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Abstract: In this article, a study was presented on the adsorption activity of a new nanocomposite
particle Fe3O4@1, which was synthesized by combining [Cu(HL)2]2H2[P2Mo5O23]·10H2O (1)
(HL = 2-acetylpyridine semicarbazone) and Fe3O4 nanoparticles. Transmission electron microscopy
and X-ray powder diffraction analyses revealed that Fe3O4@1 possessed high crystallinity with an
average particle size of 19.1 nm. The adsorption activity of the as-prepared Fe3O4@1 was investigated
by photometrically monitoring the removal of methylene blue, rhodamine B, safranine T, gentian
violet, fuchsin basic, and methyl orange from aqueous solutions. Significantly, we could easily
separate Fe3O4@1 from the reaction media by applying an external magnet. Furthermore, the
recycling performance was observed using methylene blue, revealing the recyclability and high
stability of Fe3O4@1. It was shown that Fe3O4@1 is a promising candidate material for adsorbing
cationic dyes in aqueous media.
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1. Introduction

With the development of human society, the discharge of a great deal of wastewater has come to
pose a significant threat to the hydrographic environment and public health because of the toxicity and
carcinogenicity of substances present in this material [1–3]. Dyes have been widely used in various
industries, such as paper production, textile production, leather tanning, food technology, and hair
coloring. It is estimated that more than 100,000 commercially available dyes are produced at a rate of
over 7× 108 kg every year [4]. The discharge of dyes into the environment causes both toxicological and
esthetic problems [5]. There are diverse toxic substances and organic compounds in this wastewater,
such as methylene blue (MB), rhodamine B (RhB), safranine T (T), gentian violet (GV), fuchsin basic
(FB), and methyl orange (MO), which are harmful to fish and other aquatic organisms [4–6]. Until
now, more than 15% of dye loss is due to incomplete depletion of dye washing operations and the
dyeing process [7]. The discharge of these dyes without any treatment threatens aquatic ecosystems
and human health. It is highly desirable to seek proper treatment strategies to eliminate dye residues
from wastewater systems. Hence, appropriate treatment strategies are necessary to eliminate dyes
from wastewater.

At present, two main strategies are extensively explored. One is photocatalytic degradation [8],
which is an advanced oxidation process that mainly occurs under light irradiation and with suitable
photocatalytic materials. However, the photocatalytic activity of photocatalytic materials for the
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degradation of dyes present in water depends largely on the band gap, surface area, and generation of
electron-hole pairs [9]. The other strategy is the adsorption process. It has been demonstrated that
adsorption is a suitable and effective approach because of its simple design, facile working conditions,
low energy requirements, and insensitivity to toxic substances [10]. The adsorption materials have
attracted considerable interest by using nanomaterials as efficient adsorbents in aqueous media [11,12].

In the last few years, polyoxometalates/nanoparticles (POMs/NPs) have been successfully used
for dye degradation [13]. Due to its unique properties, the combination of polyoxometalates with
nanoparticles has attracted wide attention. On the one hand, POMs have aroused considerable
interest in catalysis, redox reactions, medicine, magnetism, materials chemistry, electrochemistry,
and photochemistry, due to their oxo-enriched surfaces, high electronegativity, controllable shape,
tunable acid-base properties, and many active coordination sites [14]. On the other hand, magnetic
Fe3O4 nanoparticles are most widely known as environmentally-friendly materials for industrial-scale
synthesis of fine chemicals, due to their unique physical and chemical properties [15]. The combination
of POMs and Fe3O4 nanoparticles at the molecular scale will be conducive to the resulting complex
with new features and multiple special functionalities, which are different from those of the individual
ingredients alone. Therefore, the purpose of this work was to use polyoxometalates and nanoparticles
to assess the adsorption potential of nanocomposites for organic dyes. Appropriate precursors and
synthetic methods are utilized to synthesize the target products.

Herein, we present an example of Fe3O4@1, which has selective adsorption behavior for cationic
organic dyes: MB, RhB, T, GV, and FB. The Fe3O4@1 could be easily isolated from sample solution
by applying an external magnetic field. Fe3O4@1 exhibited stability and recyclability. These results
proved that the Fe3O4@1 could be of interest as a magnetic adsorbent.

