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Abstract
Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin
consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and
form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the
A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes
clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the
cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2,
and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by
specific pharmacological inhibitors protectsmammalian, including human, cells from intoxication with CDT, C2, and iota toxins,
and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover,
combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation
time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic
applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their
membrane translocation into the cytosol of target cells.
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Introduction

Clostridioides difficile toxin CDT, Clostridium botulinum C2
toxin, and Clostridium perfringens iota toxin are members of
the family of binary actin-ADP-ribosylating toxins that cause
enterotoxicity in humans and animals (Ohishi 1983; Songer
1996; Papatheodorou et al. 2018). These protein toxins consist
of two separate proteins that are secreted by the bacteria and

share a widely common cellular uptake mechanism and mode
of action. The binding/translocation (B) component mediates
the transport of the enzymatically active (A) component into
the cytosol of target cells. Here, the A-component mono-
ADP-ribosylates G-actin (Aktories et al. 1986; Schering
et al. 1988; Popoff et al. 1988). This leads to depolymerization
and destruction of actin filaments and causes rounding of ad-
herent cells (Reuner et al. 1987; Wegner and Aktories 1988;
Aktories and Wegner 1992). In vivo, rounding of epithelial
cells in the intestine results in impairment of the gut barrier
and thereby elicits clinical symptoms of enterotoxicity.

The C2 toxin is the prototype of this toxin family and its
cellular uptake was studied in more detail. The B-component
of C2 toxin C2II gets proteolytically activated (Barth et al.
2000). The resulting biologically active C2IIa forms
heptameric complexes that bind to asparagine-linked carbohy-
drate structures that are located on the surface of all cell types
(Ohishi et al. 1984; Eckhardt et al. 2000; Blöcker et al. 2000).
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C2I, the A-component, binds to C2IIa-heptamers and the
complex is taken up into cells by receptor-mediated endocy-
tosis. Vesicular ATPases cause acidification of the toxin-
loaded endosomes. This leads to conformational changes of
both components: the C2IIa-heptamer forms a translocation
pore into the endosomal membrane and C2I is partially un-
folded to translocate through the narrow pore into the cytosol
of target cells (Barth et al. 2000; Haug et al. 2003b;
Schleberger et al. 2006).

Cellular uptake and mode of action of the iota toxin and
CDT are widely comparable and show some differences to
C2 toxin. The B-components Ib and CDTb, respectively,
facilitate the transport of the A-components Ia and CDTa
into the cytosol ((Stiles and Wilkins 1986; Perelle et al.
1997) for review see (Barth and Stiles 2008; Barth and
Ernst 2016)). Iota toxin and CDT are closely related and
form the sub-group of iota-like toxins within the binary
ADP-ribosylating toxins. They both bind to the lipolysis-
stimulated lipoprotein receptor (LSR) and use CD44 as a
co-receptor for cellular uptake (Papatheodorou et al. 2011;
Wigelsworth et al. 2012).

During the last years, we showed that C2, iota, and CDT
toxins require the assistance of folding helper enzymes for
translocation of their A-components from endosomes to the
cytosol (Barth and Ernst 2016; Ernst et al. 2017b, a). The
chaperones heat shock protein (Hsp) 90 and 70, as well as
isoforms of cyclophilins (Cyps) and FK506-binding proteins
(FKBPs) facilitate the translocation of partially unfolded C2I,
Ia, and CDTa through the respective pores into the cytosol
(Haug et al. 2003a, 2004; Kaiser et al. 2009, 2011, 2012;
Ernst et al. 2015, 2016, 2017a). Cyps and FKBPs are
peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze
the rate-limiting step of cis/trans isomerization of prolyl-
bond during protein folding (Schiene-Fischer 2014).
Treatment of cells with specific pharmacological inhibitors
blocks activity of folding helpers, which protects cells as well
as more complex models like human intestinal organoids from
intoxication with clostridial binary toxins. Radicicol (Rad)
and VER-155008 (VER) inhibit activity of Hsp90 and
Hsp70, respectively, by binding to their ATP-binding pockets.
Cyclosporine A (CsA) and FK506 prevent activity of Cyps
and FKBPs, respectively (Barth and Ernst 2016). Previously,
we showed that combining all four inhibitors results in an
enhanced protection of cells from intoxication with C2 toxin
compared to application of the single inhibitors (Ernst et al.
2018b). Here, prompted by these earlier findings, we demon-
strated that the inhibitor combination exhibits an enhanced
inhibitory effect on CDT intoxication of cells. Since CDT
contributes to the severe diseases caused by hyper-virulent
CDT-expressing strains of C. difficile including the
pseudomembranous colitis, the results can be a starting point
for the development of novel pharmacological options to treat
and/or prevent the diseases associated with CDT.

