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Methods for early characterisation of the severity and 
dynamics of SARS-CoV-2 variants: a population-based time 
series analysis in South Africa 
Emily Reichert*, Beau Schaeffer*, Shae Gantt, Eva Rumpler, Nevashan Govender, Richard Welch, Andronica Moipone Shonhiwa, 
Chidozie Declan Iwu, Teresa Mashudu Lamola, Itumeleng Moema-Matiea, Darren Muganhiri, William Hanage, Mauricio Santillana, 
Waasila Jassat, Cheryl Cohen, David Swerdlow

Summary
Background Assessment of disease severity associated with a novel pathogen or variant provides crucial information 
needed by public health agencies and governments to develop appropriate responses. The SARS-CoV-2 omicron 
variant of concern (VOC) spread rapidly through populations worldwide before robust epidemiological and laboratory 
data were available to investigate its relative severity. Here we develop a set of methods that make use of non-linked, 
aggregate data to promptly estimate the severity of a novel variant, compare its characteristics with those of previous 
VOCs, and inform data-driven public health responses.

Methods Using daily population-level surveillance data from the National Institute for Communicable Diseases in 
South Africa (March 2, 2020, to Jan 28, 2022), we determined lag intervals most consistent with time from case 
ascertainment to hospital admission and within-hospital death through optimisation of the distance correlation 
coefficient in a time series analysis. We then used these intervals to estimate and compare age-stratified case-
hospitalisation and case-fatality ratios across the four epidemic waves that South Africa has faced, each dominated by 
a different variant.

Findings A total of 3 569 621 cases, 494 186 hospitalisations, and 99 954 deaths attributable to COVID-19 were included 
in the analyses. We found that lag intervals and disease severity were dependent on age and variant. At an aggregate 
level, fluctuations in cases were generally followed by a similar trend in hospitalisations within 7 days and deaths 
within 15 days. We noted a marked reduction in disease severity throughout the omicron period relative to previous 
waves (age-standardised case-fatality ratios were consistently reduced by >50%), most substantial for age strata with 
individuals 50 years or older.

Interpretation This population-level time series analysis method, which calculates an optimal lag interval that is then 
used to inform the numerator of severity metrics including the case-hospitalisation and case-fatality ratio, provides 
useful and timely estimates of the relative effects of novel SARS-CoV-2 VOCs, especially for application in settings 
where resources are limited.

Funding National Institute for Communicable Diseases of South Africa, South African National Government.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
The SARS-CoV-2 omicron (B.1.1.529) lineage (now BA.1, 
BA.1.1, and BA.2, among others) was first detected in 
Botswana and South Africa in specimens collected during 
early November, 2021.1–3 In less than 2 months, omicron 
became the most prevalent variant globally, probably due 
to its increased growth rate and divergent spike protein 
structure relative to the delta (B.1.617.2) variant of concern 
(VOC). Rapid rates of case growth suggested that the 
doubling time for omicron, now estimated in the range of 
1–2 days, is substantially shorter than for previous VOCs.4 
Assessing the extent to which growth rate will translate 
into public health impact depends upon multiple 
parameters, namely the magnitude and timing of severe 
disease following case ascertainment.

A surge in confirmed COVID-19 cases is followed 
temporally by one in hospital admissions and later, 
infection-associated deaths, as individuals take time to 
develop severe illness and seek care. For this reason, 
COVID-19-related hospital admissions and deaths are 
often referred to as lagging indicators of epidemic 
progression. Parameters describing the individual-level 
progression of the disease are often used to project the 
timing of these lags at the population level. Global 
estimates of the average time from symptom onset to 
hospitalisation range from 2 days to 10 days, and 
estimates of hospital length of stay for patients who die 
from infection are between 5 days and 19 days.5–8 While 
multiple studies have explored the effect of age on these 
intervals, they have produced conflicting results,5,8,9 
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although some variation can be expected due to 
contextual differences in testing policies and health-
seeking behaviour. Quantifying the relative intrinsic 
severity of a novel VOC is an even more complex process. 
Such estimates require extensive individual-level 
information that takes weeks or months to collect and 
often requires data linkage. Despite the challenges of 
estimating these parameters, they are paramount to 
developing an effective, tailored response to a novel 
variant.