2. Materials and Methods

2.1. Materials

All reagents and solvents were purchased commercially and used without further purification.
Copper(II) perchlorate hexahydrate (Cu(ClO4)2·6H2O, 98%), sodium molybdate dihydrate
(Na2MoO4·2H2O, 99%) and phosphoric acid (H3PO4, 85%) were purchased from J&K Scientific
Ltd. (Beijing, China) Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene
glycol) (PEO-PPO-PEO, Mr = 800), iron(III), acetylacetonate (Fe(acac)3, 99.9%), 1,2-hexadecanediol
(C14H29CH(OH)CH2(OH), 90%), octyl ether (C8H17OC8H17, 99%), DMF (HCON(CH3)2, 99.5%) and
solvents such as hexane and ethanol were purchased from Aldrich (Shanghai, China).

2.2. General Procedures

The structures of nanoparticles were analyzed by transmission electron microscopy (TEM, JEOL
2010F, JEOL Ltd., Tokyo, Japan) including the mode of high resolution (HRTEM) and X-ray powder
diffraction (XRD, X’Pert Pro, Bruker, Karlsruhe, Germany). Magnetic properties were determined
by a vibrating sample magnetometer (VSM, Lakeshore 7300, Quantum Design, San Diego, CA,
USA). Elemental analyses (C, H and N) were implemented on a Flash 2000 analyzer (Elementar,
Hessia, Germany). Inductively coupled plasma (ICP) analysis was performed on a optima 2100DV
(PerkinElemer, Waltham, MA, USA). The infrared (IR) spectrum was obtained on a VERTEX 70
(Bruker, Karlsruhe, Germany) using KBr pellets in the range of 4000–500 cm−1. The UV–Vis absorption
spectrum was recorded with a TU–1900 spectrometer (Beijing Purkinje General Instrument Co., Ltd.,
Beijing, China) at room temperature. X-ray photoelectron spectroscopy (XPS) was carried out on a
Thermo ESCALAB 250XI photoelectron spectrometer (ThermoFisher Scientific, Waltham, MA, USA)
with Al Kα X-ray as the excitation source.
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2.3. Synthesis

Synthesis of compound [Cu(HL)2]2H2[P2Mo5O23]·10H2O (1):

A 25 mL solution (Vmethanol/Vwater = 2/3) containing Cu(ClO4)2·6H2O (0.093 g, 0.25 mmol) and
2-acetylpyridine semicarbazone (0.098 g, 0.5 mmol) was stirred at 60 ◦C for 30 min. After the solution
was cooled to room temperature, it was added to a 10 mL aqueous solution of Na2MoO4·2H2O
(0.242 g, 1.0 mmol) with one drop of H2O2, and the pH was maintained at approximately 3.0 by
adding concentrated H3PO4 under continuous stirring. The mixture was stirred for another 30 min
and then cooled and filtered. The filtrate was placed at room temperature for slow evaporation. Blue
crystals of 1 were isolated after 3 days. Yield: approx. 59% (based on Cu). Elemental analysis for
C32H58Cu2Mo5N16O37P2: calcd. C 19.90, H 3.02, N 11.60, Mo 24.87, Cu 6.61; Found: C 19.94, H 3.04,
N 11.63, Mo 24.89, Cu 6.59. IR (KBr, cm−1): 3394 (m), 3186 (w), 1667 (s), 1602 (w), 1528 (m), 1471 (m),
1440 (w), 1378 (s), 1332 (w), 1304 (w), 1269 (w), 1201 (m), 1163 (w), 1115 (m), 1055 (m), 1008 (m), 922 (s),
903 (s), 782 (w), 697 (s), 569 (m), 552 (m), 503 (w).

Synthesis of Fe3O4@1:

Fe3O4@1 was obtained through an ultrasonic method in a 25 mL beaker. Fe3O4 (7.5 mg), which
were synthesized according to the method reported in the literature [16,17], and 1 powder (50 mg)
were added to a beaker that contained water (5 mL) and ethanol (5 mL), and then a uniform suspension
was obtained via ultrasound for approximately 10 h. The resulting magnetic products, Fe3O4@1, were
collected from the suspension by using a magnet, and washed with water several times.

2.4. Crystallography

A high-quality single crystal was carefully selected under an optical microscope. Crystallographic
data were collected with a Bruker SMART-CCD APEX II diffractometer (Bruker-AXS, Karlsruhe,
Germany) with a graphite-monochromator with Mo Kα radiation (λ = 0.71073 Å). The structures were
solved via direct methods, and refined by full-matrix least squares on F2 with anisotropic displacement
parameters for all nonhydrogen atoms using SHELXTL [18]. Hydrogen atoms were added in idealized
geometrical positions. The crystal data, experimental details, and refinement results were listed in
Table 1. The CCDC number for 1 is 128509.

Table 1. Summary of crystal data and refinement results for compound 1.