Materials and methods

Protein expression and purification

Protein toxin components were purified and activated as de-
scribed before: C2I and C2IIa (Barth et al. 1998), CDTa and
CDTb (Papatheodorou et al. 2010), Ia and Ib (Perelle et al. 1997).

Cell culture

Cells were detached by trypsin and reseeded every 2–3 days
for no more than 25 times. Incubation of cells occurred at
37 °C and 5% CO2 under humidified conditions. Vero cells
(African green monkey kidney cells, DSMZ, Braunschweig,
Germany) were cultured in MEM plus 10% heat-inactivated
fetal calf serum (FCS) (GIBCO life technologies, Karlsruhe,
Germany), 0.1 mM non-essential amino acids, 1 mM sodium
pyruvate, 2 mM L-glutamine, and 100 U/mL of penicillin and
100 μg/mL of streptomycin. CaCo-2 cells (human epithelial
colorectal adenocarcinoma cells, ATCC HTB-37, Manassas,
VA, USA) were cultured in DMEM (GIBCO life technolo-
gies, Karlsruhe, Germany) plus 10% FCS, 1 mM sodium py-
ruvate, 0.1 mM non-essential amino acids, and 100 U/mL of
penicillin and 100 μg/mL of streptomycin.

Intoxication experiments

Cells were seeded into 24-well culture dishes. The following
inhibitors of host cell chaperones were used: Rad (inhibitor of
Hsp90), CsA (inhibitor of Cyps), and FK506 (inhibitor of
FKBPs) were purchased from Sigma-Aldrich (Merck,
Darmstadt, Germany), VER (inhibitor of Hsp70, Hsc70 and
Grp78) was purchased from Tocris Bioscience (Wiesbaden-
Nordenstadt, Germany). Bafilomycin A1 (BafA1, inhibitor of
v-ATPase) was obtained from Calbiochem (Bad Soden,
Germany). After pre-incubation of cells with inhibitors, toxin
components were added. Images of cells were obtained using
a Zeiss (Oberkochen, Germany) Axiovert 40CFL microscope
with a Jenoptik (Jena, Germany) ProGres C10 CCD camera.
Morphological changes induced by the toxins were analyzed
by counting cells showing intoxication morphology (formation
of protrusions, rounding of cells) and determining the percent-
age of intoxicated cells (Image J, National Institutes of Health,
Bethesda, USA). Culture dishes and well plates were purchased
from TPP Techno Plastic Products (Trasadingen, Switzerland).

