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Integrative transcriptomic meta-
analysis of Parkinson’s disease and 
depression identifies NAMPT as a 
potential blood biomarker for de 
novo Parkinson’s disease
Jose A. Santiago, Alyssa M. Littlefield & Judith A. Potashkin

Emerging research indicates that depression could be one of the earliest prodromal symptoms or 
risk factors associated with the pathogenesis of Parkinson’s disease (PD), the second most common 
neurodegenerative disorder worldwide, but the mechanisms underlying the association between 
both diseases remains unknown. Understanding the molecular networks linking these diseases could 
facilitate the discovery of novel diagnostic and therapeutics. Transcriptomic meta-analysis and network 
analysis of blood microarrays from untreated patients with PD and depression identified genes enriched 
in pathways related to the immune system, metabolism of lipids, glucose, fatty acids, nicotinamide, 
lysosome, insulin signaling and type 1 diabetes. Nicotinamide phosphoribosyltransferase (NAMPT), 
an adipokine that plays a role in lipid and glucose metabolism, was identified as the most significant 
dysregulated gene. Relative abundance of NAMPT was upregulated in blood of 99 early stage and 
drug-naïve PD patients compared to 101 healthy controls (HC) nested in the cross-sectional Parkinson’s 
Progression Markers Initiative (PPMI). Thus, here we demonstrate that shared molecular networks 
between PD and depression provide an additional source of biologically relevant biomarkers. Evaluation 
of NAMPT in a larger prospective longitudinal study including samples from other neurodegenerative 
diseases, and patients at risk of PD is warranted.

Parkinson’s disease (PD) is a devastating neurodegenerative disease that affects movement and it is characterized 
by the progressive and selective loss of nigrostriatal dopamine neurons and the presence of proteinaceous cyto-
plasmic inclusions called Lewy Bodies1. Although PD is predominantly characterized as a movement disorder, 
emerging research indicates that a wide range of non-motor conditions including constipation, sleep distur-
bances, diabetes, cognitive decline, and depression may play a role in the development of PD. Among these 
conditions, major depressive disorder (MDD) is one of the most common non-motor symptoms with up to 35% 
or more PD patients suffering from depression early in the disease2,3. Characteristic symptoms of depression 
including loss of appetite, sleep disturbances, fatigue, and loss of energy, are commonly observed in PD patients4.

Increasing evidence from epidemiological studies suggest that patients with MDD have an increased risk of 
PD compared to patients with other chronic conditions including osteoarthritis and diabetes5,6,7–11. More recently, 
a direct association between depression and subsequent development of PD was confirmed in the largest to date 
case control study including over 140,000 individuals with depression. Strikingly, the association between depres-
sion and PD was significant for a follow-up period of more than 2 decades suggesting that depression may be one 
of the earliest prodromal symptoms of PD12. Despite this progress, the mechanisms underlying the association 
between PD and depression remains poorly understood.

Diagnosis of PD and MDD relies upon the assessment of clinical symptoms and to date, there are no fully val-
idated biomarkers for either PD or MDD. In this context, blood biomarkers are promising and several molecular 
signatures have been identified in blood of PD patients13–18 and MDD patients19–21 with the potential to become 
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useful clinical diagnostics. Recently, network-based approaches have been employed to identify novel diagnostics, 
biological pathways and therapeutic targets for several neurodegenerative disorders22–24 and depression19. More 
relevant, network-based approaches have been used to dissect the molecular networks in PD and diabetes and 
to identify biologically relevant biomarkers for PD25–28. Using similar methods, herein we interrogate the blood 
transcriptome of untreated PD and MDD patients to identify shared dysregulated pathways and biologically 
relevant biomarkers. We identified nicotinamide phosphoribosyltransferase (NAMPT), an adipokine involved 
in lipid, glucose metabolism, inflammation and insulin resistance29, as a potential blood biomarker for de novo 
PD patients.