Crystal Data 1

Empirical formula
Formula weight

C32H58Cu2Mo5N16O37P2
1909.52

crystal system Triclinic
space group P-1

Temperature (K) 296(2)
a (Å) 14.0430(7)
b (Å)
c (Å)

α (deg)

14.6752(7)
18.3928(9)

71.4980(10)
β (deg)
γ (deg)

Volume (Å3)
Z

69.5040(10)
63.3060(10)

3113.5(3)
2

Calculated density (g cm−3) 2.037
Absorption coefficient (mm−1)

Crystal size (mm3)
1.804

0.41 × 0.33 × 0.25
Theta range for data collection (deg) 1.58–25.00
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Table 1. Cont.

Crystal Data 1

F(000) 1876
Limiting indices −16 ≤ h ≤ 16, −14 ≤ k ≤ 17, −14 ≤ l ≤ 21

Rint 0.0165
parameters 833

Reflections collected/unique 10869/9512
Final R indices [I ≥ 2σ(I)] R1 = 0.0318, wR2 = 0.0902

R indices (all data) R1 = 0.0379, wR2 = 0.0931
Largest diff. peak and hole (e Å−3) 2.103, −0.677

2.5. The Experimental and Procedures Adopted for the Adsorption

The adsorption activities of the nanocomposites were performed in the dark by measuring the
adsorption rate of different dyes solutions at room temperature. The typical process is as follows:
2 mg of Fe3O4@1 was suspended in 10 mL of a 15 mg L−1 MB aqueous solution. The solutions were
magnetically stirred in the dark. At several time intervals, 4 mL of sample was removed, centrifuged
several times to separate Fe3O4@1, and a clear solution was obtained for the UV–Vis analysis.

3. Results and Discussion

3.1. Crystal Structure Description of Compound 1

The single-crystal X-ray diffraction analysis reveals that compound 1 is triclinic. Compound 1
(inset of Figure 1a) consists of one [P2Mo5O23]6− unit [19], two [Cu(HL)2]2+ coordination groups and
ten lattice water molecules. Each of two crystallographical independent copper(II) ions with a similar
coordination environment adopts a six-coordinate distorted octahedral geometry (Figure 1b). The
crystallographic analysis showed that each Cu(II) is coordinated by two O atoms and four N atoms
from two HL ligands, with Cu–N bond lengths of 1.949(3)–2.200(4) Å and Cu–O bond lengths of
2.096(3)–2.298(3) Å. Figure 1c exhibits the polyhedral/wire-stick representation of the 3D network
along the a-axis.
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3.2. XRD Patterns

According to Figure 2, the structures of 1, Fe3O4@1 and Fe3O4 are analyzed by XRD. Figure 2a
shows the diffraction pattern of 1. Figure 2c shows the diffraction pattern obtained from Fe3O4 matched
to the standard diffraction peaks (Figure 2d) of the corresponding Fe3O4 (JCPDS No. 88-0315), the
diffraction peaks located at 30.15◦, 35.52◦, 43.17◦, 53.56◦, 57.09◦, 62.70◦ and 74.18◦ are indexed to the
(220), (311), (400), (422), (511), (440) and (533) planes of the Fe3O4. Figure 2b exhibits the diffraction
pattern of Fe3O4@1, which reveal that 1 and Fe3O4 are included in Fe3O4@1.
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3.3. IR Spectroscopy

The IR spectra of 1, Fe3O4@1 and Fe3O4 in the region of 4000–500 cm−1 are shown in Figure 3.
In the spectrum of 1, there are two strong characteristic bands at 703 and 928 cm−1 assign to the
ν(Mo–Ob) and ν(Mo–Ot) modes of [P2Mo5O23]6− [20]. The peak at 1061 and 3421 cm−1 assigned to
P–O and O–H vibration, respectively [21]. The peaks at, 782, 1620 and 3190 cm−1 are attributed to the
ν(C–O), ν(C=N) and ν(N–H) vibration of HL [22,23]. Fe3O4 shows a broad peak at 589 cm−1 associated
with the stretching vibration of Fe–O [17]. These characteristic vibration and bending modes reappear
in spectrum of Fe3O4@1. These results are in good agreement with those of the XRD analysis, which
further illustrates that Fe3O4 and 1 exist in Fe3O4@1.
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3.4. UV-Vis Spectroscopy

The UV-Vis spectra of 1, Fe3O4@1 and Fe3O4 dispersed in distilled water are shown in Figure 4.
Compound 1 shows two peaks at 209 and 316 nm due to the Ot→Mo and Ob→Mo charge-transfer
bands, respectively (Figure 4a) [20]. Figure 4c shows that the UV spectrum of Fe3O4 has no obvious
absorption bands. Figure 4b shows the peak pattern of Fe3O4@1, which is similar to that of 1.
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3.5. XPS Characterization