Analysis of ADP-ribosylation status of G-actin

CaCo-2 cells were pre-incubated with respective inhibitor
combination and then intoxicated with CDT for given incuba-
tion periods. Cells were lysed in ADP-ribosylation buffer
(1 mM DTT, 5 mM MgCl2 and 1 mM EDTA, 20 mM Tris-
HCl pH 7.5 plus complete protease inhibitor (Roche,
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Mannheim, Germany)), followed by incubation with 100 ng
CDTa and 10 μM biotin-labeled NAD+ (Trevigen,
Gaithersburg, MD, USA) for 30 min at 37 °C for in vitro
ADP-ribosylation of G-actin, which had not yet been ADP-
ribosylated by CDTa during the previous incubation. Samples
were subjected to SDS-PAGE, blotted, and ADP-ribosylated,
i.e., biotin-labeled; G-actin was detected with streptavidin-
peroxidase (Strep-POD, Sigma-Aldrich, Merck) using the
ECL system. Equal amounts of protein loading were con-
firmed by ponceau S staining. Intensity of Western blot sig-
nals were quantified densitometrically and normalized to load-
ing controls (ponceau S signals). Additionally, values were
normalized to untreated control samples.

TEER measurements

CaCo2 cells were seeded into 24-well hanging cell culture
inserts (Millicell Cell Culture Inserts, EMD Millipore
Corporation, Burlington, MA, USA). 1.1 × 105 cells per filter
were seeded. A dense monolayer was obtained after growing
cells for 3–4 days. Fresh medium with or without inhibitors
was added in a fresh 24-well plate and hanging inserts with
cell monolayers were placed into the fresh medium. BafA1 is
an inhibitor of vesicular ATPases and thereby also inhibits
uptake of CDT, C2, and other toxins that escape from acidi-
fied endosomes. BafA1 was used as a positive control for
inhibition of toxin uptake (Barth et al. 2000). After 30 min
of pre-incubation at 37 °C, toxin components were added
apically. TEER was measured every 30 min with the
EVOM2 Voltohmmeter (World Precision Instruments,
Friedberg, Germany). Raw data of resistance were trans-
formed to unit area resistance by subtracting blank resistance
and multiplying resulting data with effective surface area of
used hanging insert membrane (here 0.3 cm2). Values were
normalized to their respective starting value (t0).

Cell viability

Vero cells were seeded into a 96-well plate. Cells were incu-
bated with chaperone inhibitors at indicated concentrations for
6 h. Images were taken, then cells were washed to remove
precipitation of inhibitors which occurred at higher concentra-
tions. Then, MTS reagent (Promega, Mannheim, Germany)
was added and after incubation for 1 h at 37 °C, absorbance
at 490 nmwasmeasured. Values were normalized to untreated
control cells (control = 100%). Results from 4 independent
experiments with triplicates are shown.

Reproducibility of experiments

All experiments were performed independently at least two
times. Results from representative experiments are shown in
figures if not indicated otherwise.

Results

Combination of pharmacological inhibitors shows a
more pronounced delay of CDT intoxication than
application of the respective individual inhibitors

Intoxication of adherent cells like Vero cells with CDT leads
to specific morphological changes, i.e., rounding of cells. This
is a direct effect of the mode of action of CDT and other actin-
ADP-ribosylating toxins like C2 and iota toxin and is used as a
robust and highly specific endpoint to determine the degree of
intoxication. Images in Fig. 1a show that CDT caused
rounding of cells after 2 h of intoxication. The percentage of
cells showing this change in morphology was determined
from the pictures (Fig. 1b). If cells were pre-incubated with
the single chaperone and PPIase inhibitors, a delay in intoxi-
cation was observed after 2 h. A comparable effect was
achieved if all four inhibitors were applied in combination.
However, after longer incubation periods, only the combina-
tion of inhibitors and not the inhibitors alone caused a delay in
intoxication (Figs. 1b, c). The solvents of the inhibitors had no
effect on CDT intoxication (supplemental Fig. 1).

