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Abstract Introduction: We investigate whether longitudinal callosal atrophy could predict conversion from
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mild cognitive impairment (MCI) to Alzheimer’s disease (AD).
Methods: Longitudinal (baseline1 1-year follow-up) MRI scans of 132MCI subjects from the Alz-
heimer’s Disease Neuroimaging Initiativewere used. A total of 54 subjects did not convert to AD over
an average (6SD) follow-up of 5.46 (61.63) years, whereas 78 converted to ADwith an average con-
version time of 2.56 (61.65) years. Annual change in the corpus callosum thickness profile was
calculated from the baseline and 1-year follow-up MRI. A logistic regression model with fused lasso
regularization for prediction was applied to the annual changes.
Results: Wefound a sexdifference. The accuracy of predictionwas 84% in females and 61% inmales.
The discriminating regions of corpus callosum differed between sexes. In females, the genu, rostrum,
and posterior body had predictive power, whereas the genu and splenium were relevant in males.
Discussion: Annual callosal atrophy predicts MCI-to-AD conversion in females more accurately
than in males.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Mild cognitive impairment (MCI) is generally considered
as the prodromal phase of Alzheimer’s disease (AD). It is of
great importance to identify individuals with MCI who are
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likely to progress to AD in the near future, for it would allow
for early intervention.

Significant efforts have been made to find biomarkers that
predict conversion from MCI to AD. The potential bio-
markers include genetic, CSF proteins, cognitive measure-
ments, glucose metabolism (FDG-PET), and structural/
functional brain abnormalities (magnetic resonance imaging
[MRI], fMRI). In a comprehensive review of a number of
studies, Landau et al. [1] compared these biomarkers in pre-
dicting conversion using data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). They found 73%–88%
specificity but a disappointing sensitivity of around 40%
for all these biomarkers in classification. Another notable
study of predicting conversion is that of Killiany et al. [2].
imer’s Association. This is an open access article under the CC BY-NC-ND
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They used structural MRI to predict conversion and found
the entorhinal cortex, the banks of the superior temporal sul-
cus, and the anterior cingulate most useful with 75% accu-
racy, but low specificity 48%. Davatzikos et al. [3] tried
the combined information from MRI and CSF biomarkers
in prediction and reported top accuracy of 61.7% in their
analysis. Thus, more studies are required to find a way to
improve the accuracy in predicting MCI-to-AD conversion.

Up to now, almost all efforts have been made based on
baseline measures. Given the neurodegenerative nature of
AD progression, we conjecture that observing temporal
changes in brain structures may improve the accuracy in pre-
dicting conversion and provide a measure for the progression
toAD. In addition, observing the temporal changewithin each
subject could naturally diminish potential confounding fac-
tors in prediction because the progression in ADmay depend
on factors such as sex, age, education, and diet. The heteroge-
neity in cohorts may be a reason of poor accuracy in existing
classification studies. The insidious manner of progression in
AD requires reliable and accurate measures to detect subtle
structural changes in the brain over a fairly short time period,
say, at most 1 year. The hippocampus and medial temporal
lobes are main targets as neuroimaging markers for AD, but
measurements to detect subtle changes reliably and accu-
rately are difficult. Therefore, we focus on the corpus cal-
losum (CC) as the mid-sagittal plane cross-sectional area of
the CC is well visualized in structural MRI scans and can
be reliably measured with good accuracy [4].

The CC is the largest white matter tract interconnecting
the cerebral hemispheres. Both cross-sectional and longitu-
dinal studies have reported atrophy of the CC in MCI
and AD [4–8]. CC atrophy has been proposed as a
consequence of two possible mechanisms: direct myelin
breakdown [9,10], and Wallerian degeneration wherein
callosal fibers are lost as a result of distal injury to the
callosal projecting neurons [11]. However, the use of longi-
tudinal CC atrophy to predict future MCI conversion to AD
has not been studied extensively.