More feasible to conduct are population-level analyses 
that can be performed with deidentified surveillance 
data. To our knowledge, very few studies have been 
conducted on the population-level lag intervals between 
detected COVID-19 cases, hospitalisations, and deaths, 
and those that have are not consistent, reporting that 
deaths lag COVID-19 cases by as little as 8 days and up to 
4–6 weeks.9–12 Estimates for this lag interval disseminating 
from media outlets are similarly unclear and 
unsubstantiated, with major sources reporting that 
deaths lag cases by “at least 3 weeks”.13 Clear, data-driven 
estimates of these lag intervals would allow for more 
accurate estimation of population-level disease severity 
metrics.

Here we develop a method to quantify and compare 
variant-specific disease severity using non-linked, 
population-level surveillance data from South Africa. 
We first perform a correlational analysis to quantify the 
lag interval between the confirmed COVID-19 case 
burden and hospital admissions, as well as within-
hospital deaths. Using these estimates, we calculate 
age-specific case-hospitalisation ratios (CHRs) and case-
fatality ratios (CFRs) for each variant-dominated wave. 
South Africa’s robust nationwide surveillance system 
for confirmed COVID-19 cases, hospital admissions, 
deaths, and genomic surveillance is well suited to this 
analysis.

Methods 
Data source 
Data used in this study were collected as part of national 
COVID-19 surveillance efforts by the National Institute for 
Communicable Diseases (NICD) in South Africa. 
Deidentified data summarising daily confirmed COVID-19 
cases, hospital admissions, and within-hospital deaths for 
individuals with COVID-19 were shared through a data-
sharing agreement between the Harvard T.H. Chan School 
of Public Health study authors and NICD. The DATCOV 
surveillance system captures all patients with a positive 
COVID-19 test result who are admitted or die, regardless 
of primary diagnosis or cause of death. Age-stratified data 
for the duration of the pandemic to date (March 2, 2020, to 
Jan 28, 2022) were obtained. Although age was provided in 
single-year increments, we categorised age into broader, 
clinically relevant categories (0–17, 18–29, 30–39, 40–49, 
50–64, 65–74, and ≥75 years) to limit strata with small case 
numbers and facilitate comparison with severity estimates 
from other settings. Cases, hospitalisations, and deaths 
with missing age data were excluded. If no specimen 
collection date was available for case data, the specimen 
received date was used as a proxy. Confirmed COVID-19 
cases include individuals with a positive laboratory-
reported PCR or, beginning in November, 2020, antigen 
test for SARS-CoV-2; except for the integration of antigen 
tests, the COVID-19 case definition has remained constant 
throughout the pandemic in South Africa.

No ethical approval was required for this analysis, 
which uses only aggregate, deidentified surveillance 
data.

Analytical approach 
Each of the four epidemic waves seen in the country over 
the past 2 years has been quite homogeneous in terms of 
the primary variant driving infections, making between-
wave comparisons appropriate. We defined the 

Research in context

Evidence before this study
We searched Google Scholar and medRxiv for articles published 
in English from database inception to Jan 1, 2022, with the 
search term “COVID-19” and additional terms such as “lag” and 
“time from cases to hospitalizations” or “time from cases to 
deaths”. Although some studies have attempted to quantify 
this lag interval, few have done so stratified by age and variant, 
and none used lag intervals to approximate population-level 
severity metrics.

Added value of this study
The current study uses a simple, correlational time series 
analysis rather than a more complex mathematical model for 
ease of implementation during emergence of novel 
SARS-CoV-2 variants. It proposes quantifying COVID-19 case-
to-hospitalisation and case-to-death lag intervals using 

surveillance data not only for research purposes, but also for 
timely and feasible estimation of the relative severity of novel 
variants, by age or other stratifying factors. This data-informed 
approach will allow for more accurate severity estimates before 
individual-level epidemiological studies are available, while also 
providing information regarding age-specific dynamics and the 
anticipated timing of hospitalisations and deaths following a 
surge in COVID-19 cases.