Combined pharmacological inhibition of
chaperones/PPIases delays intoxication with CDT in a
human colon epithelial cell line

A delay in CDT intoxication by the inhibitor combination was
also observed in the human colon carcinoma cell line CaCo-2
(Fig. 2a). Since the protective effect on cell morphology was
not as clearly observable in CaCo-2 cells as in Vero cells, we
analyzed the ADP-ribosylation status of G-actin in these cells
to confirm the results. Therefore, cells were lysed and subse-
quently incubated with fresh CDTa plus biotin-labeled NAD+

in vitro. This leads to ADP-riboslyation of the portion of G-
actin that has not been modified in the living cells before. The
presence of biotin-labeled NAD+ results in biotin-labeling of
that portion of G-actin which was detected by Western blot.
Therefore, a strong signal in the blot indicates no modification
of actin in the living cells, which was observed for untreated
control samples (Fig. 2b). A weak signal means that most of
the actin has been ADP-ribosylated by the toxin in the living
cells thus, could not serve as a substrate in the in vitro ADP-
ribosylation. In samples that have been treated with only
CDT, no signal was detectable. Samples pre-treated with the
lower concentration of the inhibitor combination prior to CDT
intoxication showed a weak signal. However, this signal was
comparable to samples treated with only solvent and CDT. A
significantly increased signal was obtained in samples treated
with the higher concentration of inhibitors and CDT, even in
comparison to the respective solvent control. Figure 2b shows
the result of one representative experiment. Since the protein
loading of the samples slightly varied between the different
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treatments, a quantification of Western blot signals was per-
formed with normalization of Western blot signal to the pro-
tein loading. Figure 2c comprises the results of 3 independent
experiments and demonstrates a significant inhibitory effect of
the combination of inhibitors in the higher concentration on
the intoxication of CaCo-2 cells with CDT.

TEER measurements were performed to analyze the ep-
ithelial integrity of confluently grown CaCo-2 monolayers
after treatment with CDT or C2 toxin in the presence of the
inhibitor combination (Fig. 3). Both, CDT and C2 toxin
caused a strong reduction in TEER, which was delayed
by the inhibitor combination. This inhibitory effect was
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Fig. 1 Combined
pharmacological inhibition of
Hsp90, Hsp70, Cyps, and FKBPs
delays intoxication of Vero cells
with CDT. Vero cells were pre-
incubated at 37 °C for 30 min
with the single inhibitors or a
combination of the inhibitors
(CsA 20 μM, FK506 20 μM,
radicicol 20 μM and VER
30 μM). Cells were then chal-
lenged with 50 ng/mL CDTa +
100 ng/mL CDTb. For control,
cells were left untreated or treated
only with CDT. Cells were further
incubated at 37 °C and images
were taken at the indicated time
points. a Images show the mor-
phological changes induced by
the toxin after 2 h of incubation. b
Percentage of cells with morpho-
logical changes was determined
from images at the indicated time
points. Values are given as mean
± SD (n = 3). Significance was
tested using two-way ANOVA
followed by Dunnett’s multiple
comparison test. (* p ≤ 0.05, **
p ≤ 0.01, **** p ≤ 0.0001, ns, not
significant vs CDT + combi). c
Time course of intoxication with
CDT determined from images
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more pronounced for C2 toxin in comparison with CDT.
The established inhibitor BafA1, which inhibits acidifica-
tion of endosomes, was used as a control and led to a
delayed toxin-induced reduction of TEER. After 3–5 h of
incubation, BafA1 alone led to a decrease in TEER values
(supplemental Fig. 2). Solvents of the inhibitors had no
inhibitory effect in this assay (not shown). Cells treated
with the inhibitor combination alone behaved comparable
to untreated controls.

Delay of C2 and CDT intoxication by inhibitor
combination allows to reduce the concentrations of
the individual inhibitors

Since the combination of inhibitors alone impairs cell viability
after longer incubation periods (> 24 h) (Ernst et al. 2018b),
we tested whether the inhibitor combination is also effective if
the concentration of each inhibitor is reduced. A clear delay in
intoxication with C2 toxin was observed if inhibitors were
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Fig. 2 Combined inhibition of Hsp90, Hsp70, Cyps, and FKBPs delays
intoxication of human CaCo-2 cells with CDT. CaCo-2 cells were pre-
incubated at 37 °C for 30 min with the combination of the inhibitors in
two different concentrations (10 μM each or 20 μM CsA/FK506/
radicicol, 30 μM VER). Cells were then challenged with 150 ng/mL
CDTa + 300 ng/mL CDTb. For control, cells were left untreated, treated
only with CDT or with CDT in the presence of the respective solvent
amount (ethanol or DMSO) of the respective inhibitor combinations.
Cells were further incubated at 37 °C for 4.5 h. Subsequently, images
were taken (a) and cells were lysed. (b) Cell lysates were incubated with
fresh CDTa in the presence of biotin-labeled NAD+ allowing ADP-
ribosylation of G-actin that has not been modified during the incubation
of cells. Cell lysates were subjected to SDS-PAGE followed by Western