The X-ray photoelectron spectra (XPS) for Fe3O4@1 were measured in order to identify the
elemental composition. The binding energies were calibrated using C 1s peak (284.6 eV). The
fingerprint scanning of Mo and Fe in Fe3O4@1 was mainly analyzed. The peaks of Mo 3d3/2 at
235.2 and Mo 3d5/2 at 232.2 eV suggest the existence of Mo and assignation of all the Mo atoms in
the +VI oxidation state (Figure 5a) [24]. Figure 5b shows the XPS spectrum of Fe 2p. There is an
asymmetrical Fe 2p3/2 XPS signal for the samples, which could be divided into three components
attributed to the Fe3+ species at 710.2, 710.3, 712.4 eV, two components assigned to Fe2+ species at 709.3
and 710.4 eV [25,26]. These results further confirmed the existence of Fe3O4 and 1 in Fe3O4@1.
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3.6. TEM Morphology and Particle Size Distribution of Fe3O4 and Fe3O4@1

The morphology, nanostructure, particle size and size distribution of the prepared Fe3O4 and
Fe3O4@1 were recorded by TEM and HRTEM. As shown in Figure S1, the procured Fe3O4 and Fe3O4@1
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are actually uniform and almost spherical in shape. The histograms in Figure 6a,c shows the size
distributions of Fe3O4 and Fe3O4@1, with average diameters of approximately 17.6 nm and 19.1 nm,
respectively, which are rationally represented by a Gaussian function. Figure 6b,d represents the
HRTEM images of the single Fe3O4 and Fe3O4@1. The distances of 2.60 Å and 2.53 Å correspond to
the (311) and (311) reflections of the Fe3O4 phase. This further confirms the formation of a stable POM
surface corona in Fe3O4@1.
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3.7. Magnetic Properties of Fe3O4@1

In order to investigate the magnetic performance of Fe3O4 and Fe3O4@1, VSM technology was
used. Figure 7 shows the hysteresis curves of Fe3O4 and Fe3O4@1 at 300 K. Notably, Fe3O4@1 shows a
coercivity of ~0.41 Oe and mass saturation magnetization of ~19.30 emu g−1 compared with the values
of ~0.22 Oe and ~68.65 emu g−1 for Fe3O4. The decrease in mass saturation magnetization may result
from the contribution of the non-magnetic POM to the total mass of particles [27].
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3.8. Separation and Redispersion Process of Fe3O4@1

Figure S2 visually demonstrated the separation and redispersion process of the Fe3O4@1 in water.
Under the influence of an applied magnetic field, Fe3O4@1 changed from a brown uniform dispersion
to a transparent solution in water, and the nanocomposites were collected by a piece of a magnet,
leaving no free Fe3O4@1 visible. Namely, we carried out magnetic separation and found that all
Fe3O4@1 were collected by the magnet. The collected nanoparticles can be readily and reversibly
dispersed by stirring after removing the magnetic field, and the process can be repeated.

3.9. Dye Adsorption Experiment

In this study, a typical cationic dye, MB, was selected to investigate the effect of dye concentration
on adsorption. The concentration of the dye solution was determined by measuring the absorbance
using a UV-Vis spectrophotometer.

Effects of adsorbents on adsorption:

In order to select the optimum usage amount of the adsorbent, a series of experiments with
constant concentration of MB (10 mL, 15 mg L−1) solution were performed. Figure 8 shows the trends
of normalized MB concentrations within 0–3 h at the given time intervals (Ct, the MB concentration
after adsorption at given time intervals; C0, the MB concentration before adsorption). These results of
the incremental usage amount of Fe3O4@1 (0, 0.5, 1.0, 1.5, 2.0 and 2.5 mg) indicate that the optimum
usage amount is 2 mg.
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The effect of dye concentration:

Figure S3 shows that the adsorption ability of Fe3O4@1 is affected by the concentration of the
dye solution. In the adsorption experiment, MB solutions of 5, 10, 15, 20, 25, and 30 mg L−1 were
obtained by diluting 30 mg L−1 MB solution, and 2 mg Fe3O4@1 was used as the adsorbent to remove
MB. As seen in Figure S3, the adsorption efficiency of 10 mL of 5, 10, 15, 20, 25, and 30 mg L−1