Implications of all the available evidence
An understanding of the morbidity and mortality associated 
with a novel SARS-CoV-2 variant is crucial to informing the 
public health response. Our proposed methodology is an 
accessible tool that can be added to currently deployed 
approaches for attaining a comprehensive understanding of the 
threat of a novel variant.
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beginning (t0) of each epidemic wave as day 1 (Sunday) of 
the first epidemiological week in which case growth 
(using a 7-day rolling average) exceeded a 5% increase 
from the previous week for at least 3 weeks. We defined 
the end (t1) of each epidemic wave as day 7 of the 
epidemiological week that was 4 weeks beyond the point 
at which case counts had stabilised or returned to t0 
levels, in an effort to capture all wave-associated hospital 
admissions and deaths. For omicron we used all available 
data, as cases have neither returned to t0 levels nor 
stabilised at the time of writing. Using these definitions, 
we obtained the date bounds for each wave (appendix p 2). 
Monthly national genomic surveillance data were 
referenced to support these date bounds; 5761 (88%) of 
6547 sequences in November, 2020, to March, 2021, were 
beta (B.1.351), 15 276 (79%) of 19 337 sequences in May to 
October, 2021, were delta, and 9514 (97%) of 
9808 sequences in November, 2021, to January, 2022, 
were omicron. Robust sequencing data were not 
available from early 2020 to evaluate the proportion of 
sequences that were D614G.

We calculated the distance correlation coefficient value 
for a range of case-hospitalisation (1–20 days), case-death 
(1–25 days), and hospitalisation-death (1–25 days) lag 
intervals deemed reasonable on the basis of the existing 
literature. The distance correlation coefficient (dCor) of 
two vectors X and Y takes the general form below:

dCor(X,Y) =
dCov(X,Y)

√dVar(X)dVar(Y)

Full equations for deriving the distance correlation and 
its component functions, the distance covariance (dCov) 
and variance (dVar), have been described previously.14 
Methods for calculating p values with a corresponding 
t-test of independence (here, α=0·05 significance level) 
have also been described previously.15 Lag intervals with 
the maximum value of dCor were defined as optimal, as 
values closest to 1 indicate the highest dependency 
between leading and lagging indicators. Distance 
correlation was used instead of the Pearson product-
moment correlation coefficient to allow for non-linear 
relations, ideal for time series data in which dependencies 
might exist in arbitrary dimensions.

Two interpretable measures of disease severity, the 
CHR and CFR, were then calculated for a given day by 
dividing the number of COVID-19-related hospital 
admissions or deaths D days in the future by the current 
7-day average COVID-19 case count, where D represents 
a lag interval ranging from 1 day to 25 days. Calculations 
involving daily case counts used a 7-day average to 
smooth out substantial declines in case-reporting on 
weekends. Furthermore, a within-hospital CFR was 
calculated by dividing the number of COVID-19-related 
deaths D days in the future by the current daily hospital 
admission count. CHRs and CFRs are often justly 

criticised for their reliance on case counts, a metric 
most vulnerable to under-reporting; a within-hospital 
CFR provides a useful severity measure for comparison 
since it relies only on hospitalisation and death counts. 
The population-wide CFR was included alongside the 
within-hospital estimate so that comparisons of severity 
inclusive of all individuals, not just those at highest risk 
of hospitalisation, could be made. CHRs and CFRs are 
not intrinsic measures of disease virulence, but rather 
effective, context-specific measures of a disease’s 
severity.