Results
Transcriptomic and network analyses of PD and MDD blood microarrays.  To identify a common 
transcriptional signature in blood of PD and MDD patients, we searched the curated database NextBio Research 
for human microarray studies from untreated PD and MDD patients (See Materials and Methods). Four microar-
ray studies met the inclusion criteria and were used for further analysis (Table 1). The overall analysis strategy is 
presented in Fig. 1. We first analyzed the overlap in gene expression between each individual PD and MDD data-
sets. Only genes with a fold change of 1.2 or higher and a p-value of less than 0.05 were included in the analysis. 
Using this cut-off criteria, few genes in blood were identified as overlapping between each PD and MDD dataset 
(Fig. 2). Venn diagram analysis identified NAMPT as the only overlapping gene in all four datasets of untreated 
PD and MDD patients (Fig. 2).

In order to identify the biological and functional properties of genes shared between PD and MDD, we per-
formed network analysis on each pair of shared genes between PD and MDD datasets using GeneMANIA30 
(Fig. 3). Genes within these networks were enriched in pathways related to the immune system (p =​ 8.6E-09), 
adipocytokine signaling (7.4E-08), epidermal growth factor receptor pathway (EGFR) (p =​ 7.9E-04), and type 1 
diabetes (p =​ 1.5E-03).

We next performed an integrative meta-analysis of all datasets using the meta-analysis tool in NextBio (See 
Methods). NAMPT was identified as the most significant gene with differential expression in blood of untreated 
PD and MDD patients across all four datasets (Fig. 4a). Specifically, NAMPT was upregulated in both datasets 
from untreated PD patients and in one out of the two MDD datasets (Fig. 4a). The top 20 genes identified in the 
meta-analysis are listed in Table 2 and the complete list is provided in Supplementary Table S1.

Biological pathways altered across the PD and MDD datasets were determined using a rank-based enrich-
ment statistical analysis and the Molecular Signatures Database (MSigDB) in NextBio. Shared genes iden-
tified in meta-analysis were enriched in several pathways including cytokine signaling, lipid metabolism, 
nucleotide-binding oligomerization domain-like receptors 1 and 2 (NOD1/2) signaling, insulin signaling, glucose 
metabolism, lysosome, nicotinamide metabolism, type 1 diabetes, spliceosome and protein folding (Fig. 5). Most 
of the overrepresented biological pathways were upregulated in both MDD and PD. Genes related to splicing and 
protein folding appeared to be upregulated in MDD but downregulated in PD.

Biomarker evaluation in de novo PD patients.  In order to confirm the results from the meta-analysis 
and network analysis, we tested NAMPT mRNA using real time quantitative polymerase chain reaction 
(RT-qPCR) assays in blood samples from early stage and drug naïve PD patients and healthy controls (HC) 
nested in Parkinson’s Progression Markers Initiative (PPMI). Demographic and clinical characteristics of study 
participants are provided in Table 3. Statistical comparisons of demographic and clinical characteristics for this 
subset of participants have been published elsewhere15. Briefly, there were no significant differences in mean age 
and sex distribution between PD and HC (Table 3). PD patients had a small but significantly less years of educa-
tion compared to HC (p =​ 0.02)15. RT-qPCR assays revealed that the relative abundance of NAMPT mRNA was 
upregulated in PD patients compared to HC (p =​ 0.0008) (Fig. 4b). This result was sustained after adjusting for 
covariates including age, sex, education and RNA integrity using a general linear model (p =​ 0.0006). Pearson cor-
relation analysis demonstrated that relative abundance of NAMPT mRNA did not correlate with any of the clini-
cal variables including Hoehn & Yahr (p =​ 0.26), Movement Disorder Society-sponsored revision of the Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) total (p =​ 0.86), MDS-UPDRS part I (p =​ 0.24), MDS-UPDRS 
part I patient questionnaire (p =​ 0.21), MDS-UPDRS part II patient questionnaire (p =​ 0.80), MDS-UPDRS part 
III patient questionnaire (p =​ 0.93), and University of Pennsylvania Smell Identification Test (UPSIT) (p =​ 0.24). 
Correlation of NAMPT mRNA with the Geriatric depression scale (GDS) trended toward significance but was 
weak (r =​ 0.13, p =​ 0.07). Receiver operating characteristic curve (ROC) analysis resulted in an area under the 
curve (AUC) value of 0.63 (Fig. 4c).