MB solutions quickly reached 91.9%, 93.2%, 93.3%, 92.1%, 70.2%, and 83%, respectively, in the first
30 min. The adsorption efficiency of the MB solution reached 93.7%, 95.2%, 96.9%, 97.2%, 89.4%, and
95.5%, respectively, within 120 min. As exhibited in Figure 9, the UV-Vis spectroscopy results show
that Fe3O4@1 displays a perfect ability to remove MB. And the optimum concentration of the dye is
15 mg L−1. And a pseudo-first-order model and pseudo-second-order kinetic model were used to fit
the experimental data (Figure 9). As expected, high correlations between the experimental data for the
adsorption of MB by the nanocomposite and the pseudo-second-order kinetic model were indicated by
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the R2 values. These results strongly demonstrate that the great adsorption performance of Fe3O4@1.
This is due to electron transfer and other chemical adsorption rather than simple adsorption of single
molecules with the increase of MB concentration [28].
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Active site exploration:

For comparison with Fe3O4@1, the staring compounds 1 and Fe3O4 under the same condition
was also tested. Typically, 2 mg of adsorbent is added to 10 mL of 15 mg L−1 dye solution under
stirring conditions, and the concentration of the solution is detected for a period of time. As seen in
Figure 10, 1, Fe3O4 and Fe3O4@1 were able to adsorb the MB in the dark, and the removal efficiency
for 1, Fe3O4 and Fe3O4@1 were up to 96.5%, 51.4%, and 96.9%, respectively. Obviously, the Fe3O4

sample showed a lower adsorption capacity for MB. We speculated that the adsorption reaction of
Fe3O4@1 might be concentrated on 1.
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The reusability and stability of the composite material:

The reusability and stability of the materials have attracted considerable attentions. This will
contribute to the process intensification, and minimize environmental burden [29,30]. To verify the
stability of the Fe3O4@1 and recover them in adsorption experiments, cycle tests of Fe3O4@1 on
removing MB were conducted. After each cycle, the adsorbent was simply centrifuged because it is
insoluble in water. After the adsorbed MB Fe3O4@1 was immersed absolute alcohol to release MB at
room temperature, the regenerated Fe3O4@1 was filtered and further washed with absolute alcohol.
After that, regenerated Fe3O4@1 was reused to investigate the adsorption capacity. Under stirring
conditions, 10 mg of adsorbent was added to 20 mL of 15 mg L−1 MB solution.

Figure 11 shows that the adsorption capacity of Fe3O4@1 on MB. After two cycles, the regenerated
adsorbent can still remove 96% of MB from the solution. The IR spectra of Fe3O4@1 bulky samples
collected from the adsorption experiments after two runs agreed well with the fresh samples, which
indicated that the adsorbents remained intact (Figure 11b). These results show that the Fe3O4@1 is
reusable in adsorption experiments, which has potential application prospects in wastewater treatment.
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and recovered Fe3O4@1.

In order to further demonstrate the adsorption effect of Fe3O4@1 on organic dyes, we explored a
series of experiments in removing the different types of organic dyes, such as cationic dyes RhB, T, GV,
FB and anionic dye MO. As shown in Figure S4, the absorption peak of each cationic dye decreased
while time increased and the adsorption efficiency of RhB, T, GV and FB were 96.3%, 89.1%, 96.1%, and
94.5% in 180 min, 60 min, 20 min, and 180 min, respectively. Figure 12 indicates that the absorption
peaks of anionic dye MO. The reason of the same adsorbent with different effects on removal of dyes
is attributed to the electrostatic interactions between Fe3O4@1 and cationic dye molecules, which
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have been verified by the pseudo-second-order kinetic model [28]. Accordingly, Fe3O4@1 composite
material is an adsorbent for cationic dyes in the dye-wastewater.
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4. Conclusions

The development of removing organic dyes from wastewater has attracted increasing concerns.
Fe3O4@1 has been synthesized by combining Fe3O4 and polyoxometalate. The morphology and
structural analyses reveal the narrow particle size distribution, with an average diameter 19.1 nm. The
magnetic characterization shows that Fe3O4@1 has superparamagnetic or soft ferromagnetic behavior.
The Fe3O4@1 has selective adsorption behavior toward cationic organic dyes: MB, RhB, T, GV, and FB,
with adsorption efficiencies of 96.9%, 96.3%, 89.1%, 96.1%, and 94.5%, respectively. Importantly, the
nanocomposite particle Fe3O4@1 exhibits recyclability and stability. After two cycles, the regenerated
adsorbent remained intact, and could still remove 96% of MB from the solution. The basic research and
application of Fe3O4@1 in the magnetic adsorption field are promising. Future work will concentrate
on improving the activity and selectivity for organic dyes and the synthesis of novel nanocomposites.
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