blot analysis. Biotin-labeled G-actin was detected by Strep-POD and
chemiluminescence. Transfer of protein by Western blotting was con-
firmed by ponceau S staining. Lane 1 = CDT, Lane 2 = CDT + solv.
combi 10 μM, Lane 3 = CDT + combi 10 μM, Lane 4 = CDT + solv.
combi 20/30 μM, Lane 5 = CDT + combi 20/30 μM, Lane 6 = con. (c)
Western blot signals were quantified by densitometry from 3 independent
experiments. Values were normalized to protein loading, i.e., the ponceau
S signal of each sample and in each experiment, values were normalized
to untreated controls. Values are given as mean ± SEM (n = 6, duplicates
from 3 independent experiments). Significance was tested using one-way
ANOVA followed by Dunnett’s multiple comparison test. (*p ≤ 0.05, ns,
not significant vs CDT)

945Naunyn-Schmiedeberg's Arch Pharmacol (2021) 394:941–954



applied in concentrations down to 1 μM (Fig. 4a). With the
concentration series used in this experiment, a threshold was
observed meaning that no inhibitory effect was detected when
0.1 μM of each inhibitor was applied. For CDT, a
concentration-dependency was also observed (Fig. 4b). The
lowest concentration of the inhibitors, for which a delay was
seen, was 10 μM. Interestingly, the recently described cyto-
toxic effect of the binding/translocation component CDTb in
the absence of its enzyme component CDTa was not affected
by the combination of chaperone inhibitors (Fig. 4c).

For C2 toxin, we also showed that treatment with lower
concentrations of each inhibitor in combination (10 μM each
= 10 + 10 + 10 + 10) still exhibits an enhanced protective ef-
fect when compared to a corresponding concentration of
40 μM of each single inhibitor (Fig. 5a, b). Moreover,
10 μM of inhibitor combination (10 μM each) protected cells
better than application of single inhibitors at a concentration of
10 μM (Fig. 5c). The inhibitor combination was also superior
when applied at lower concentrations (5 μM each) compared
to 20 μM of each single inhibitor (supplemental Fig. 3).
Comparing the effect of single inhibitors in concentrations
that would correspond to the combination used before (20 +
20 + 20 + 30 = 90 μM) was not analyzed because inhibitors at

90 μM either impaired cell viability or were not soluble (Fig.
5d, supplemental Fig. 4).

Up to now, in every intoxication experiment, cells were
pre-incubated with inhibitors for 30 min. Then, toxin was
added with the inhibitors still present in the cell culture medi-
um. Here, we showed that C2 intoxication was delayed even if
inhibitors were removed after 30 min pre-incubation (Fig. 6).
The observed inhibitory effect in samples with only pre-
incubation was comparable to samples with a continuous in-
hibitor incubation.

Inhibitory effect of inhibitor combination is most
pronounced for C2 intoxication compared to CDT and
iota intoxication of cells

The effect of the inhibitor combination in two different con-
centrations on C2, CDT, and iota intoxication of cells was
tested. The time courses of intoxication in Fig. 7 show that
the inhibitory effect was most obvious for C2 intoxication in
both concentrations tested. A slight delaying effect of the low-
er inhibitor concentration and a clear effect of the higher con-
centration were observed for CDT intoxication. For the iota
toxin, only the higher inhibitor concentration delayed the in-
toxication of cells.