GEO accession no. No. of samples Description Platform Reference

GSE54536 PD =​ 4; HC =​ 4 Untreated sporadic PD Patients 
(mean Hoehn and Yahr stage =​ 1) Ilumina HT-12 V4 45

GSE72267 PD =​ 40; HC =​ 19 Untreated sporadic PD (mean Hoehn 
and Yahr stage =​ 1.4)

Affymetrix Human Genome 
U133A 2.0 Array 16

GSE32280 MDD =​ 8; HC =​ 8 Transcription profiling of blood from 
MDD and HC subjects.

Affymetrix Human Genome 
U133 Plus 2.0 Array Unpublished

GSE46743 MDD =​ 69; HC =​ 91, males Transcription profiling of blood from 
MDD and HC subjects. Illumina HumanHT-12 V3.0 Unpublished

Table 1.   Microarray datasets in blood of untreated PD and MDD patients.
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Figure 1.  Integrative transcriptomic and network analysis. Microarray datasets from PD and MDD 
were downloaded from NextBio Research. Differential gene expression and microarray meta-analysis were 
performed using NextBio. Differentially expressed genes shared between PD and MDD were analyzed using 
network and pathway analysis in GeneMANIA. The most significant gene ranked in meta-analysis and in 
network analysis was tested in RT-qPCR assays in RNA samples from blood of early stage and drug naïve PD 
patients and HC nested in PPMI.

Figure 2.  Venn diagram analysis. Venn diagram analysis of differentially expressed genes in blood microarrays 
of untreated PD and MDD patients identified NAMPT as the only overlapping gene across all four datasets.
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Building a non-invasive diagnostic model for PD.  We next sought to build a non-invasive diagnostic 
model for PD by integrating the results from our RNA biomarkers with the UPSIT clinical test, which has been 
shown to be a highly predictive indicator of neurodegeneration31. UPSIT is a commercially available test that 
consists of a scratch and sniff exam, which can be self-administered to test an individual’s olfactory function32. 
We performed a forward step-wise linear discriminant analysis to achieve the highest sensitivity and specificity 
(Methods). We first combined our RNA biomarkers including NAMPT and the coatomer protein complex subu-
nit zeta 1 (COPZ1), a blood RNA biomarker replicated previously in the same subset of samples from Parkinson’s 
Progression Markers Initiative (PPMI)15. Using both markers individually and in combination resulted in an 
overall diagnostic accuracy of 58% and COPZ1 was removed from the model (Supplementary Tables S2–S5).

We next combined both RNA markers with UPSIT scores. Based on this analysis, UPSIT and NAMPT mRNA 
were capable to distinguish PD patients from HC, independently of sex and age, with an overall diagnostic 
accuracy of 86% (90% sensitivity, 82% specificity) (Supplementary Tables S6 and S7). COPZ1, age, and sex were 
excluded from the model. Using UPSIT scores alone, PD patients were identified with an overall diagnostic accu-
racy of 84% (91% sensitivity, 80% specificity) (Supplementary Table S8), indicating the limited contribution of 
NAMPT mRNA to the classification model.