CHRs, CFRs, and within-hospital CFRs were calculated 
for each day using the optimal lag interval, stratified by 
age and variant. Results were then summarised across 
waves by taking the geometric mean of the daily estimates 
for days between the t0 and t1 thresholds. Geometric 
means were chosen to dampen the effect of outlying 
values, and geometric standard deviations—a 
dimensionless, multiplicative factor—were used to 
quantify spread. Finally, age-standardised severity 

See Online for appendix

Figure 1: Age stratified COVID-19 cases, hospitalisations, and deaths (7-day averages) in South Africa
Data are displayed from the first detected presence of SARS-CoV-2 in South Africa (March 2, 2020) to Jan 28, 2022, 
by (A) specimen collection date, (B) hospital admission date, and (C) death date, and are aggregated across all nine 
South African provinces. Vertical lines indicate t0 (dashed) and t1 (dotted) dates used to define each variant-
dominated wave. 
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measures were calculated by taking a weighted average 
of the age-specific estimates for each variant, weighted to 
the age distribution of confirmed COVID-19 cases 
throughout the entirety of the pandemic to date in South 
Africa (March 2, 2020, to Jan 28, 2022) to enable cross-
variant comparisons. Cross-variant comparisons assume 
testing, hospitalisation protocols, and reporting quality 
remain similar over time. 

Data cleaning and statistical analysis was performed 
using R 4.1.2 software. Distance correlation coefficients 
were calculated using the dcor function within the 
R package energy.16 Code used to produce all analyses 
and figures is available online. 

Sensitivity analysis 
To evaluate the accuracy and timeliness of this method, 
we conducted a sensitivity analysis using what data 
would have been available at 5-day increments post-t0 for 
the omicron and delta VOC-dominated waves. This 
retrospective way of evaluating the method’s 
performance in real time assumes there is no reporting 
lag (ie, all outcomes that occur on day 7 are available on 
day 7). Age-stratified severity measures from our 
proposed methods were compared with a conventional 
method, defined simply by dividing the cumulative 
lagging indicator (here, deaths) by the cumulative 
number of cases available at each time point without 
taking a lag interval into account. Both methods were 
compared with the overall CFR estimates calculated 
using the conventional method between t0 and t1, once 
all outcomes had theoretically been allowed to 
accumulate. 

Role of the funding source 
The funders had no role in study design, data collection, 
data analysis, data interpretation, or writing of the 
report.

Results 
In total, 3 603 618 cases, 496 648 hospitalisations, and 
100 150 deaths attributable to COVID-19 were detected 
in South Africa between March 2, 2020, and Jan 28, 2022. 
Missing age data led to the exclusion of a small fraction 
of confirmed cases (33 397 [0·9%]), hospitalisations 
(2462 [0·5%]), and deaths (196 [0·2%]), leaving a total of 
3 569 621 cases, 494 186 hospitalisations, and 
99 954 deaths. No specimen collection date was available 
for 1847 [0·05%] of 3 603 644 cases, and so the specimen 
received date was used as a proxy for these cases. The 
data were representative of all nine provinces and 
roughly evenly composed of cases captured by private 
sector (1 878 335 [52·6%] of 3 569 621) and public sector 
(1 691 286 [47·4%] of 3 569 621) laboratories. Four 
discernible epidemic waves, each dominated by a single 
variant—D614G, beta, delta, and omicron—account for 
most of the cases.17 Age-stratified epidemic curves for 
7-day averaged daily COVID-19 cases, hospital 
admissions, and deaths (figure 1) show the national 
burden of each variant. Specific t0 and t1 timepoints 
used to define each wave, as well as the total confirmed 
COVID-19 cases, hospital admissions, and deaths 
associated with each wave, can be found in the 
appendix (p 2).