Therefore, this study aims to investigate whether patterns
of longitudinal CC atrophy predict conversion from MCI to
AD. To the best of our knowledge, this is the first attempt to
predict future MCI conversion to AD using longitudinal
structural callosal change fromMRI scans. For this purpose,
we used longitudinal scans from 132MCI subjects in ADNI.
Annual change in CC thickness profile was calculated for
each subject from two MRI scans that were 1 year apart. A
logistic regression model with fused lasso regularization
[4] was trained on the callosal thickness profiles and used
for predicting conversion.
2. Methods

2.1. Subjects

Data used in the preparation of this article were obtained
from the ADNI database (http://adni.loni.usc.edu). The
primary goal of the ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and
early AD. Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical
trials. The Principal Investigator of the ADNI is Michael W.
Weiner, MD, VA Medical Center and University of
California-San Francisco. The first phase, ADNI1, was in-
tended to enroll 800 subjects, including normal controls,
MCI, and AD subjects. For up-to-date information, see
www.adni-info.org.

In our longitudinal study of CC atrophy we used the
ADNI1 “3-year complete standardized data set” [12], which
includes 1.5-T longitudinal structural MRI scans from 148
individuals initially diagnosed as MCI. Summaries of demo-
graphic and diagnostic data were downloaded in October,
2013. We divided the MCI subjects into two groups, those
whose diagnoses indicated a conversion to AD at any time
within 3 years after their initial evaluation (mild cognitive
impairment-converted [MCI-C]) and those who did not
convert (mild cognitive impairment-nonconverted [MCI-
NC]) during the follow-up period. Note that the later group
includes subjects who may convert at a later unknown
time or not convert at all. Therefore, our classification can
be considered to be between incipient AD patients vs.
“others”. ADNI1 followed nonconverters for up to 7.5 years
(mean 5 5.5, SD 5 1.6). In ADNI1, the subjects were clas-
sified as MCI when their Mini-Mental State Examination
(MMSE) score was between 24 and 30 (inclusive) and had
a memory complaint, objective memory loss measured by
education adjusted scores on Wechsler Memory Scale
Logical Memory II, a clinical dementia rating (CDR) of
0.5, absence of significant levels of impairment in other
cognitive domains, especially preserved activities of daily
living, and an absence of dementia. The subjects were
considered as mild AD if their MMSE score was in the
20–26 range (inclusive), had a CDR of 0.5 or 1.0, and met
the National Institute of Neurological and Communicative
Disorders and Stroke/Alzheimer’s Disease and Related Dis-
orders Association (NINCDS/ADRDA) criteria for probable
AD. Cognitive assessment and imaging were conducted at
baseline, 6 months, and 12 months, and yearly thereafter
[13]. Preliminary examination showed a difference in the
sex ratio between the MCI-C and MCI-NC groups. A
description of the demographic data is given in Table 1.
2.2. MRI imaging

Subject scans were 1.5 T, T1-weighted magnetization
prepared rapid gradient echo images, using matrix sizes of
192 ! 192 ! 160–170 or 256 ! 256 ! 166–184. The
in-plane voxel dimensions were 0.94 to 1.25 mm, whereas
the slice thickness was kept very close to 1.2 mm. Repetition

http://adni.loni.usc.edu
http://www.adni-info.org


Table 1

Demographic data (mean 6 SD)

Female Male

MCI-NC MCI-C P value MCI-NC MCI-C P value

N 12 25 44 51

Age (y) 72.54 6 8.44 71.75 6 8.67 NS 74.63 6 7.13 75.22 6 5.64 NS

Education (y) 14.8 6 2.39 15.52 6 2.97 NS 15.93 6 3.17 16.14 6 3.00 NS

MMSE 27.5 6 1.51 26.41 6 1.95 NS 27.66 6 1.77 26.8 6 1.63 .016

Interval (y) 1.00 6 0.02 1.00 6 0.03 NS 1.00 6 0.07 1.00 6 0.47 NS

Abbreviations: NS, not significant; Interval, time elapsed between baseline and follow-up scans.
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time values were 2300–2400 ms for multicoil-phased array
head coils and 3000 ms for birdcage or volume head coils.
Inversion time was 1000 ms, and flip angle was 8�. Phase en-
codes were in the anterior-to-posterior direction. Detailed
information about MRI acquisition and pre-processing pro-
cedures is available in Jack et al. [14].
2.3. CC segmentation