Figure 3.  Network analysis of shared genes in PD and MDD. Gene network analysis was performed in 
GeneMANIA. Shared genes between PD and MDD are displayed in black circles and other genes with the 
greater number of interactions are displayed in gray circles. The sizes of the gray nodes represent the degree 
of association with the input genes (i.e, smaller size represents low connectivity). Purple lines indicate 
coexpression, blue lines indicate pathway, pink lines show physical interactions, green lines are genetic 
interactions. NAMPT, highlighted in green, was the only common gene across all the datasets.
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Discussion
Mounting evidence suggests that depression plays an important role in the pathogenesis of PD. Despite the 
increasing evidence from epidemiological studies, the molecular mechanisms linking both diseases remain 
unknown. Several hypotheses have been proposed to explain the relationship between depression and PD. For 
example, the “serotonin hypothesis” is based upon the finding that serotonin activity is lower in the brains of 
patients with depression and PD compared to healthy individuals33,34. Another hypothesis, the Braak hypothesis, 
states that alpha synuclein, a central protein in the pathogenesis of PD, is sequentially accumulated in the raphe 
nuclei, where serotonin is released, and later in the substantia nigra, where dopamine neurons control move-
ment35. Lastly, it has been proposed that proinflammatory cytokines cause alterations in serotonin and dopamine 
neurotransmission leading to depression and PD36. Despite the accumulating evidence, the precise mechanism 
underlying the association between depression and PD remains unknown. Therefore, a system-level understand-
ing of PD and depression may lead to novel diagnostic and therapeutic approaches.

To this end, we employed an integrated transcriptomic and network analysis to identify shared dysregulated 
pathways and molecular networks in MDD and PD. Because drugs to treat PD or depression may affect gene 
expression changes in blood, we used microarray datasets from drug naïve PD and MDD patients. Network anal-
ysis revealed that shared genes between PD and MDD datasets were enriched in pathways related to the immune 
system, adipocytokine signaling, EGFR pathway, and type 1 diabetes. In this context, growing evidence suggests 
that inflammation and diabetes may be involved in the pathogenesis of PD27,28,37–39. Similarly, increased inflam-
mation has been associated with decreased corticostriatal functional connectivity in depression40 and elevated 
levels of inflammatory cytokines including interleukins IL-6, IL-1β​, and tumor necrosis factor (TNF) have been 
found in serum of MDD patients compared to non-depressed subjects41. Low plasma levels of epidermal growth 
factor (EGF) have been associated with cognitive decline in PD patients42,43. Likewise, increased plasma levels 
of EGF have been found in MDD patients compared to non-depressed controls21. Thus, EGF may be a useful 
biomarker for PD and depression.

Figure 4.  Evaluation of NAMPT mRNA in PD. (a) Meta-analysis results for NAMPT mRNA across the four 
PD (green) and MDD (blue) datasets used in this study. NAMPT was significantly upregulated in both datasets 
from untreated PD patients compared to HC. (b) RT-qPCR assays were used to confirm the results from the 
meta-analysis. Relative abundance of NAMPT mRNA in blood of 99 PD patients (green) compared to 101 HC 
(white) in samples obtained from PPMI. The geometric mean of two reference genes, GAPDH and PGK1, were 
used to normalize for input RNA. A Student t-test (two-tailed) was used to assess the significance between PD 
and controls. Error bars represent 95% confidence interval. A p-value of 0.05 or less was regarded as significant 
(c) ROC analysis of NAMPT resulted in an AUC value of 0.63.
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We next performed an integrative transcriptomic meta-analysis of four blood microarrays from untreated PD 
and MDD patients. Consistent with the results from the network analysis, genes identified in the meta-analysis 
were enriched in several pathways including cytokine signaling, lipid metabolism, NOD1/2 signaling, insulin sig-
naling, glucose metabolism, lysosome, nicotinamide metabolism, type 1 diabetes, spliceosome and protein fold-
ing (Fig. 5). Most of these pathways appeared to be dysregulated in the same direction in both PD and MDD, thus 
reinforcing the numerous epidemiological studies that have shown a positive association between both diseases 
(Fig. 5)5,6,7–11. Notably, NOD1/2 signaling, important for the induction of inflammatory processes, is upregulated 
across all datasets. This is not surprising since the increased expression levels of inflammatory molecules are 
prominent features of both PD and MDD and are thought to play a causative role in both diseases39–41.

