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Abstract

Current methods for the identification of putatively co-regulated genes directly from gene expression time profiles are
based on the similarity of the time profile. Such association metrics, despite their central role in gene network inference and
machine learning, have largely ignored the impact of dynamics or variation in mRNA stability. Here we introduce a simple,
but powerful, new similarity metric called lead-lag R2 that successfully accounts for the properties of gene dynamics,
including varying mRNA degradation and delays. Using yeast cell-cycle time-series gene expression data, we demonstrate
that the predictive power of lead-lag R2 for the identification of co-regulated genes is significantly higher than that of
standard similarity measures, thus allowing the selection of a large number of entirely new putatively co-regulated genes.
Furthermore, the lead-lag metric can also be used to uncover the relationship between gene expression time-series and the
dynamics of formation of multiple protein complexes. Remarkably, we found a high lead-lag R2 value among genes coding
for a transient complex.
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Introduction

Gene expression is a highly regulated process composed of two

fundamental biological events: synthesis and degradation. Tran-

scription regulation is achieved by modulating the frequency of

transcription initiation and, although the most studied, this event

represents just the first of the many complex stages leading to a

mature mRNA. Recent experimental work is beginning to shed

light on the complex architecture underlying mRNA degradation

pathways by identifying the factors and enzymes involved.

Therefore, it is now widely accepted that mRNA decay

contribution to the control of gene expression is not simply a

biological waste-disposal system, but a key player for the temporal

coordination of cellular functions. Moreover, a number of highly

complex and sophisticated specific mechanisms have been

identified [1]. Such mechanisms include the interaction with

mRNA binding proteins [2] and the nonsense-mediated mRNA

decay pathway [3], both able to affect the accumulation of

hundreds of transcripts.

Recent technologies, such as microarrays, are able to provide

measurements of mRNA abundance over time under different

experimental conditions. In order to decipher the intricate

regulatory network underlying the highly coordinate cell behavior,

effective computational methods have been developed to take

advantage of gene expression data. The basic idea underlying such

methods stems from the experimental observation that genes are

organized in groups showing similar time profiles [4] (called

‘‘clusters’’). These groups often share some common biological

features, such as the same cellular function or the presence of a

common motif at their promoter regions [5] where transcription

factors (TFs) can bind and possibly turn them on or off in a

coordinated manner, when needed. For this reason, it is now

widely accepted that co-expression is a good indication for co-

regulation [6–8], meaning that whenever two genes display similar

time profiles it is likely that they are both targets of the same

transcription factor(s). The search for co-regulated genes depends

on association metrics used by clustering algorithms [5,9,10] and

gene network inference algorithms [11–13]. Therefore, measuring

the degree of co-expression of genes is a fundamental step for data

analysis, and in fact, many similarity measures have been proposed

in the literature [14]. Among those available to quantitatively

measure simultaneous expression, we will refer to the usual R2

value obtained from a linear regression model between two given

gene expression time profiles denoted by mA(t) and mB(t). Their co-

varying degree is therefore measured as the fraction of the total

variance explained by the regression mA(t) = c1mB(t)+c2. Such

coefficient, indicated in this paper as the simultaneous R2 of the

corresponding gene pair, is the square of the Pearson correlation

and takes values between 0 and 1.

In order to infer the gene regulatory network, several

laboratories have combined microarray data with protein-DNA

interaction data, taking advantage of ChIP-on-chip experiments

[15]. Such studies have shown that the same transcription factor

(or combinations of) may target genes with very different

expression time profiles, even in the same experimental condition.

For example, the targets of the yeast cell cycle transcriptional

regulators MBF/SBF display expression peak times that span from

early G1 to late S. Moreover, delays have been recently observed

between putatively co-regulated genes [16,17]. One fundamental

biological mechanism underlying such temporal spread is certainly
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combinatorial regulation of transcription factors. In fact, various

TFs can modulate target response by cooperating or competing for

DNA binding. Consequently, new computational techniques have

recently appeared in the literature to tackle this problem [18–25].

However, combinatorial regulation is not the only mechanism

responsible for peak time delay, as other regulation layers are

active throughout transcript life and impact its abundance over

time. One such additional regulation layers is certainly the post-

transcriptional one, that is the stability properties of transcripts

that may specifically contribute to the determination of their

timing and amount during cell response to various internal and/or

external signals. Strikingly, recent genome-wide measurement of

the yeast transcripts half-lives [26,27] has shown functional

specificity in mRNA decay. Together, these results pointed to a

general relationship between physiological function and mRNA

decay rate thus providing strong evidence that precise control of

mRNA turnover is a fundamental feature of gene expression

programs in yeast [26] and in many other organisms.

Here we focus on the development of a novel computational tool

aiming to uncover co-regulated genes through transcriptional and

post-transcriptional regulatory mechanisms. To this purpose,

starting from the computational approach developed by Farina et

al. [28], we introduce a new relationship between gene pairs, called

lead-lag relationship. The term ‘‘lead-lag’’ has been taken from the field

of control systems engineering where the same relationship holds

between the input and the output of the so called ‘‘lead-lag

compensator’’, which is the fundamental building block for the

design of automatic control systems [29]. In a biological perspective,

the lead-lag relationship should be referred to genes under a

common regulatory signal (‘‘input’’) involved in the same biological

function (‘‘output’’) as, for example, in the dynamic multi sub-units

complex formation [30,31]. Using yeast cell-cycle time-series gene

expression data, we demonstrate that this new similarity metric is

able to capture the dynamics of gene expression, including varying

mRNA stability and delays. Thus, the predictive power of lead-lag

R2 for the identification of co-regulated genes is significantly higher

than that of standard similarity measures, allowing the selection of a

large number of entirely new putatively co-regulated genes.

Furthermore, the lead-lag metric can also be used to uncover the

relationship between gene espression time-series and the formation

of protein complexes.