The four distinct epidemic waves seen in South Africa 
make its national surveillance data well suited for 

Figure 2: Smoothed normalised density distribution of confirmed COVID-19 case counts over time, by age category and variant-dominated wave
Vertical dashed lines indicate dates on which the daily reported COVID-19 case count, aggregated across age categories, peaked for each wave. During the omicron-
dominated surge, infections appeared to first spread through younger age strata and gradually infiltrate older groups, albeit on a shorter timescale than previous 
variants of concern. For the delta-dominated wave, we noted a secondary peak dominant in the youngest age group (<18 years), corresponding to a return to school. 
In contrast, for the beta-dominated epidemic wave, case counts appeared to rise and fall almost uniformly across age divisions. 
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analyses comparing the morbidity and mortality of each 
variant. However, differences in the age structure of 
COVID-19 cases or hospitalisations over time, as well 
as differences in reporting, might confound these 
comparisons. Figure 2 was produced to further 
investigate the age structure of reported COVID-19 
cases over time. Although difficult to discern from the 

epidemic curves in figure 1, we now note that the 
timing of infections differs substantially across age 
strata, within and across epidemic waves. Subsequent 
analyses were stratified by age to produce more 
informative comparisons.

For each of the variant-dominated waves, we 
conducted a time series analysis to measure the 
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Figure 3: Distance correlation coefficients by lag interval, stratified by age category and variant-dominated wave
Heatmaps of distance correlations between (A) 7-day average COVID-19 confirmed cases and daily hospital admissions for lag intervals of 1–20 days, by variant and 
age category; (B) daily COVID-19 hospital admissions and daily within-hospital deaths for lag intervals of 1–25 days, by variant and age category; 
(C) 7-day average COVID-19 confirmed cases and daily within-hospital deaths for lag intervals of 1–25 days, by variant and age category. Distance correlation is 
bound between 0 and 1, and is 0 if and only if the leading and lagging indicators are independent. Optimal lag intervals, defined by the maximum value of the 
distance correlation coefficient, are indicated by black dots for each age category and variant. Apparent differences in lag intervals between variants and age 
categories are on the magnitude of days, not weeks. The black lines span lag intervals for which the distance correlation coefficient is ≥0·90. Plots are faceted 
vertically by the COVID-19 indicators being compared, and horizontally by variant-dominated waves. Each row represents an age category and each column a lag 
interval in days.
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strength of the association between COVID-19 case 
volume and hospital admissions, for a range of lag 
intervals (figure 3A). The optimal lag time, defined by 
the maximum distance correlation coefficient, 
represents the number of days the epidemic curve of 
COVID-19 cases should be shifted forward to optimise 
its alignment with hospital admissions. This analysis 
was repeated for the correlation between (1) hospital 
admissions and within-hospital deaths (figure 3B), and 
(2) case volume and within-hospital deaths (figure 3C). 
Optimal lag intervals determined for each VOC and age 
category (appendix p 3) were all derived from 
statistically significant dCor values (p<0·0001) and 
were shorter on average for some variants (D614G and 
beta) than others. An inverse association between the 
lag interval and age was observed across variants, with 
the decrease in lag as age increases most evident for 
cases-to-deaths. Hospital admissions generally lagged 
cases by less than 1 week, whereas deaths lagged cases 
by 1–2 weeks. 

CHRs, CFRs, and within-hospital CFRs for each age 
and variant category are shown in the appendix (pp 4–5). 
Figure 4 visualises the dependency of severity metrics 

on the selected lag interval, with optimal lag intervals 
obtained from our results in figure 3 marked on the 
graph to indicate our best severity estimates. Of note, 
the period by which hospitalisations and deaths are 
lagged from confirmed case data has a substantial 
impact on severity estimates, particularly for the 
omicron-dominated wave in which cases rose and fell 
rapidly.

Although biases in case reporting probably inflate 
severity estimates, assuming that these biases remain 
relatively constant over time, we can compare these 
morbidity and mortality measures across variants 
(figure 5). As expected, reductions in CHR, CFR, and 
within-hospital CFR were observed nearly consistently 
for omicron compared with previous variants, with 
reductions in morbidity and mortality appearing most 
pronounced in the oldest age groups. For example, 
compared with the most recent delta VOC, the CFR for 
omicron appeared to stay relatively constant in youth 
(≤17 years), to decrease monotonically by 24% to 73% in 
age strata encompassing those aged between 18 and 
64 years, and to stabilise around a 60–70% reduction in 
those 65 years and older. CHR and within-hospital CFR 