Gene Gene Description Specificity
Overall 

Gene score

NAMPT Nicotinamide phosphoribosyltransferase 4 out of 4 331.1

LILRA5 Leukocyte immunoglobulin-like receptor, subfamily A 
(with TM domain), member 5 3 out of 4 291.3

LTBP3 Latent transforming growth factor beta binding protein 3 3 out of 4 232.1

EGR1 Early growth response 1 2 out of 4 199.0

CXCL5 Chemokine (C-X-C motif) ligand 5 2 out of 4 197.5

DUSP6 Dual specificity phosphatase 6 2 out of 4 190.6

IL1RN Interleukin 1 receptor antagonist 2 out of 4 185.2

MNDA Myeloid cell nuclear differentiation antigen 2 out of 4 182.7

GNB5 Guanine nucleotide binding protein (G protein), beta 5 2 out of 4 182.6

MS4A7 Membrane-spanning 4-domains, subfamily A, member 7 2 out of 4 182.2

MAN1C1 Mannosidase, alpha, class 1C, member 1 2 out of 4 181.3

CLEC7A C-type lectin domain family 7, member A 2 out of 4 179.0

STAP1 Signal transducing adaptor family member 1 2 out of 4 178.8

CFLAR CASP 8 and FADD-like apoptosis regulator 2 out of 4 176.7

LMO4 LIM domain only 4 2 out of 4 176.4

FOS FBJ murine osteosarcoma viral oncogene homolog 2 out of 4 176.0

PATL2 Protein associated with topoisomerase II homolog 2 
(yeast) 2 out of 4 174.9

RASSF4 Ras association (RalGDS/AF-6) domain family member 4 2 out of 4 173.9

IL18RAP Interleukin 18 receptor accessory protein 2 out of 4 173.1

TPCN2 Two pore segment channel 2 2 out of 4 172.9

Table 2.   Top 20 genes identified in meta-analysis of PD and MDD datasets. Specificity indicates the number 
of datasets where the gene was significantly differentially expressed. The overall gene score is calculated from a 
non-parametric ranking in NextBio.

Figure 5.  Shared dysregulated pathways in MDD and PD. Biological and functional analysis of differentially 
expressed genes in the MDD and PD datasets used in this study was performed using the Molecular Signatures 
Database (MSigDB) in NextBio. Differentially expressed genes in each dataset were enriched in the canonical 
pathways shown in this table (MSigDB). Red and blue arrows indicate upregulation and downregulation, 
respectively. n.s indicates not significant.
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Genes involved in protein misfolding, a central mechanism in the pathogenesis of PD, appeared to be upreg-
ulated in MDD datasets but downregulated in PD. To the best of our knowledge, dysregulation of this pathway 
has not been documented in MDD. Similarly, genes involved in the spliceosome were upregulated in MDD and 
downregulated in PD (Fig. 5). In this context, aberrant splicing has been implicated in both PD13,14,22,44,45 and 
MDD46. Nonetheless, the pathway divergence observed in protein folding and splicing in MDD and PD warrants 
further investigation.

Meta-analysis identified NAMPT mRNA as the most significant gene dysregulated in blood of PD and MDD 
patients. Specifically, NAMPT mRNA was significantly upregulated in blood of PD patients compared to HC in 
both datasets from PD patients. NAMPT is a regulator of the intracellular nicotinamide adenine dinucleotide 
(NAD), an essential coenzyme involved in the cellular oxidative stress response. Recently, treatment with an enzy-
matic product of NAMPT protected against 6-hydroxydopamine (6-OHDA) neurotoxicity in vitro, thus suggest-
ing a novel therapeutic strategy for PD47. Interestingly, altered levels of extracellular NAMPT are associated with 
several metabolic conditions including obesity, non-alcoholic fatty liver disease, and type 2 diabetes29. Further, 
NAMPT is an adipocytokine secreted by visceral fat tissues with insulin-mimetic effects48 and its mRNA expres-
sion is stimulated by factors associated with insulin resistance such as IL-6, dexamethasone, growth hormone, 
and TNF29. In this regard, insulin resistance has been associated with PD27,28 and drug naïve PD patients have 
been found to have glucose levels characteristic of insulin resistance15. Recently, several studies have identified 
genetic overlap between diabetes and MDD49,50. Thus, diabetes may play an important role in the pathogenesis of 
both PD and MDD.