Results/Discussion

Specific Features of Transcript Degradation Regulation
Versus Transcription Regulation

To clarify the specific features of gene regulation at the mRNA

stability level, it is worth thinking of the case when two genes are

turned on at the same time by the same transcriptional signal, and

the newly synthesized transcripts of both genes are degraded at the

same rate. Consequently, differences in their gene expression

profile will be determined only by the response of the two genes to

the transcriptional signal (i.e. different affinities of the transcription

factor to promoter regions). A computer simulation of this

situation is depicted in Figure 1A where two genes are expressed

following a first-order kinetics (see Text S1. for details on the

equations used for the simulation). The transcription is turned on

at the same time for both genes but with a different rate: the first

gene is transcribed more rapidly than the second one (Figure 1Aa).

Their degradation rate is the same (Figure 1Ab) and therefore the

two gene expression profiles differ only for the magnitude of the

response, whereas preserving the shape of the curve (Figure 1Ac).

In this case, the normalized time profiles are identical (Figure 1Ad)

and therefore the simultaneous R2 is maximal (R2 = 1). Indeed, the

‘‘converse’’ situation is very different. Figure 1Ca–b illustrates the

case in which the two genes are transcribed at the same rate while

their degradation decreases at the same time but with a different

rate. The two profiles do not have the same shape (Figure 1Cc). As

a consequence, the corresponding simultaneous R2 will not be

maximal (R2,1) as can be seen from differences in the normalized

profiles (Figure 1Cd).

Such considerations illustrate that the impact of stability

regulation on time profiles is quantitatively and – most importantly

– qualitatively different from that of transcription regulation. It is

therefore not surprising that specific systems biology computa-

tional tools have begun to appear in the literature [28,32]. The

different impact of mRNA stability regulation versus transcription

regulation results from the fact that the rate of mRNA degradation

is proportional to the substrate concentration but the rate of

production is not [33]. Such behaviour is reasonably well captured

by a first order rate equation. In fact, messengers half-lives are

experimentally measured usually by fitting a single exponential

decay function to the time profiles observed after transcriptional

shut-off [26].

Another important issue is that the differences of transcription

rate regulation with respect to degradation rate regulation cannot

be clearly seen by simply looking at the long term behavior of the

response, i.e. at steady state values. In fact, the final amount of

mRNA upon a prolonged regulatory signal equals the ratio

transcription rate/degradation rate so that, from this perspective, a

N-fold increase of transcription rate is equivalent to a N-fold

decrease in degradation rate (and viceversa). An example of such

behavior can be seen by comparing Figure 1Ac with Figure 1Cc:

the steady state values are the same in both cases but the overall

shape of the response (its ‘‘dynamics’’) is very different.

Such ‘‘loss of correlation’’ phenomenon due to differential

stability regulation can be further understood by considering a

time varying rates, resulting in a transient mRNA time profile, as

shown in Figure 1Ba–d and 1Da–d. Again, an increase in the rate

of transcription results in an increased response displaying a highly

correlated temporal profile (Figure 1Bd), whereas a decrease in the

Author Summary

Microarrays provide snapshots of the transcriptional state
of the cell at some point in time. Multiple snapshots can be
taken sequentially in time, thus providing insight into the
dynamics of change. Since genome-wide expression data
report on the abundance of mRNA, not on the underlying
activity of genes, we developed a novel method to relate
the expression pattern of genes, detected in a time-series
experiment, using a similarity measure that incorporates
mRNA decay and called lead-lag R2. We used the lead-lag
R2 similarity measure to predict the presence of common
transcription factors between gene pairs using an inte-
grated dataset consisting of 13 yeast cell-cycles. The
method was benchmarked against six well-established
similarity measures and obtained the best true positive
rate result, around 95%. We believe that the lead-lag
analysis can be successfully used also to predict the
presence of a common mechanism able to modulate the
degradation rate of specific transcripts. Finally, we
envisage the possibility to extend our analysis to different
experimental conditions and organisms, thus providing a
simple off-the-shelf computational tool to support the
understanding of the transcriptional and post-transcrip-
tional regulation layer and its role in many diseases, such
as cancer.

mRNA Stability in Correlation Analysis
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degradation rate results in a low correlated temporal profile with a

shift in peak time, as shown by Figure 1Da–d. It is plain that, by

combining time varying transcription and degradation rates, a

large variety of dynamic time patterns may be generated. It is

important to note that peak timing regulation may also stem from

time delays, as shown in Figure 2B, which can be generated by

different biological mechanisms such as transcriptional combina-

torial regulation, cascade regulations [34], feedforward motifs and

single input motifs [35]. Time delays in gene expression data have

been studied using delay correlation analysis [16,36,37].

The scenario depicted above naturally leads to the possibility

that co-regulation may involve both the transcriptional and post-

transcriptional machinery. Therefore, a large variety of temporal

profiles can be obtained by combining any of those shown in

Figure 2.

The Lead-Lag Relationship
In this paper we consider a novel relationship between gene

expression time profiles which includes also the possible presence

of mRNA stability variations as a further mechanism to modulate

transcript abundance over time. Such new coordinated relation-

ship will be called lead-lag relationship. Such terminology is borrowed

from the field of system and control engineering where it refers to

the basic building block for the realization of a regulatory device

able to provide optimal properties to a given process and called

‘‘lead-lag compensator’’ [29]. In order to identify lead-lag

relationships, we propose a quantitative measure between gene

expression time profiles, called lead-lag R2, able to incorporate in a

single parameter such relationship and consequently potentially

enhancing the predictive power of gene expression analysis for the

identification of putatively co-regulated genes. In fact, we aim to

study here the possibility that an high lead-lag R2 between

expression time profiles of two given genes is a good indication for

the presence of a common regulation mechanism.