Discussion

Bacterial AB-type toxins are important virulence factors
that cause severe diseases like cholera, whooping cough,
or diphtheria. The clostridial C2 and iota toxin cause
enterotoxicity in animals like calves and lambs and
therefore pose a threat to livestock health and survival
(Kurazono et al. 1987; Songer 1996). CDT harbors
medical relevance in humans (Papatheodorou et al.
2018). C. difficile infections (CDI) present one of the
most common healthcare-associated infections. CDI can
elicit gastrointestinal symptoms ranging from diarrhea to
pseudomembranous colitis and in most severe cases to
toxic megacolon and sepsis. These symptoms are caused
by the secreted AB-type toxins A (TcdA) and B (TcdB)
(Papatheodorou et al. 2018). The emerging of hyper-
virulent C. difficile strains aggravates the threat to pa-
tients and complicates the already difficult treatment
(Gerding et al. 2014; Papatheodorou et al. 2018).
Hyper-virulent C. difficile strains show increases in tox-
in secretion, antibiotic resistance, morbidity, and mortal-
ity as well as reoccurrence of symptoms. Moreover,
these strains produce CDT as an additional toxin to
TcdA and TcdB (Gerding et al. 2014). CDT ADP-
ribosylates G-actin in target cells which leads to F-
actin depolymerization and rounding of adherent cells.
This further contributes to the impairment of the
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intestinal barrier which can be experimentally demon-
strated by TEER measurements of epithelial cell layers.
Additionally, CDT elicits the formation of microtubule-
based protrusions in target cells (Schwan et al. 2009,
2011). Thereby, adherence of C. difficile to cells is en-
hanced in vitro and in vivo, and colonization of the gut
is improved.

Currently, C. difficile infection is treated with specific
antibiotics. Moreover, an antibody against TcdB is avail-
able. Since the secreted toxins are the cause of disease,
further therapeutic strategies are required that are

targeted at the toxins. Pharmacological inhibition of
chaperones and PPIases protects cells from intoxication
with CDT, C2 and iota toxin, and several other toxins
(Ernst et al. 2017b). We showed that CDT, C2, and iota
toxin directly bind to Hsp90, Hsp/c 70, and different
i soforms of Cyps (CypA, Cyp40) and FKBPs
(FKBP51, FKBP52) (Kaiser et al. 2009, 2011, 2012;
Ernst et al. 2015, 2016, 2017a). Table 1 gives an over-
view of toxins that are dependent or independent of Hsps
or PPIases. Inhibitors of these chaperones/PPIases specif-
ically inhibited the membrane translocation of the toxins’
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****p ≤ 0.0001, ns, not signifi-
cant vs CDT). (c) Vero cells were
pre-incubated at 37 °C for 30 min
with the combination of the in-
hibitors (10 μM each) or their
corresponding solvents. For con-
trol, cells were left untreated.
CDTb (600 ng/mL) was added
and images were taken after 1 h.
Percentage of cells with morpho-
logical changes, i.e., cell rounding
were determined from images.
Values are given as mean ± SD
(n = 6). Significance was tested
using one-way ANOVA followed
by Dunnett’s multiple compari-
son test. (ns, not significant vs
CDTb)
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enzyme components from endosomes to the cytosol
(Fig. 8). Other steps of toxin uptake or mode of action
like receptor-binding or in vitro enzyme activity were not
affected by the inhibitors. Moreover, we recently showed
that combining individual chaperone inhibitors has an
enhanced protective effect against the intoxication with
C2 toxin (Ernst et al. 2018b).