We next evaluated NAMPT as a potential biomarker for PD using blood samples from PD patients and HC 
nested in PPMI. Relative abundance of NAMPT levels were significantly increased in early stage drug naïve 
PD patients compared to HC, although a substantial overlap in expression levels between the two groups was 
observed. The AUC value assessed by ROC curve analysis was 0.63 thus demonstrating a low diagnostic capac-
ity. Nonetheless, this diagnostic capacity is similar to other RNA biomarkers that have been tested in blood of 
untreated PD patients. For instance, relative abundance of COPZ1 and synuclein alpha (SNCA) mRNAs were 
differentially expressed in PD patients compared to HC nested in PPMI15,51. The reported AUC values for COPZ1 
and SNCA in PPMI were 0.60 and 0.58, respectively. Besides RNA markers, reduced plasma levels of apolipopro-
tein A1 (APOA1) were confirmed in PPMI17. Despite this progress, none of these biomarkers have achieved the 
optimal diagnostic capacity to be translated into the clinical setting.

Integration of omics approaches with clinical information has the potential to improve the diagnosis of PD. 
Recently, an integrative model including genetic risk factors, demographic information and olfactory function 
using the UPSIT scores, correctly distinguished early stage untreated PD patients from HC nested in PPMI with 
83% sensitivity and 90% specificity31. Of note, the classification model using UPSIT scores alone was highly 
accurate compared to the integrative model31. Similarly, we combined our biomarker expression data with UPSIT 
scores and achieved comparable results. Our classification model including UPSIT scores and NAMPT mRNA 
were capable to distinguish PD patients from HC with 90% sensitivity and 82% specificity. Nonetheless, using 
UPSIT scores alone PD patients were classified with 91% sensitivity and 80% specificity thereby demonstrating 
the limited contribution of NAMPT mRNA to the model. In this study, like the integrative model proposed by 
Nalls et al.31, UPSIT test alone is individually strong to distinguish PD patients from HC. Despite the high diag-
nostic accuracy afforded by UPSIT, olfactory dysfunction is present in atypical parkinsonian disorders and other 
neurodegenerative diseases including Alzheimer’s disease and cerebellar ataxia52,53. Thus, olfactory dysfunction 
is not restrictive to PD and therefore, UPSIT analysis alone is not specific enough to overcome the high misdiag-
nosis rate in PD and other neurodegenerative disorders.

The search for a non-invasive biomarker with the optimal sensitivity and specificity continue to be a major 
challenge in the field. We expect that a combination of protein and RNA markers will significantly improve 
the diagnosis of untreated PD patients. In addition, it will be important to evaluate NAMPT mRNA in larger 

Characteristic HC (n = 101) PD (n = 99) P valuea

Age, mean (SD) [95% CI], y 61 (10) [59–63] 63 (9) [61–65] 0.19

Female/male, No. (% male) 45/56 (55.4) 49/50 (50.5) 0.57b

Education, mean (SD) [95% CI], y 16.2 (2.9) [15.6–16.8] 15.1 (3.2) [14.4–15.7] 0.02