The CCwas segmented using our Automatic Registration
Toolbox (ART) software module Yuki, available online
(http://www.nitrc.org/projects/art). Given a 3D T1-
weighted structural MRI volume, Yuki segments the mid-
sagittal cross-sectional area of the CC by performing the
following steps. (1) A mid-sagittal plane (MSP) is deter-
mined so as to maximize bilateral symmetry [15]. (2) The
coordinates of the anterior commissures (AC) and posterior
commissures (PC) are automatically located on the MSP
[16]. (3) From the original MRI volume, a single standard-
ized MSP image of matrix size 512 ! 512 and pixel size
0.5 ! 0.5 mm2 is reconstructed by tri-linear interpolation.
The location and orientation of this image is standardized
so that the image left-to-right axis corresponds to subject’s
anterior-to-posterior axis parallel to the AC-PC line, the im-
age top-to-bottom axis is the subject’s superior-to-inferior
axis, and field-of-view center coincides with the mid-point
between AC and PC (Fig. 1A). (4) From a set of 628 atlases
currently available and distributed with the software, a sub-
set of 49 are selected automatically based on correlation
between the atlas and the test image inside a rectangular
Fig. 1. (A) The outline shows the detected corpus callosum. The automatically dete

the plus signs. (B) 99 thickness superimposed on a segmented corpus callosum cr
sub-image containing the CC on the standardized MSP re-
constructed in step 3. (5) The 49 selected atlases are nonli-
nearly registered to the test volume’s MSP using ART’s
nonlinear registration approach [17]. The CC labels of the
49 atlases are projected onto the test MSP using the resulting
nonlinear transformations. The projected labels are averaged
to obtain a fuzzy segmentation of the CC on the MSP of the
test volume. (6) Finally, the fuzzy label map obtained in step
5 is thresholded using an automatically determined threshold
level to yield the final binary CC segmentation. The
threshold level is selected such that the Fisher’s linear
discriminant ratio (FLDR) [18] between the intra-callosal
and extra-callosal pixels within the support of the fuzzy label
set in step 5 is maximized. The entire segmentation process
takes about 7 seconds running in parallel on 7 cores of a
2.4 GHz Dual Quad-Core Linux workstation.

As baseline-to-follow-up changes in CC shape and size are
small during the roughly 1-year interval from baseline to
follow-up, it is important to have a consistent CC segmenta-
tion technique. To this end, it is very important to perform
the above segmentation steps on the sameMSP on both base-
line and follow-up images. In addition, it is important to use
the same selected 49 atlases and the same threshold level
determined from FLDR analysis. To ensure this, we imple-
mented the following protocol. (a) The baseline and follow-
up volumes of each subject were registered using ART’s
rigid-body registration software Atra, which is an inverse-
consistent symmetric rigid-body registration method, that is,
the exact same linear transformation matrix is obtained
regardless of whether the baseline or the follow-up volume
cted anterior commissure (AC) and posterior commissure (PC) are shown by

oss-sectional area.
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is taken as the reference in the registration process and both
images undergo interpolation to be registered at the exact
half-way orientation between the original scans. (b) Using
the registration matrix obtained in step (a), the baseline and
follow-up images were averaged to obtain a single image
per subject. (c) The CC segmentation software Yuki was
applied to the average image in step (b) saving as auxiliary in-
formation the linear transformation that defines the standard-
izedMSP, the list of 49 automatically selected atlases, and the
value of the FLDR derived threshold. (d) Finally, the CC was
segmented using Yuki on the baseline and follow-up images
independently, whereas disabling automatic MSP detection,
atlases selection, and FLDR analysis. Instead, Yuki was in-
structed to use the auxiliary information saved in step (c) for
both baseline and follow-up segmentations. This way, both
the baseline and follow-up scans were treated in exactly the
sameway in theCC segmentation process.Wehave shownus-
ing analysis of structural MRI volumes taken in two separate
scanning sessions from the same set of subjects on the same
day that this approach has significantly higher test-retest reli-
ability as compared to the case where the two images are
segmented independently (results not presented).