In this study, we extended these findings and demon-
strated that the combination of chaperone/PPIase inhibi-
tors has an enhanced protective effect against the medi-
cally relevant CDT. This inhibitory effect was shown by
analyzing CDT-induced changes in morphology, ADP-
ribosylation status of actin in CaCo-2 cells, and
transepithelial resistance of CaCo-2 monolayers.
Although this enhanced protective effect was statistically
significant, we observed that the inhibitor combination
exerts a stronger protection against C2 toxin compared
to CDT and iota toxin. C2, CDT, and iota share a similar
structure and uptake mechanism. However, several dif-
ferences between C2 and iota-like toxins that amongst
others include iota toxin and CDT have been described.
For example, iota toxin and CDT bind to the same re-
ceptor, the LSR (Papatheodorou et al. 2011, 2018), while
C2 toxin binds to carbohydrate structures on the cell
surface (Eckhardt et al. 2000). The enzyme component
of C2 toxin translocates from early endosomes, the en-
zyme component of iota toxin from intermediate
endosomes, and requires a membrane potential gradient
(Gibert et al. 2007). Moreover, during the last years, it
has been described that the binding/translocation compo-
nents of iota toxin and CDT show a cytotoxic effect that
is independent of their enzyme components (Nagahama
et al. 2011; Fischer et al. 2018, 2020; Kronhardt et al.
2018; Korbmacher et al. 2020). We observed that high
concentrations of CDTb or Ib (> 200–400 ng/mL) cause
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Fig. 6 Pre-incubation of cells
with inhibitor combination is
sufficient for delaying C2
intoxication. Vero cells were pre-
incubated with the inhibitor com-
bination in different concentra-
tions. One set of samples (left)
was immediately treated with C2
toxin (50 ng/mL C2I + 100 ng/
mL C2IIa), in the other set (right)
the inhibitor-containing medium
was removed, replaced by fresh
medium without inhibitors and
then, C2 toxin was added in the
same concentration as in the other
set. Percentage of intoxicated
cells was determined from im-
ages. a Percentage of cells with
morphological changes after 1.5 h
of intoxication. Significance was
tested using two-way ANOVA
followed by Dunnett’s multiple
comparison test. (****p ≤ 0.0001
vs CDT). b Time course of in-
toxication. Values are given as
mean ± SD (n = 3)

�Fig. 5 Inhibitor combination protects cells from C2 intoxication in
reduced concentrations compared to single inhibitors. Vero cells were
pre-incubated with single inhibitors (Rad, CsA, FK506, VER, 40 μM,
or 10 μM) or with the combination of inhibitors (10 μM of each inhibi-
tor). C2 toxin was added (50 ng/mL C2I + 100 ng/mL C2IIa) and cell
morphology was monitored. (a) Cell images are shown exemplarily after
3 h of incubation with C2 toxin. Percentage of cells with morphological
changes was determined from cell images. For better visualization, com-
parison of 40 μM of single inhibitors vs 10 μM of inhibitor combination
are shown in (b) and comparison of 10 μM of single inhibitors vs 10 μM
of inhibitor combination are shown in (c). Values for con, C2, and C2 +
combi 10μMare identical in both graphs. Values are given as mean ± SD
(n = 3). Significance was tested using two-way ANOVA followed by
Dunnett’s multiple comparison test. (****p ≤ 0.0001, ***p ≤ 0.001, ns,
not significant vs C2 + combi 10 μM). (d) Vero cells were incubated with
Rad, CsA, FK506, VER, or the combination of all four inhibitors at
indicated concentrations for 6 h. Cell images were taken. Then, medium
was exchanged to remove precipitation in the inhibitor samples and cell
viability was measured by MTS assay. Values are given as mean ± SEM
(n = 4 (triplicates from 4 independent experiments)). Significance was
tested using one-way ANOVA followed by Dunnett’s multiple compar-
ison test. (****p ≤ 0.0001, ***p ≤ 0.001, *p ≤ 0.05, ns, not significant vs
con)
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rapid cell rounding of Vero cells and decrease of cell
viability in the absence of CDTa or Ia (Fischer et al.
2018, 2020; Korbmacher et al. 2020). Moreover, pore
formation by CDTb in black lipid bilayers and living
CaCo-2 cells was shown (Kronhardt et al. 2018;
Korbmacher et al. 2020; Fischer et al. 2020). Here, we
showed that the cytotoxic CDTb effect was not inhibited
by the combination of the chaperone inhibitors, which
might be one reason why the inhibitory effect of the
inhibitor combination is weaker on CDT compared to
C2 toxin.