Disease duration, media (range), months n/a 4 (1–36) n/a

Hoehn and Yahr stage, mean (SD) 0.009 (0.09) 1.44 (0.50) <​0.001

MDS-UPDRS total 4.87 (4.41) 31.79 (12.41) <​0.001

MoCA, mean (SD) [95% CI] 28.23 (1.07) [28.02–28.44] 25.98 (2.53) [25.48–26.48] <​0.001

UPSIT score, mean (SD)[95% CI] 34.00 (4.86) [33.04–34.96] 21.08 (8.12) [19.46–22.70] <​0.0001

GDS score, mean (SD) [95% CI] 1.27 (1.89) [0.89–1.64] 2.15 (2.48) [1.64–2.67] <​0.007

SCOPA, mean (SD) [95% CI] 5.86 (3.28) [5.21–6.51] 9.27 (5.40) [8.16–10.38] <​0.0001

Table 3.   Comparison of demographic and clinical characteristics between PD patients and HC. 
Abbreviations: CI =​ 95% confidence interval; GDS =​ Geriatric Depression Scale; HC =​ healthy controls; 
MoCA =​ Montreal Cognitive Assessment; MDS-UPDRS =​ Movement Disorder Society-sponsored revision 
of the Unified Parkinson’s Disease Rating Scale; PD =​ Parkinson’s disease; SCOPA =​ Scale for Outcomes in 
Parkinson’s disease for Autonomic Symptoms SD =​ standard deviation; y =​ years. UPSIT =​ University of 
Pennsylvania Smell Identification Test. aBased on a Student t-test. bBased on chi-square test (X2).
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prospective longitudinal studies and in at risk populations for PD. Further, NAMPT may be an early indicator of 
neurodegeneration in MDD patients. Therefore, future studies will seek to evaluate NAMPT in blood of MDD 
patients and PD patients with comorbid MDD.

Methods
Microarray meta-analysis and network analysis.  We used the curated database NextBio Research 
(Illumina Inc, CA, USA) to search gene expression studies in PD and MDD. Microarray studies using RNA 
prepared from human blood from untreated PD, MDD patients and healthy controls at baseline were used 
for subsequent analysis. Using the search terms “Parkinson’s disease”, “blood”, “depression”, “major depression 
disorder”, “transcriptional profiling” we identified 4 microarrays studies that meet our inclusion criteria as of  
March 01, 2016. Description of microarray datasets included in this study is provided in Table 1. Differentially 
expressed genes were extracted from NextBio. Negative values, if any, were replaced with the smallest positive 
number in the dataset. Statistical analyses were performed on log scale data. Genes whose mean normalized test 
and control intensities were both less than the 20th percentile of the combined normalized signal intensities were 
removed. Microarray meta-analysis was performed for PD and MDD datasets using the meta-analysis tool in 
NextBio that uses a normalized ranking approach, which enables comparability across gene expression datasets 
from different studies, platforms, and methods by removing dependence on absolute values of fold changes54,55. 
Ranks are assigned to each gene signature based on the magnitude of fold-change and then normalized to elimi-
nate any bias owing to varying platform size. Only genes with a p-value of 0.05 or less and an absolute fold-change 
of 1.2 or greater were regarded as significantly differentially expressed. This meta-analysis tool has been used by 
others to identify dysregulated pathways shared in mouse and human studies55. Network analysis was performed 
using GeneMANIA30 in Cytoscape v.3.0.3. We used the default settings to include the 10 genes that have the 
highest number of interactions and advanced settings to include co-expression, physical, genetic, pathways, and 
transcription factor interactions.