Figure 4: Age-stratified CHRs, CFRs, and within-hospital CFRs by variant
Age-specific CHR and CFR values were calculated using a range of lag intervals (1–20 days and 1–25 days, respectively) for each variant-dominated wave. Optimal lag intervals, as defined by the 
maximum value of the distance correlation coefficient, and their corresponding CHR and CFR values are denoted with a point for each age category and variant. Geometric mean values of CHR and CFR 
are plotted for each potential lag interval after performing the calculations across the entirety of each epidemic wave (t0 to t1). CHR=case-hospitalisation ratio. CFR=case-fatality ratio. *Within-hospital 
CFR refers to the estimated CFR among patients with COVID-19 admitted to hospital.
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reductions for omicron relative to previous variants 
followed similar patterns across age strata.

Finally, sensitivity analysis revealed that estimates 
obtained using our proposed methods began to stabilise 
earlier on in the progression of each variant-dominated 
wave compared with those obtained from conventional 
methods that do not account for the lag interval 
(appendix pp 6–7). These estimates not only stabilised 
but also converged to the conventional CFR measure 
calculated post-wave using all available data from t0 to 
t1. The sensitivity analysis supports the utility of this 
method for rapid, real-time assessment of a novel 
VOC’s characteristics. 

Discussion 
The COVID-19 pandemic has highlighted how a limited 
understanding of emerging variant’s characteristics can 
challenge public health responses. Using surveillance 
data of the SARS-CoV-2 epidemic waves in South 
Africa, we characterise age-specific estimates for the lag 
time between fluctuations in COVID-19 cases, hospital 
admissions, and within-hospital deaths. We then use 
the optimal lag intervals for each age strata to produce 
variant-specific, population-level severity estimates. 
Despite only stratifying by age, relative results by 
variant are consistent with those recently published, 

estimating the same metrics with adjustment for 
additional individual-level covariates.18–20

Our work highlights that applying parameters from 
previous strains of SARS-CoV-2 or not accounting for 
differences in age structures across VOC-dominated 
waves might lead to biases in projecting future 
hospitalisation and death toll trajectories. For VOCs 
with rapid growth rates such as omicron—which lead 
to a rapid rise and fall in cases, hospitalisations, and 
deaths—characterising accurate lag intervals is all the 
more important; overestimating these lag intervals can 
greatly distort disease severity estimates. The methods 
we outline here prove feasible and accurate using 
limited real-time data relative to those that do not take 
the lag interval into account.

Our proposed methodology faces several key 
limitations that must be acknowledged. First, as we 
compare results across SARS-CoV-2 epidemic waves and 
age groups, any change over time in case ascertainment, 
testing, or reporting policy might bias results. Relying on 
confirmed COVID-19 cases, which are chronically under-
reported, almost certainly inflates disease severity 
metrics; here, we assume cases are under-reported at the 
same rate over time, enabling comparison across 
epidemic waves. However, the extent to which this 
assumption is true for a specific setting must be 

Figure 5: Percent change in estimated CHRs, CFRs, and within-hospital CFRs across variant-dominated waves
Severity metrics are calculated separately for each age category and variant using the lag interval defined by the optimal distance correlation coefficient. Green 
indicates an improvement (or decrease) in the severity estimate relative to the variant of comparison, whereas red indicates a worsening (or increase) in the severity 
estimate. The colour intensity corresponds to the magnitude of the percent change. CHR=case-hospitalisation ratio. CFR=case-fatality ratio. *Within-hospital CFR 
refers to the estimated CFR among patients with COVID-19 admitted to hospital. †Overall refers to age-standardised severity estimates, an aggregate measure 
weighted to the distribution of cases in each age category throughout the pandemic in South Africa (March 2, 2020, to Jan 28, 2022) to enable cross-variant 
comparisons.
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evaluated, and an upward bias in CHRs and CFRs (the 
extent of which is also context-specific, dependent on the 
comprehensiveness of case surveillance) must be 
acknowledged.21,22 Death counts can also be affected by 
under-reporting and are estimated to be around three 
times higher in South Africa than reported, according to 
excess mortality estimates.23 Our proposed methods are 
best suited for comparison of severity measures to those 
of previous VOCs in the same setting; absolute severity 
estimates should not be overinterpreted and must be 
accompanied by a consideration of the data limitations in 
the setting of interest. In South Africa, national reporting 
of both positive PCR and antigen tests for SARS-CoV-2 
makes for a more robust denominator of confirmed 
cases. However, differences in testing recommendations 
over time, as well as testing strategies (targeted vs mass 
testing) which vary at the provincial level, might 
introduce biases.24 South Africa’s national surveillance 
data rely on reporting from both the public and private 
sector, which might also introduce variability in terms of 
patient populations, testing and admission policies, and 
in-hospital management.