The results of CC segmentation were visually inspected
in all 148 cases. Ten subjects were excluded because CC seg-
mentations were deemed inaccurate on baseline and/or
follow-up scans. Thus, there remained 138 subjects who
had been diagnosed as MCI at the time of their initial
ADNI scan with fully automatic segmentations of the CC
at baseline and follow-up scans.

2.4. CC thickness profile

TheCC thickness profile is specified in terms of 99 nonzero
thickness values at equally spaced intervals along the length of
the CC (Fig. 1B). Our method for finding these values is
similar to those of Clarke et al. [19] and Denenberg et al.
[20]. Thickness values are lengths of line segments that con-
nect pairs of points on the upper and lower boundaries of the
CC. The line segments are chosen perpendicular to the medial
axis of the CC and intersect the medial axis at equal intervals.

An additional six subjects, from the 138 with successful
automatic CC segmentations, were excluded from further
analysis because their CC thickness profiles were not pro-
duced correctly by our automated algorithm at baseline
and/or follow-up, leaving 132 subjects to be analyzed. These
excluded cases in CC segmentation and profiling can be
remedied by minor manual interventions. However, we
decided to exclude them from the statistical analysis to
keep the processing completely automatic and consistent.
More importantly, we can avoid possible bias/noise intro-
duced from manual interventions by doing so.

2.5. Logistic regression model with fused lasso
regularization

The annual rate of corpus callosum thickness change was
computed by subtracting the 99 nonzero CC thickness values
of the baseline scan from those of the follow-up scan and
dividing the results by the inter-scan interval in years. These
99 annual atrophy rates were used as predictors for MCI-to-
AD conversion. We applied a logistic regression model to
the annual atrophy rates of the CC thickness profiles. As
CC thickness points are spatially ordered (from rostrum to
splenium), and we aim to detect locally homogeneous and
spatially contiguous regions rather than individual thickness
points, we applied a fused lasso penalty on the coefficients of
the model and their successive differences. As a result, only
the coefficients of CC thickness points which significantly
contribute to prediction will be nonzero and locally constant.

Suppose, we have n subjects f ð yi; xiÞ; i51; 2;.; ng,
where yi51, if the ith subject is in the MCI-C group, and
0 otherwise, and xi5ðxi1; xi2;.; xitÞ is the t-dimensional
set of annualized CC thickness profile atrophy rates. The lo-
gistic regression model without fused lasso regularization
can be written as:

log
Prðyi51Þ

12Prðyi51Þ5b01xib;

where b5ðb1;.; btÞT . This leads us to the log-likelihood
function of ðb0; bÞ:

lðb0; b; y; xÞ5
Xn

i51

�
yiðb01 xibÞ2log

�
11eb01xib

��

After adding the fussed lasso regularization term
Uðb; l1; l2Þ, the problem becomes one minimizing

Xn

i51

�
2yiðb01xibÞ1log

�
11eb01xib

��
1Uðb; l1; l2Þ; (1)

where Uðb; l1; l2Þ5l1
Pt

j51

��bj
��1l2

Pt
j52

��bj2bj21

��:

Detailed steps for minimizing (1) are given in Lee et al.
[4]. Briefly, we approximate the objective function (1) by a
2nd order Taylor series expansion, take the derivatives with
respect to bi’s and set them to zero, and apply a modified co-
ordinate descent algorithm iteratively until converge to a so-
lution [4]. We used q-fold cross-validation to find the tuning
parameters ðl1; l2Þ associated with the fused lasso penalty
term by a grid-search for the minimum prediction error.
3. Results