The lead-lag R2 is quantitatively defined by a linear multiple

regression model among the two given gene expression time

profiles mA(t) and mB(t) and the area under curve until time t (i.e.

their time integral over time):

mA tð Þ~c1mB tð Þzc2

ðt

0

mB t0ð Þdt0zc3

ðt

0

mA t0ð Þdt0zc4tzc5

and measured by the lead-lag R2, that is the fraction of the total

variance explained by the above multiple regression model. Such

coefficient is computed directly from at least 6 time points of gene

expression data and takes values between 0 and 1. The rationale

behind such new relationship stems from a simple mathematical

model conceived to capture, from gene expression time series data,

those genes which are co-regulated at the transcriptional level

having an equal or different mRNA stability.

It is worth noting that the simultaneous relationship is also a

particular lead-lag relationship (just set c2 = c3 = c4 = 0) so that the

magnitude of the lead-lag R2 is always larger or equal than that of

the simultaneous R2. In the following we will show that the

magnitude of the increase from simultaneous R2 to lead-lag R2 is

specific for each gene pair and that it is statistically correlated both

to the presence of a common transcriptional signal and to

differences between the half-lives. More details of the lead-lag R2

and its numerical computation are given in the Materials and

Methods section.

 

Figure 1. Combination of transcriptional and post-transcriptional regulation. Gene expression time profiles obtained by simulations using
various types of regulation of the transcription rate and degradation rate. Panels A and B refer to the situation in which two genes have the same
constant degradation rate but different transcription rate signals (persistent or transient). Panels C and D refer to the situation in which two genes
have the same constant transcription rate but different degradation rate signals (persistent or transient). Normalized time profiles are linearly scaled
such that their values remain bounded between 1 and 2, i.e. by setting to 1 the lowest value and to 2 the highest value so that the peak-to-peak
amplitude is set to 1.
doi:10.1371/journal.pcbi.1000141.g001

mRNA Stability in Correlation Analysis
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Predicting Co-Regulation from Lead-Lag Relationships
The mathematical model used to define the lead-lag R2 is based

on the assumption that co-regulated genes have the same

transcriptional signal (promoter activity) and equal or different

transcript stabilities. Consequently, we postulated that two given

genes showing a lead-lag relationship (namely, with high lead-lag

R2 values) are likely to be regulated by common transcription

factors. To test this hypothesis, we selected a list of 1159 genes

indicated as cell-cycle regulated in at least one out of six yeast

genome-wide studies [38]. We then used a large integrated dataset

of yeast cell-cycle data generated by three independent groups

using different synchronization methods and composed of 7

datasets (13 cell cycles for each gene, see Materials and Methods

for details). We considered as ‘‘gold standard’’ the transcriptional

regulatory network recently published by MacIsaac and collegues

[15]. Such reconstructed network is very reliable since the authors

combined complementary strategies to improve the ability to

identify the specificity of transcriptional regulators from genome-

wide chromatin immunoprecipitation data. The Mc Isaac et al.

dataset consists of a list of targets for 203 TFs using different

conservative criteria. Among those available 203 TFs, we selected

a p-value for binding of 0.001 obtaining a list of 3107 genes,

containing 660 of the genes in the list of the cell cycle regulated

ones. We then choose the 10 TFs widely recognized as having a

fundamental role during the cell cycle [39]: SWI4, SWI6, MBP1,

NDD1, FKH1, FKH2, MCM1, ACE2, SWI5 and YOX1. Using

this data, we could assess the effectiveness of our approach by

computing true and false positive rates and ROC curves. To this

end, we evaluated the lead-lag R2 for each gene pair in the dataset

(N(N21)/2 pairs, N = 660) and considered as putatively co-

regulated those pairs whose R2 values were over a threshold thigh

and, as putatively non co-regulated, those pairs whose R2 values

were below a threshold tlow. Gene pairs with scores between

thresholds were not considered. In order to construct a ROC

curve we used varying thresholds: as an upper threshold thigh for co-

regulation we selected the value corresponding to percentiles p

ranging from 50th to 90th with a step of 10 and, as a lower

threshold tlow for non-coregulation, we selected the value

corresponding to the ‘‘symmetric’’ percentile 1002p. For each

threshold we could compute true positives, true negatives, false

positives, false negatives and therefore construct a ROC curve

(Figure 3A, green plots) where all the R2 values have been

averaged over the 7 datasets. The average dataset has been

constructed by computing the R2 values for each cycle and for

each dataset, for a total amount of 13 cycles. The mean R2 value

for each genes pair was obtained by computing the mean of the 13

available values. In case of missing data in the original dataset,

computation of the mean R2 value was performed only when at

least 8 out of 13 cycles were available. Each class of putatively co-

regulated gene pairs was obtained by selecting those pairs

exceeding the upper thresholds corresponding to the percentiles

from 50th to 90th with a step of 10 of the R2 distribution.

Therefore, true positives are those pairs of the class having at least

one common transcription factor according to the Mc Isaac et al.

dataset (p-value for binding,0.001), whereas false positives are

those pairs in the class without a common transcription factor (p-

value for binding.0.001). Analogously, true negatives and false

negatives were computed within the class of gene pairs having the

lower thresholds corresponding to the percentiles from 50th to 10th

with a step of 210 of the R2 distribution.

Figure 2. Relationships between gene expression time profiles. Typical behaviors of genes related by a simultaneous (Panel A), time-delayed
(Panel B) and peak-delayed (Panel C) expression pattern. The time delayed profiles may be the result of different switching times in transcriptional
activation whereas the peak delayed profile may be the result of the same transcriptional signal and different mRNA stabilities. Normalization is
performed by setting to 1 the lowest value and to 2 the highest value so that the peak-to-peak amplitude is set to 1.
doi:10.1371/journal.pcbi.1000141.g002
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To evaluate the performance of predictions obtained with the

lead-lag R2 we repeated the same analysis using the simultaneous

R2 as a similarity measure between two given genes (Figure 3A

blue plots). The results clearly show that the lead-lag R2 certainly

outperforms standard analysis based only on simultaneous

relationships, increasing the true positive rate from 80% to 95%.