Despite this weaker effect on CDT compared to C2
toxin, a delay in intoxication of ~ 2 h could still be
relevant in context of clinical symptoms. Symptoms of

CDI last for longer time periods than analyzed in this
study (days vs hours). Nevertheless, extrapolation of
toxin concentrations and time courses of intoxication
from cell culture to the in vivo situation cannot be done
one-to-one. The effectiveness of chaperone inhibitors as
an anti-toxin strategy with protective effects has to be
further investigated in an animal model, e.g., the intes-
tinal loop model in mice (Fischer et al. 2020). To im-
prove protective effects over longer time periods, i.e.,
days, a repetitive application of low-dosed inhibitors is
also conceivable. Moreover, anti-toxin strategies are not
supposed to replace but rather to support the existing
therapeutic strategies. Thereby, the disease can be tack-
led on different levels: antibiotics to eliminate toxin-
producing bacteria, toxin antibodies to neutralize “free”
unbound toxin, and inhibitors (e.g., chaperone inhibi-
tors) to protect cells from toxin molecules that have
been internalized already.

Moreover, we showed that the concentration of the
individual inhibitors could be reduced to achieve a pro-
tective effect against CDT and C2 toxin if inhibitors are
applied in combination. In fact, the inhibitor combina-
tion still showed an enhanced protective effect against
C2 toxin when compared to increased concentrations of
the single inhibitors, i.e., 40 μM (or 20 μM) of single
inhibitors vs 10 μM (or 5 μM) of each inhibitor in
combination. For C2 toxin, pre-incubation of cells with
the inhibitor combination was sufficient to protect cells
from intoxication. These findings suggest that inhibitor
concentrations and exposure times could also be re-
duced in potential future therapeutic approaches which
might reduce the risk of side effects. Interestingly, CsA
and FK506 are licensed immunosuppressive drugs ap-
plied to patients for example after organ transplantation
(Liu et al. 1991). Rad and VER have been tested in
anti-tumor treatment which revealed some side effects
(Li and Buchner 2013; Schlecht et al. 2013). Besides
reduction of concentration and duration of treatment,
local application strategies and development of novel
inhibitor derivative with improved safety profiles might
also help to lower adverse effects.

Moreover, we and others showed that not only clostridial
binary toxins but several other toxins depend on chaperones
and PPIases (Lang et al. 2014; Ernst et al. 2017b). These
toxins are amongst others diphtheria toxin (Schuster et al.
2017), cholera toxin (Burress et al. 2014, 2019; Kellner et al.
2019), and pertussis toxin (Ernst et al. 2018a) which are im-
portant virulence factors and the causative agents of severe
diseases (Table 1). Comparable to C. difficile-associated dis-
eases, therapeutic options for these diseases are limited, and
novel approaches based on chaperones and PPIases might
provide the possibility of a more universal therapeutic
strategy.
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Fig. 7 Protective effect of inhibitor combination is most pronounced for
C2 intoxication of cells compared to CDT and iota intoxications. Vero
cells were pre-incubated with inhibitor combinations (10 μM Rad, CsA,
FK506, and VER or 20 μM Rad, CsA, FK506, and 30 μM VER). For
control, cells were left untreated or treated with the amount of solvents
that corresponds to the higher inhibitor concentrations (20/30 μM). Cells
were then challenged with (a) 50 ng/mL C2I + 100 ng/mL C2IIa, (b)
35 ng/mL CDTa + 70 ng/mL CDTb, or (c) 25 ng/mL Ia + 50 ng/mL Ib.
Percentage of cells with morphological changes was determined from
images. Values are given as mean ± SD (n = 3)
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