We additionally acknowledge the uncaptured, 
differential effect that vaccination roll-out might have 
had on our findings. Vaccination did not become widely 
available until mid-2021, after the D614G and beta 
waves had swept through the country, and is still not 
available for those younger than 12 years.25 It is 
reasonable that immunity derived from both 
vaccination and previous infection contributed to the 
reduced disease severity of omicron we observed for 
most age strata, and the exception we see in youth 
(≤17 years) might reflect this cohort’s limited protection 
from vaccination.

It is unknown what proportion of hospitalised 
patients were admitted primarily due to COVID-19 
versus what proportion were incidental hospitalisations, 
or primarily hospitalised for other conditions but 
subsequently identified as cases in screening. In 
late 2020, subsequent to the D614G wave, South Africa 
shifted to routine testing of all admitted patients, 
probably increasing the proportion of incidental 
hospitalisations. The risk of nosocomial transmission 
is not trivial either; we cannot quantify the extent of 
hospital-acquired infections in our data, which might 
also increase over time due to increased transmissibility 
of later VOCs such as omicron. We acknowledge that a 
high volume of incidental hospitalisations might lead 
to a downward bias in lag interval estimates for the 
time from cases to hospitalisations and an upward bias 
in CHR point estimates, and that this proportion might 
differ with successive waves and by age group.

Finally, as individual identifiers for linking COVID-19 
cases, hospitalisations, and deaths were not available, we 
aggregated three different datasets containing these 
age-stratified daily counts. One must avoid extrapolating 
results to individual-level questions (eg, how long is the 

average time interval from COVID-19 diagnosis to death?), 
as we can characterise only population-level dynamics 
from these data. No information on the estimated time of 
infection or symptom onset was available, which also 
constrained our ability to study the individual-level 
progression of disease. Recently published CHR and 
within-hospital CFR estimates for each of the four variants 
in South Africa based on individual-level data (and 
adjusted for age, sex, race, comorbidities, public or private 
sector, and province) vary by up to 8·3% from our age-
standardised estimates; however, relative reductions in 
these severity metrics across VOCs are highly similar.20

It is unpredictable where the next SARS-CoV-2 VOC 
will first be detected; the virus is agnostic to which 
countries are best equipped to quickly respond and collect 
data to inform disease severity estimates. Data 
infrastructure capable of collecting longitudinal 
individual-level data is key for pandemic preparedness, 
and our proposed methods do not replace the need for 
gold standard epidemiological case investigation; rather, 
we propose alternative methods that can be used to 
supplement existing approaches, particularly when time 
or data are limited. Here, using NICD’s robust national 
surveillance data, we propose a unique set of methods 
that can be applied in real-time in a variety of settings to 
crudely estimate severity measures relative to previous 
VOCs using population-level surveillance data. Our 
proposed methods provide a starting point for parsing 
out information from epidemic curves and estimating 
age-specific indicators of severity to inform public health 
responses.
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Data sharing
Aggregate data of reported COVID-19 cases, hospital admissions, and 
attributable deaths by province, sector, ward of admission, and date are 
available to the public through NICD’s DATCOV reports. Further third-
party requests for research purposes require a data sharing agreement. 
Data inquiries can be directed to datcov19@nicd.ac.za. The R code used 
to implement the analysis is available online.
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