The fraction of false positives also slightly decrease but remains

relatively high possibly due to the fact that we have considered

highly conservative criteria and selected the targets of only those

10 transcription factors having a major regulatory role during the

cell cycle. It is worth noting that the performances on the average

dataset are much better than the average of all performances (see

Figure 3B) thus showing that an integrative approach using

multiple independent datasets is always the best choice, whenever

applicable. Moreover, given the large number of datasets

considered, we can also conclude that the results obtained are

largely independent of the noise and the stress response induced by

the synchronization methods. Finally, we note that the above

results remain valid even if we consider the transcriptional network

presented by McIsaac et al. [15] using different selection criteria for

DNA binding (see Text S1).

mRNA Half-Lives and Lead-Lag R2

The peculiarity of the lead-lag relationship between two given

genes relies on the presence of a common regulatory signal driving

the expression of transcripts with equal or different mRNA half-

lives. For this reason, we investigated whether co-regulated gene

pairs having an high lead-lag R2 values are significantly enriched

with differential transcript’s stabilities. Half-life values are not

available during the cell cycle and in the same experimental

conditions used for establishing cell synchronization. Nevertheless,

genome-wide half-lives data for un-synchronized cells were

published recently by Wang et al. [26]. Using DNA microarrays,

the authors precisely measured the decay of each yeast mRNA in

YPD medium, after thermal inactivation of a temperature-

sensitive RNA polymerase II. Such half-life measurements were

not obtained during the cell cycle, so that we do not expect an

exact agreement with the actual ones. Nevertheless, by considering

a large number of gene pairs (16740) it appears reasonable that, on

average, the half-life ratios between gene pairs may not vary

significantly. Therefore, we used such available data for a

statistical evaluation of the presence of gene pairs with high

lead-lag R2 values with respect to the simultaneous R2 among

those co-regulated pairs having large half-life ratios.

To this end, we considered all possible gene pairs having, at

least, one common transcription factor according to the MacIsaac

et al. dataset [15] using a p-value for binding less that 0.001 and

considered five half-life ratio bins: less than 2-fold, from 2-fold to

3-fold, from 3-fold to 4-fold, from 4-fold to 5-fold and more than

5-fold. We computed the simultaneous R2 and also the difference

between the lead-lag R2 and simultaneous R2 for all the gene pairs

in each of the half-life bins. Such difference is used in order to

select that part of the lead-lag R2 value which is not due to the

simultaneous espression of the gene pair. Therefore, we got a

distribution of values for each half-life ratio bin and computed the

corresponding mean value and standard deviation.

Figure 4 shows the results of the above described computation.

Figure 4A makes clear that the highest and the lowest half-life bin

display very different lead-lag minus simultaneous R2 mean values.

To further support this feature, we performed a t test and found that

Figure 3. Predicting co-regulation: ROC curves. The ROC curves for co-regulation prediction were computed using 10 transcription factors
involved in the cell cycle and assuming as true targets the DNA binding data provided by MacIsaac et al. [15], with p-value for binding 0.001. Two
varying thresholds have been used for constructing the ROC curves; the higher percentile p (ranging from 50% to 90%) for the prediction of co-
regulation, and the symmetric (1002p) percentile (ranging from 50% to 10%) for no co-regulation. Panel A shows ROC curves corresponding to R2

values averaged over all the 7 available datasets. Numbers below marks (circles and crosses) indicate the percentile of the distribution of R2 values
used for selecting the lower and upper thresholds. Panel B shows ROC curve for each dataset obtained using as a threshold for co-regulation
prediction only the 90th percentile of the corresponding distribution.
doi:10.1371/journal.pcbi.1000141.g003
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the increase of the mean value of the distribution in the first and the

last bin of the lead-lag R2 minus the simultaneous R2 is indeed

significant (95% confidence level, p-value 1029). The simultaneous

R2 also shows a mildly significant decrease (95% confidence level, p-

value 0.03) of the mean values between the first and the last bin. To

further evaluate the statistical significance of this analysis we

computed the Z-score corresponding to 100000 randomizations of

the half-life measurements. The results are shown in the scatterplot

of Figure 4B and they provide computational evidence that the lead-

lag R2 of gene pairs is statistically correlated to their half-life ratios. In

fact, a high positive Z-score (about 5) corresponds to the highest half-

life ratio bin and a negative Z-score (about 25) corresponds to the

first half-life ratio bin. On the other hand, Z scores for the

simultaneous R2 are all within the values 23 and 3 and therefore the

observed difference of the mean values between the first and the last

bin is not significantly affected by the randomizations. This scenario

is consistent with the biological process underlying the mathematical

model used to define the lead-lag R2 thus showing that our analysis

well captures the effects of post-transcriptional control on gene

expression time profiles during the cell-cycle.

Comparison to Other Similarity Measures
The results presented so far have clearly shown that lead-lag

correlation analysis outperforms the usual simultaneous correlation

analysis (squared Pearson coefficient) for the prediction of co-

regulation, i.e. the presence of a common transcription factor, from

gene expression time profiles. As previously discussed, truly co-

regulated genes do often display large differences of gene expression

time profiles, e.g. peak shifts, delays or other kinds of nonlinear

relationships. In this paragraph, we consider other similarity

measures relevant to the analysis of gene expression data and

compare their performances with those obtained using the lead-lag

R2. In particular, we used 5 similarity measures other than the lead-

lag: Spearman’s rank, Kendall’s tau, cosine, dynamic time-warped

and time-delayed correlation, all squared to capture inverted

relationships also. Spearman’s rank, Kendall’s tau and cosine

correlation are the most common choices for the analysis of gene

expression data in the presence of nonlinear relationships between

time series, but they do not take into account the time ordering of

data. By contrast, time-warped and time-delayed correlation have

been specifically developed to analyze gene expression time profiles.

