Table 7 Predicted binding sites and associated domains
for YHRO16C and partners

Protein Domain Range Protein Domain B Range DM
A A A B B
YHRO16C SH3 426-467 YCRO88W SH3 499-535 0.02
YHRO16C SH3 407-467  YLR144C Glycosidases  15-36  0.01
YHRO16C SH3 400-467 YMR192W N/A 187-214 0.02
YHRO16C SH3 407-467  YPL249C N/A 280-301 0.02

motifs. Among 5216 human protein pairs, we found 958
unannotated sites.

We note that, at present a binding site was only be pre-
dicted for 36% of the novel yeast PPIs. As more PPIs are
added to the PIPE database, more re-occurring sequences
will be added. In turn, the percentage of PPIs having a
peak higher than 10 will increase, allowing more sites to
be predicted. While it appears at first glance that predict-
ing human interactions is done with greater coverage
than yeast, it is worth considering that the novel yeast
proteins were obtained from a proteome wide sample,
whereas the human dataset was a specific, targeted family
of proteins, which were expected to be more highly
enriched in true PPIs since they are functionally related.

Domain re-occurrence in novel interactions

We now apply the same domain co-occurrence analysis
which we previously applied to the datasets of interac-
tions with known binding sites (Section “Binding site
domains”). As before, we report whether the domain
pairs are present in the DOMINE domain-domain inter-
action database. In the absence of known binding sites,
this provides some validation for the detected interac-
tions and allows us to compare the coverage of known
domain-domain interactions between the dataset with
known binding sites (where we limited our analysis to
accurate predictions) and the dataset of novel interac-
tions. Tables 9 and 10 list the top ranking co-occurring
domains in the novel human and yeast protein pairs,
respectively.

The occurrence of Zinc finger domains in the dataset
of CHD interactions is not surprising as Zing finger
domains are associated with DNA-binding, and most of
the proteins in the CHD dataset are involved in tran-
scription. In general, the fraction of domain pairs which
are present in the DOMINE database is remarkably con-
sistent between the dataset of known binding sites with
accurate predictions and the novel interactions, as well
as between species. This suggests that the prediction
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performance of PIPE-Sites is reproducible and consis-

Table 8 Summary of results on novel protein datasets tent on unseen data.

Species  Total Pairs with Well- Uncharacterized
Pairs defined Peaks Binding Sites . .. X X

y o — _— Potential of finding novel re-occurring motifs
sapiens Following peak identification (using 3 peaks) in PIPE-

S 14,438 5916 958 sltes, binding 51.te ‘sul?sequen?es: were chSs-referenged
cerevisiae in InterPro for similarity to existing domains and motifs.
The last column indicates the number of sites for which there is no known The number of binding site subsequences not contain-
motif annotation in InterPro and which could potentially represent novel ing an identified domain or motif in InterPro (and
motifs.

therefore not included in Pfam, ProSite, SMART or any

Table 9 Top ranking co-occurring domains in novel human (CHD) interactions

Domain Name A Domain Name B DOMINE Number of sites
Zinc finger, LIM-type Zinc finger, LIM-type Known 28
Zinc finger, LIM-type Zinc finger, C2H2-type Known 25
Zinc finger, LIM-type Actin-like Known 25
Histone deacetylase Zinc finger, C2H2-type Known 23
Serine-threonine/tyrosine-protein kinase Zinc finger, LIM-type Known 23
Ankyrin repeat EGF-like region, conserved site Novel 22
EGF-like, type 3 EGF-like calcium-binding, conserved site Novel 20
Zinc finger, LIM-type Homeobox, region Novel 16
Helix-loop-helix DNA-binding domain Zinc finger, LIM-type Known 15
Zinc finger, C2H2-type Zinc finger, C2H2-type Known 15

Out of the 100 most frequently occurring domain pairs, 55% are reported in the DOMINE database.
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Table 10 Top ranking co-occurring domains in novel yeast interactions

Domain Name A Domain Name B DOMINE Number of sites
Actin-like Retrotransposon Ty1 A, N-terminal Known 360
Serine/threonine-protein kinase-like domain Serine/threonine-protein kinase-like domain Known 221
Protein kinase-like domain Serine/threonine-protein kinase-like domain Novel 170
Sugar/inositol transporter Protein kinase-like domain Novel 106
Ras GTPase Serine/threonine-protein kinase-like domain Known 99
Ras GTPase Ras GTPase Known 95
Ras GTPase Small GTPase, Rho type Known 57
ATPase, AAA-type, core ATPase, AAA-type, core Known 56
ATPase, AAA-type, core ATPase, AAA-type, conserved site Novel 52
Sugar/inositol transporter Serine/threonine-protein kinase-like domain Known 51

Out of the 100 most frequently occurring domain pairs, 55% are reported in the DOMINE database.

other InterPro member database), totalled 180 and 958
for human and yeast, respectively. Table 11 displays
some of the highest peaks (most re-occurring sequences)
not contained in InterPro from both the human and
yeast datasets. These could potentially represent func-
tionally significant binding motifs and merit further
investigation.

Conclusions

We have presented and evaluated a novel method for
protein binding sites prediction. Our method relies on
query protein sequences and a database of known binary
interactions only. These data are significantly more
abundant and easier to obtain than data such as 3D
structures. By first comparing our predictions against a
database of lab-confirmed binding sites, we have shown
that PIPE-Sites makes accurate predictions which coin-
cide with known binding domain pairs. We also com-
pared our results to two domain-oriented methods,
including a comprehensive database used as a consensus
method, and demonstrated more accurate binding site
predictions by PIPE-Sites. Furthermore, upon applying
PIPE-Sites to novel datasets of protein-protein interac-
tions in human and yeast, we have shown PIPE-Sites’
ability to reveal domain-domain binding relationships
and elucidate potentially novel binding motifs which are
as of yet not annotated.

Table 11 Examples of previously unannotated PPI-
mediating sequences discovered using PIPE-Sites

Species Peak Height Sequence

H. sapiens 504 GQVTPPTPPQTAQPPLPGPPPAAVE
H. sapiens 234 AAIEPQPSPPHSEPPSVEQPPKPK

H. sapiens 195 PIWLQPSPPPQSSPPPQPHP
S. cerevisiae 427 ILDGDEDEPEEEDENEGDDEEDTYDS
S. cerevisiae 285 DADGDDQTEEGEVEKEQKEEDEEEGPK
S. cerevisiae 266 AFDNDESDAQDDANNEKEDDGEEF
S. cerevisiae 215 ADQDVEGEDEGGDAIENEDEDEDPSPS

Additional material

Additional file 1: Pairs of yeast proteins with lab-confirmed binding
sites. This file contains 265 pairs of interacting yeast proteins, with
associated amino acid ranges for the binding sites on each protein,
extracted from DOMINO [26], and used as validation data. Each line
represents one pair, with the following fields tab-separated: ORF name of
protein A, ORF name of protein B, start position of binding site along
protein A, end position of binding site along protein A, start position of
binding site B, end position of binding site B.

Additional file 2: Pairs of human proteins with lab-confirmed
binding sites. This file contains 423 pairs of interacting human proteins,
with associated amino acid ranges for the binding sites on each protein,
extracted from DOMINO [26], and used as validation data. Each line
represents one pair, with the following fields tab-separated: Uniprot
accession of protein A, Uniprot accession of protein B, start position of
binding site along protein A, end position of binding site along protein
A, start position of binding site B, end position of binding site B.
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