A total of 132 MCI subjects (95 male and 37 female) had
fully automatic CC thickness profile measurements at both
baseline and follow-up. Of these subjects, 76 (51 male and
25 female) converted to AD with an average baseline-to-
conversion time of 2.56 (SD 5 1.65) years, whereas the
diagnosis of 56 subjects remained MCI over the average
observation period of 5.46 (SD 5 1.63) years. Statistical
analysis of the demographic data given in Table 1 showed
that the MCI-NC and MCI-C groups were not significantly
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different in age or education in females or males. The male
MCI-NC and MCI-C groups differed significantly in their
mean MMSE scores (P5 .016) but not in the female group.
The mean inter-scan interval of roughly 1 year was not sta-
tistically different between the MCI-NC and MCI-C groups.
There was no significant cognitive difference between males
and females at baseline in terms of the Rey Auditory Verbal
Learning Test (RAVLT) and Alzheimer’s Disease Assess-
ment Scale (ADAS) (P values 5 .90, .46, respectively),
which indicates that the severity of the disease at baseline
was not different between sexes.

From the total of 37 female MCI subjects, 25 (68%) con-
verted to AD, whereas 51 of the 95 male subjects (54%) con-
verted. The MCI-C to MCI-NC ratio was significantly
different between male and female subjects (P 5 .025).
Therefore, we applied the logistic model with fused lasso
regularization to female and male subjects separately. We
estimated the accuracy of MCI-to-AD prediction ability of
the model by 6-fold cross-validation.

3.1. MCI-to-AD prediction in females

The accuracy of discrimination between the MCI-NC and
MCI-C groups was 84% (sensitivity 5 92%;
specificity 5 67%) females. The upper panel in Fig. 2A
shows the mean annual callosal change at each location
Fig. 2. The upper panel shows the mean curves of annual CC atrophy profiles forM

estimated coefficients of corpus callosum by FLLR (negative: faster in MCI-C; p
for femaleMCI-NC (blue) and femaleMCI-C (red) subjects.
The lower panel in Fig. 2A shows the estimated coefficients
of the logistic regression model. The atrophy in genu and/or
rostrum and posterior body is much faster in female MCI-C
subjects, whereas the atrophy in splenium seems a little
slower in MCI-C as compared with MCI-NC.

3.2. MCI-to-AD prediction in males

The accuracy of the discrimination between the MCI-NC
and MCI-C groups was 60% (sensitivity 5 59%;
specificity 5 61%) in males. The upper panel in Fig. 2B
shows the mean annual callosal change at each location
for male MCI-NC (blue) and male MCI-C (red) subjects.
The lower panel in Fig. 2B shows the estimated coefficients
of the logistic regression model. The atrophy in genu and
splenium is faster in male MCI-C relative to MCI-NC.
4. Discussion

Longitudinal studies on callosal change in MCI subjects
are very rare. To our knowledge, only one study has been
published. Elahi et al. [8] reported that changes in CC
morphology were large enough to be detectable over a 1-
year period on structural MRI scans. The CC became less
circular with time and with faster decline in MCI-C. Callosal
CI-NC (blue-dotted line) andMCI-C (red line); and the lower panel plots the

ositive: slower in MCI-C) in females (A) and males (B).
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atrophy rate was higher in female MCI-C relative to female
MCI-NC, whereas in contrast, the rate did not differ between
groups in males. These findings suggested that annual cal-
losal change could be a potential biomarker to predict future
MCI-to-AD conversion particularly in females. Therefore,
this article investigated whether the pattern of annual cal-
losal change is able to predict future conversion from MCI
to AD.

To do so, we applied a logistic model with fused lasso reg-
ularization to the annual change in the CC thickness profile
for female and male groups separately. We also considered
including cognitive measures such as MMSE, ADAS, or
RAVLT at baseline in our logistic regression prediction
model, which turned out not to improve the prediction po-
wer. We found that the annual callosal change has better pre-
dictive power of future MCI-to-AD conversion in females
(accuracy5 84%) over males (accuracy5 60%). To ensure
that the results are not affected by the unbalanced samples
sizes over sex, we computed the 95% confidence intervals
for sensitivity and specificity assuming a binomial distribu-
tion of the success probability of estimated sensitivity and
specificity (Table 2). The sex difference in sensitivity is sta-
tistically significant.