The time-delayed correlation analysis has been proposed by Schmitt

et al. [37] where, for any genes pair, a R2 value is obtained by

selecting the highest simultaneous R2 over all admissible time delays

between profiles. The dynamic time-warped correlation has been

recently used by Aach and Church [40] and Hermans and

Tsiporkova [41] for the alignment of gene expression time series

obtained in experiments using different cell synchronization

methods. These two works are both based, for gene-to-gene

comparisons, on the Dynamic Time Warping (DTW) algorithm

developed by Sankoff and Kruskal [42]. Accordingly, we defined a

time-warped R2 by selecting the highest simultaneous R2 over all the

possible time warped paths. For any similarity measure, we

performed the same analysis reported in a previous section using

the same data, and the results are shown in Figure 5 where sensitivity

(panel A) and specificity (panel B) are reported for each threshold.

First of all, the cosine correlation analysis produces the poorest

performances, very close to a random choice, and therefore such

similarity measure is not reported in Figure 5. On both panels we

note that simultaneous, Spearman’s rank and Kendall’s tau

 

 

Figure 4. Sample gene pairs distribution of simultaneous R2 and lead-lag R2 minus simultaneous R2 versus half-life ratios. Panel A
shows the bar plot of the mean values of the R2 distributions for co-regulated pairs. On the top of each bar is indicated the standard deviation as a
percentage of the mean value. The difference between the means of the first and the last bin of the lead-lag R2 minus simultaneous R2 is significant
according to a t-test with a confidence level of 95%, (p-value 1029) and the difference between the means of the first and the last bin of the
simultaneous R2 is mildly significant according to a t-test with a confidence level of 95%, (p-value = 0.03). According to the t test, no other difference
is significant. The number of gene pairs contained in each bin are: 9128, 3726, 1707, 919 and 1260, respectively. Blue bars indicate the distribution of
simultaneous R2 whereas green bars indicate the distribution of lead-lag R2 minus simultaneous R2. Panel B shows the scatterplot of the Z-scores
corresponding to 100000 randomizations of the half-life measurements. Whereas the Z score of the simultaneous R2 does not show any significant
change after half-life ratios randomization for each bin, the Z score of the lead-lag R2 minus the simultaneous R2, does show a significant change in
the first and the last bin.
doi:10.1371/journal.pcbi.1000141.g004
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provide comparable results which are clearly below the perfor-

mances of the group of methods which take into account the time

ordering of data. In this group the lead-lag correlation analysis

shows the best performances, both in terms of sensitivity and

specificity.

Examples of Lead-Lag Analysis Using Yeast Cell Cycle
Gene Expression Data

In this section we present some examples of ‘‘typical’’ lead-lag

relationships using the most recent yeast cell cycle data [43] and

discuss their biological relevance. The complete list of gene pairs

exceeding the 95th percentile of the distribution for each of the R2

values considered in this paper is provided in the supporting

information file Text S1.

Key cell cycle regulators under common transcription

factors. The budding yeast cell cycle is characterized by

consecutive waves of expression of key regulators such as cyclins

and transcription factors [44]. CLB6, a G1/S-phase cyclin, has a

lead-lag relationship with GIN4 as shown in Figure 6A, a gene

encoding a key component involved in transitioning to the next

stage of the cycle [34]. The lead-lag relationship suggests the

presence of a common transcription factor and, consistently, the

two genes are both targets of the transcription factor complex

MBF/SBF according to ChIP experiments [15]. Moreover, the

time profiles shown in Figure 6A indicate also the possibility that

the transcriptional signal is turned on and then quickly turned off,

so that the subsequent behaviour of the two genes is mainly

determined by the degradation process alone. Accordingly,

transcripts stabilities – as measured after transcriptional shut-off

[45] – significantly differ in value.

Cell Division Cycle 6 (CDC6) is a component of the pre-

replicative complex essential for the initiation of DNA replication,

normally expressed at the end of mitosis. It has a lead-lag

relationships with ASH1 (Figure 6B) which encodes a GATA-like

transcription factor localized at daughter cells where it serves to

repress the late G1-specific transcription of HO and preventing

mating-type switching [46]. Our analysis suggests the presence of a

common regulatory signal. In fact, both genes are key regulators of

separate biological processes that are simultaneously activated by

the SWI5 transcription factor [15,47,48]. Moreover, our analysis

also suggests that the CDC6 transcript is fairly unstable.

Consistently, the CDC6 protein is unstable [47].

SWI5 encodes a key transcription factor that activates

transcription of genes expressed at the M/G1 boundary and in

G1 phase of the cell cycle. NCE102 is a non-classical export

protein involved in alternative clearance/detoxification pathway

to eliminate damaged material [49]. They display a lead-lag

relationship (Figure 6C) and, in fact, they are both targets of the

M-phase activating complex FKH2/NDD1 according to ChIP

experiments [15] and large differences of their half-life values are

observed after transcription inhibition [26]. The gene expression

profiles shown in Figure 6C reflect the prototypical situation of

peak delay depicted in Figure 2C.

YOX1 is a transcription factor involved in the repression of

ECB acitivity [46] thus contributing to move the cycle forward.

YOX1 shows a lead-lag relationship with MNN1 (Figure 6D), a
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gene encoding a cell wall glycoprotein [50]. Consistently, they are

both targets of SBF according to ChIP experiments [15] and the

transcripts have different half-life values [26]. Moreover, looking

at the time profiles depicted in Figure 6D, one may argue that

during the second half of the cycle another transcription factor is

active at the MNN1 promoter.

All the above examples consist of pairs of genes that are under

the control of the same transcription factor and that show

differential mRNA stability values consistent with their lead-lag

relationship (except for CDC6 transcript whose experimental half-

life is not available). Moreover, it is worth noting that large

differences in half-lives value (as in the cases shown in figure 6C

and 6D) significantly affect the overall time profiles producing also

an evident peak shift.

Finally, it is worth noting that the lead-lag relationship is

symmetrical and, therefore, it does not provide information about

which gene is ‘‘lead’’ and which is ‘‘lag’’. However, such information

can be easily obtained by visual inspection. In fact, from Figure 6A,

the lead gene is the one with the steepest decaying profile having,

consistently, a smaller half-life. Moreover, from Figure 6C, one can

see that the gene with the larger half-life displays a delayed peak and,

therefore, it corresponds to the lag gene.

Dynamic formation of the replication complex. Many

studies have focused on the relationship between gene expression

time courses and the formation of protein complexes. Interestingly,

Jansen et al. [31] suggested to classify protein complexes as either

permanent or transient, with permament ones being maintained

through most cellular conditions. They also found that, generally,

permanent complexes tend to have simultaneously correlated gene

expression while transient ones do not. Moreover, they also noted

that subunits of the same protein complex may show significant

simultaneous expression. In particular, they studied gene

expression of the replication complex in yeast and found a very

low simultaneous correlation among subunits, not significantly

different from a random control [31]. However, they also found

two sub-complexes – the MCM complex and the DNA

polymerases d and e complex – showing much greater

simultaneous correlation.

Using gene expression time profiles during one cell cycle ([43],

dataset, alpha_38 time series) for the genes encoding MCM

proteins (MCM cluster) and DNA polymerases and e (POL

cluster), we computed simultaneous and lead-lag R2 and the

scatterplots of the resulting values for gene pairs belonging to the

two different sub-complexes are shown in Figure 7, panel B. As a

negative control we used a group of 5 simultaneously expressed

genes (R2.0.7) coding for proteins of the cytoplasmic ribosomal

large subunit (RPL4A, RPL4B, RPL1A, RPL1B, RPP0 denoted

by RIB cluster). Ribosomal proteins are under the transcriptional

control of IFH1/FHL1 [51,52] whereas the replication complex is

regulated by the transcription factors MBF/SBF [51]. The

scatterplot reported in Figure 7 of the simultaneous vs. lead-lag

R2 values shows that, whereas the POL/MCM pairs display high

values of lead-lag R2 and low values of simultaneous R2, the

control pairs POL/RIB and MCM/RIB display a very different

pattern spread over a larger range thus denoting the absence of

any meaningful relationship.

Figure 7 makes very clear that the gene expression of the MCM

and the DNA polymerases d and e subcomplexes is significantly

simultaneously correlated within the same group whereas such

correlation dramatically drops if we consider pairs of genes

belonging to different subcomplexes. In fact, the sample

distribution of the simultaneous R2 between the two clusters is

spread over the range [0,0.5] thus showing the absence of any

significant level of simultaneous correlation. By contrast, the

between clusters lead-lag R2 histogram is concentrated in the

highest part of the range close to 1. The high values of the lead-lag

Figure 6. Examples of lead-lag relationships of key cell cycle regulators. The gene pairs reported in the figure are: CLB6/GIN4 (Panel A),
CDC6/ASH1 (Panel B), SWI5/NCE102 (Panel C) and YOX1/MNN1 (Panel D). Gene expression time profiles are taken from Pramila et al. [43], alpha_38
dataset and the expression values are normalized with respect to peak-to-peak amplitude. Each half-life dataset is indicated in brackets: ‘‘W’’ denotes
the Wang dataset [26], ‘‘K’’ denotes the Kuai dataset [45].
doi:10.1371/journal.pcbi.1000141.g006
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R2 strongly suggest that mRNA stability may play a fundamental

role in the dynamic formation of multiple protein complexes.

Accordingly, the average half-life measured after transcriptional

shut-off of the MCM group is 1466 min (the ‘‘lead’’ genes). and

that of the POL group is 1966 min [26] (the ‘‘lag’’ genes). The

presence of lead-lag relationships between transient sub-complexes

is briefly discussed in the supporting information file Text S1.

Conclusions
The expression of genes in the cell is to a large extent controlled

at the level of mRNA accumulation. One key point in the analysis

of gene expression dynamics is that mRNA abundance is

determined by two regulated processes: transcription and

degradation both specifically affecting transcript levels. Computa-

tional analysis of genome-wide expression time series has shown

that clusters of co-expressed (i.e. simultaneously correlated) profiles

often provide clues for the presence of common transcription

factors regulating both genes. Such computational analysis (known

as ‘‘clustering’’) is very useful since it allows the prediction of the

underlying regulatory actions based exclusively on the available

gene expression data obtained from a given experiment. The

rationale behind such belief is a sort of a ‘‘guilty by association’’

approach: genes’ products appearing and disappearing at the same

time are likely to have some common transcriptional regulation.

Nevertheless, it may well be the case that the same transcriptional

signal regulating two (or more) genes may yield quite different

outcomes on each transcript. In fact, a number of biological events

following transcription may selectively affect cytoplasmic mRNA

abundance, such as, for example, the activity of the enzymatic

machinery involved in mRNA processing and degradation. In

order to address this issue, we provided a novel computational

methodology that, based exclusively on the available gene

expression data, is able to effectively predict co-regulation even

with variation in the dynamic response due to mRNA stability

differences. Moreover, our approach also captures the relation of

simultaneous or time shifted co-expression so that it provides a

single integrative general index – the lead-lag R22able to uncover

the presence of a common regulatory signal underlying gene

expression time dynamics also at the post-transcriptional level.