The 84% accuracy in females is higher than that reported
in the existing studies for prediction of MCI-to-AD conver-
sion (top previously reported value is around 75%) albeit
their accuracy are for male and female combined. Encourag-
ingly, the sensitivity (92%) in females is much higher than
reported in the existing studies. For a fair comparison, we
estimated the accuracy using hippocampal volumes (pro-
vided in ADNI) along with age, APOE phenotype, and the
intracranial volume by 6-fold cross-validation based on the
logistic regression model. The accuracy was 70% for fe-
males and 63% for males.

Interestingly, we discovered that the locations along the
CC length where atrophy has predictive power are different
between female and male groups. In males, the discrimi-
nating parts of CC were narrow areas on the genu and sple-
nium. In contrast, the discriminating parts of CC in females
were broader areas of the genu and/or rostrum, posterior
body, and splenium. In general, these findings agree with a
Table 2

Prediction results

Female Male

MCI-NC MCI-C MCI-NC MCI-C

MCI-NC 8 4 27 17

MCI-C 2 23 21 30

Female Male

Sensitivity 92.00 (72.50–98.60) 58.82 (44.21–72.11)

Specificity 66.67 (35.43–88.73) 61.36 (45.51–75.25)

Accuracy 83.78 60.00

NOTE: MCI-NC and MCI-C indicate the predicted labels. The 95% con-

fidence intervals are shown inside parenthesis.
previous study [8] that measured differences in broad areas
where CCwas segmented into five regions. This article looks
at differences on a much finer scale in discrimination anal-
ysis. Sexual dimorphism is not new in healthy controls. A se-
ries of studies have reported that the female CC tends to be
bigger than males on average after accounting for head size
[21]. However, to our knowledge, this is the first study to
report sex differences in progression to AD in predicting
future conversion based on annual CC atrophy.

In conclusion, we have shown that the spatial and tempo-
ral (in this study, a year apart) patterns of CC morphologic
change have predictive power for future conversion to AD,
particularly in female MCI patients. We also discovered
that the annual atrophy is faster in broad areas of the genu
and/or rostrum, posterior body, and the splenium of the CC
in female MCI converters than nonconverters, whereas the
atrophy is faster in limited areas of the genu and splenium
in male converters relative to nonconverters. Thus, our study
provides two insights in neuroimaging-based prediction of
MCI-to-AD conversion: (1) sex differences in brain atrophy
should be taken into account; and (2) measuring temporal
changes can improve the prediction power. This study also
suggests that annual MRI brain scans can greatly improve
the accuracy of measuring progression of AD.

As we targeted incipient conversion to AD in MCI sub-
jects rather than “ultimate” conversion, it is possible that
nonconverters would convert to AD at a later point than
the current follow-up period (up to 7.5 years in this study).
Therefore, being in the MCI-NC group does not necessarily
mean absence of disease. Rather, they may differ from con-
verters on the stage of progression of AD. A survival anal-
ysis on a longer follow-up data set would be required to
resolve the issue. Despite this limitation, this study suggests
that our approach of observing the rate of brain atrophy can
be more objective for diagnosis and assessment of ADwhich
can only be diagnosed conclusively postmortem.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources (PubMed, conference
abstracts). Albeit various efforts have been made to
predict progression from MCI to AD, it needs to be
improved. Longitudinal change in brain has never
been tried in prediction study.

2. Interpretation: The spatial and temporal patterns of
CC morphologic change have predictive power for
conversion to AD in female MCI patients. The
annual atrophy is faster in broad areas of the genu/
rostrum, posterior body, and part of the splenium of
the CC in female converters than nonconverters,
whereas the atrophy is faster in limited areas of the
genu and splenium in male converters than non-
converters.

3. Future directions: The study suggests that sex differ-
ences should be taken into account in prediction
study and temporal brain changes can improve the
prediction power. Further studies such as a shorter
period than a year and other areas (e.g., hippocam-
pus) are required to elucidate the findings.
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