In order to test the validity of our approach on real data, we

used yeast genome-wide cell-cycle expression time series obtained

by several independent groups using different synchronization

methods. In fact, by doing so, we could integrate the available cell

cycle data and obtain a much more reliable aggregated dataset.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

RIB

MCM
POL

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

RIB/POL
RIB/MCM

POL/MCM

simultaneous R2

simultaneous R2

le
ad

-la
g

R
2

le
ad

-la
g

R
2

within
gene cluster

between
gene clusters

BA

MCM3
MCM6
CDC47
MCM2
CDC46
CDC54

MCM cluster

time (minutes)
10 20 30 40 501

2

no
rm

al
iz

ed
 fo

ld
  i

nd
uc

tio
n

CDC45
DPB2
CDC2
POL2
HYS2
POL32
DBF4

POL
cluster

time (minutes)
10 20 30 40 50

1

2

no
rm

al
iz

ed
 fo

ld
  i

nd
uc

tio
n

replication
complex

Figure 7. Lead-lag analysis of gene expression profiles of two components of the replication complex. The MCM cluster is composed by the
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We considered those gene pairs with the highest lead-lag R2 values

and found the prediction for the presence of a common

transcription factor to be highly consistent with protein-DNA

binding data (ChIP experiments). Our results clearly indicate that

co-regulation is not generally equivalent to simultaneous expres-

sion.

We believe that the same analysis can be successfully used to

predict post-transcriptional regulation, i.e. the presence of a

common mechanism able to stabilize or de-stabilize specific

transcripts, as for the members of the PUF proteins family [2].

Moreover, we envisage the possibility that our methodology could

be used on different data and organisms and thus providing a

computational support to the understanding of transcriptional and

post-transcriptional networks, given the recent growing interest in

the post-transcriptional regulation layer [1] of gene expression

(miRNA) and its role in many diseases, such as cancer. Finally, the

characterization of the replication complex in terms of lead-lag

relationships among gene expression time profiles of its sub-

complexes suggests the possibility that our analysis could be

effectively used as a tool for predicting the formation of transient

multiple protein complexes.

Materials and Methods

Computation of the Simultaneous and Lead-Lag R2

Between Gene Expression Time Profiles
The mRNA relative abundance time course data obtained from

cell populations experiments for gene A and B is denoted by mA

and mB, respectively. The simultaneous R2, is the usual squared

Pearson correlation coefficient which measures the fraction of the

total variance explained by a linear fit between the two variables

mA and mB, that is

mA tð Þ~c1mB tð Þzc2zg

where g accounts for intrinsic and extrinsic noise.

The rationale behind the lead-lag R2 is the following. We

considered two genes, A and B, subject to the same regulatory

signal (promoter activity) – possibly of different strength – due to

the presence at their promoters of the same TF complex in its

active state. Moreoever, we assumed that the change in mRNA

levels due to the degradation rate could be reasonably well

captured by a first order rate kinetics [53], and consequently the

dynamic equation that includes both synthesis and degradation is

the following

dmA tð Þ
dt

~PA tð Þ{kAmA tð ÞzgA

dmB tð Þ
dt

~PB tð Þ{kBmB tð ÞzgB

ð1Þ

where the two variables mA and mB measure gene expression on a

linear scale (fold induction), PX is the promoter activity time profile

of the TF complex relative to gene X, aX is its maximal strength, kX

is the degradation rate (kX = log(2)/t1/2) and gX accounts for

intrinsic and extrinsic noise. In order to remove size effects, the

common signal between the promoter activities of the two genes is

indicated as p(t) and is such that

PA tð Þ~aAp tð ÞzbA

PB tð Þ~aBp tð ÞzbB

so that we get

dmA tð Þ
dt

~aAp tð ÞzbA{kAmA tð ÞzgA

dmB tð Þ
dt

~aBp tð ÞzbB{kBmB tð ÞzgB

ð2Þ

From the second equation of (2) we have

dmB tð Þ
dt

{bBzkBmB tð Þ{gB

aB

~p tð Þ

and substituting it into the first equation of (2) we obtain

dmA tð Þ
dt

~aA

dmB tð Þ
dt

{bBzkBmB tð Þ{gB

aB

( )
zbA{kAmA tð ÞzgA

that can be rewritten as

dmA tð Þ
dt

~
aA

aB

dmB tð Þ
dt

{kAmA tð Þz aAkB

aB

mB tð ÞzbA{
aA

aB

bB

zgA{
aA

aB

gB

By evaluating the time integral of both sides we finally get:

mA tð Þ~c1mB tð Þzc2

ðt

0

mB t0ð Þdt0zc3

ðt

0

mA t0ð Þdt0zc4tzc5zd ð3Þ

where

c1~
aA

aB

, c2~
aAkB

aB

, c3~{kA, c4~b4{
aA

aB

bB,

d~

ðt

0

gA{
aA

aB

gB

� �
dt0

and coefficient c5 accounts for the integration constant. The lead-

lag R2 is the fraction of the total variance explained by model (3).

Note that the lead-lag R2 depends on the time order of the data,

whereas the simultaneous R2 remains the same after a time

shuffling of the data. Moreover, it is worth emphasizing that model

(3) may well describe other biologically relevant mechanisms, such

as time-shifted profiles as shown in the supporting information file

Text S1. In this case, obviously, the coefficients ci, which depend on

the underlying model, will change accordingly. Any pair of time

profiles, satisfying model (3) will be said to have a lead-lag

relationship and a good fit to (3) can be obtained also in situations

different from those assumed to derive it. This property is very

useful since it provides flexibility in modeling different biological

phenomena resulting from the presence of a common regulatory

signal.

The reason for the term ‘‘lead-lag’’ is due to the fact that two

signals satisfying model (3) also define the transfer function of a

‘‘lead-lag compensator’’ widely used in control systems engineer-

ing. Assuming, for the sake of simplicity, the signals devoid of

linear trends and noise (c4 = c5 = d = 0), model (3) in the Laplace

domain is as follows:

mA sð Þ~c1mB sð Þz c2

s
mB sð Þz c3

s
mA sð Þ
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which can be rewritten as:

mA sð Þ 1{
c3

s

� �
~ c1z

c2

s

� �
mB sð Þ

so that the resulting transfer function between mA(s) and mB(s) is

that of a lead-lag compensator:

Flead{lag sð Þ~ mB sð Þ
mA sð Þ~

s{c3

c1szc2
~

aB

aA

szkA

szkB

A Direct Formula for Computation of the Lead-Lag R2

from Gene Expression Data
Let the available experimental time series of two genes A and B

be composed of N.5 samples taken at times t1,…,tN. Model (3)

mA tð Þ~c1mB tð Þzc2

ðt

0

mB tð Þdt0zc3

ðt

0

mA t0ð Þdt0zc4tzc5zd

can be rewritten, using matrix notation, as follows

Y~X

c1

..

.

c5

0
BB@

1
CCAzD

where D collects all of the noise terms and

Y~

mA t1ð Þ

mA t2ð Þ

..

.

mA tNð Þ

0
BBBBBB@

1
CCCCCCA

,

X~

mB t1ð Þ 0 0 t1 1

mB t2ð Þ
Ð t2

t1
mB t0ð Þdt0

Ð t2

t1
mA t0ð Þdt0 t2 1

..

. ..
. ..

. ..
. ..

.

mB tNð Þ
Ð tN

t1
mB t0ð Þdt0

Ð tN

t1
mA t0ð Þdt0 tN 1

0
BBBBBB@

1
CCCCCCA

so that the least square estimation of the parameter vector is

ĈC : ~

ĉc1

..

.

ĉc5

0
BB@

1
CCA~ X T X

� �{1
X T Y

Accordingly, the goodness of fit to model (3) is measured by

lead{lag R2~
XĈC{mean Yð Þ
�� ��2

2

Y{mean Yð Þk k2
2

where the norm used is the usual Euclidean norm. It is important

to note that the lead-lag R2 can be computed directly from gene

expression data and values near unity indicates that the model well

fits the available time series.

Numerical computation of time integral. Given a gene

expression time profile [mRNA]t measured at times t1,…,tN, we

computed its time integral in two steps. First, we used a piecewise

cubic Hermite interpolation formula to obtain, for each time

interval, 4 more samples. Over the interpolated time series we

computed the integral by using a 2-points closed Newton-Cotes

formula (trapezoidal rule).

Datasets
Cell cycle regulated genes. We considered the extended list

of 1159 cell cycle regulated genes reported in reference [38]. Each

gene in this list has been considered as cell-cycle regulated in at

least one of the six methods reported in reference [38]. We used

such an extended list in order to have a sufficiently large dataset

for our statistical analysis.

Gene expression datasets. We considered yeast cell cycle

data measured by three independent groups [4,43,54]. The data

from the Spellman et al. group consist of genome-wide gene

expression data during the yeast cell cycle using three different

synchronization methods. We denoted as ELU, the elutriation based

dataset composed of one cell cycle, as ALPHA, the pheromone a
arrest factor based dataset composed of two cell cycles and as

CDC15 the temperature sensitive CDC15 mutant based dataset

composed of three cell cycles. Only two cell cycles of the CDC15

dataset could be used due to the large number of missing data. The

dataset in Cho et al. [54], denoted by CDC28, is composed of two cell

cycle and synchronized using a temperature sensistive CDC28

mutant. The last dataset has been downloaded from the authors

website [43] and is composed of three genome-wide gene expression

measurement during the yeast cell cycle using alpha factor

synchronization. We denoted such dataset, composed of two cell

cycles each, as ALPHA_28, ALPHA_30 and ALPHA_38. Two data

sets, ALPHA_30 and ALPHA_38, are dye swap technical replicates.

Transcription factors dataset. We considered the main cell

cycle TFs (SWI4, SWI6, MBP1, NDD1, FKH1, FKH2, MCM1,

ACE2, SWI5, YOX1) according to Bahler [39], and as targets,

those genes included in the McIsaac et al. dataset [15] with a

stringent threshold for DNA binding (p-value,0.001). The

MacIsaac et al. dataset contained 660 of the 1159 cell cycle

regulated genes. Therefore, we ended up with a list of 660 genes

available for the subsequent computational analysis.

Half-lives dataset. We used half-life genome-wide

measurements of the yeast transcript measured by Wang et al.

[26] and by Kuai et al. [45].

Integration of gene expression datasets. For each dataset, we

computed the simultaneous and lead-lag–R2 for all possible pairs using

N = 660 genes, that is we computed such parameters for N(N21)/

2 = 217470 pairs. More precisely, the R2 values were computed for

each cell cycle in each dataset, thus obtaining 13 values for each gene

pair (ELU: 1 cell cycle, ALPHA: 2 cell cycles, CDC15: 2 cell cycles,

CDC28: 2 cell cycles, ALPHA_28: 2 cell cycles, ALPHA_30: 2 cell

cycles and ALPHA_38: 2 cell cycles). The average dataset has been

constructed by computing the R2 values for each cycle and for each

dataset, for a total amount of 13 cycles. The mean R2 value for each

genes pair was obtained by computing the mean of the 13 available

values. In case of missing data in the original dataset, computation of

the mean R2 value was performed only when at least 8 out of 13 cycles

were available. Such data were used to compute the diagram showed

in Figure 3B. The values obtained by averaging all 13 cycles provided

us with a single value for each gene pair and they were used to

compute the ROC curve shown in Figure 3A. Cell cycle data with

missing values were removed from the dataset.

Supporting Information

Text S1 Supporting Information file

Found at: doi:10.1371/journal.pcbi.1000141.s001 (0.10 MB

DOC)
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