Study Participants.  The parent cohort for this study is the PPMI, a 5-year observational, longitudinal, and 
international study comprising over 400 untreated and early stage PD patients and nearly 200 HC recruited from 
32 clinical sites in Australia, United States of America (USA) and Europe. A power analysis based on each bio-
marker from our previous studies15,22,25, indicated that a minimum fold change of 1 between PD and controls 
could be detected with a 95% power using 100 samples per group. We selected a total of 200 participants includ-
ing 99 PD patients and 101 age and sex matched HC nested in the PPMI study. PD patients that had a dopamine 
transporter deficit assessed by DaTscan imaging and with a Hoehn and Yahr stage I or II were chosen for this 
study. HC were cognitively normal, free of neurological disorder, and with no detectable dopamine transporter 
deficit. Demographic and clinical characteristics about the study participants are shown in Table 3. This table has 
been slightly modified from our previous publication15. Methods were conducted in accordance with the rules 
and guidelines of The Institutional Review Boards of Rosalind Franklin University of Medicine and Science. The 
Institutional Review Boards of Rosalind Franklin University of Medicine and Science and all sites participating 
in the PPMI study approved the study. The list of all participant clinical sites can be found at the PPMI website 
(http://www.ppmi-info.org/about-ppmi/ppmi-clinical-sites/). Written informed consent was obtained from all 
participants before inclusion in the study. All participants were evaluated for clinical features by investigators at 
each participant site. More information about study participants have been described elsewhere in refs. 15 and 
56 and at the PPMI website (http://www.ppmi-info.org/). To access the data from this manuscript or to request 
samples visit the PPMI website (http://www.ppmi-info.org/access-data-specimens/request-specimens/).

Blood sample collection and handling.  Whole blood was collected at baseline during 8 am–10 am, at 
each participant site as described in the PPMI biologics manual (http://www.ppmi-info.org/). Patients were asked 
to fast overnight before blood collection. PAXgene blood RNA tubes were used according to the study protocol 
as described in the PPMI biologics manual and elsewhere in ref. 15. Briefly, PAXgene tubes containing blood 
were immediately inverted gently 8–10 times to mix the samples. Tubes were placed upright and incubated for 
24 hrs at room temperature before freezing. After the 24 hrs incubation period, PAXgene blood tubes were stored 
at −​80 °F until shipment. Frozen samples were sent to the PPMI Biorepository Core laboratories for RNA extrac-
tion. Blinded frozen samples were shipped in dry ice to Rosalind Franklin University of Medicine for the studies 
described herein.

Quantitative Polymerase Chain Reaction Assays.  Samples with RNA integrity values >​7.0 and absorb-
ance 260/280 between 1.2 and 3.0 were used in this study. One microgram of RNA was reverse transcribed into 
cDNA using a mix of random hexamer primers (High Capacity cDNA Synthesis Kit, Life Technologies, USA). 
RT-qPCR assays were performed using the DNA engine Opticon 2 Analyzer (Bio-Rad Life Sciences, Hercules, 
CA, USA). Each 25 microliters reaction contained Power SYBR Green (Life Technologies, USA) and primers at a 
concentration of 0.05 mM. Samples were run in triplicates and non-template control was used in all experiments. 
The geometric mean of two reference genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phos-
phoglycerate kinase 1 (PGK1), were used to normalize for input RNA. Primer sequences for PGK1 and GAPDH 
have been published elsewhere in refs 57 and 13. Primer sequences used for NAMPT are as follows: forward, 
5′​-CTATAAACAATATCCACCCAACACAAG-3′​, reverse 5′​-GTTTCCTCATATTTCACCTTCCTTAATT-3′​. 
Samples were randomly distributed on PCR plates to avoid run-order bias. RT-qPCR amplification conditions 
have been reported in our previous studies13,14.

http://www.ppmi-info.org/about-ppmi/ppmi-clinical-sites/
http://www.ppmi-info.org/
http://www.ppmi-info.org/access-data-specimens/request-specimens/
http://www.ppmi-info.org/
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Statistical Analysis.  Statistical analysis was performed using STATISTICA 12 (StatSoft, OK, USA) and 
GraphPad Prism version 5 (GraphPad Software, Inc., CA, USA). A Student-t-test (unpaired, two tailed) was used 
to assess the differences between two groups and a chi-square test was used to analyze categorical data. Pearson 
correlation was performed for all correlations. The relative abundance of each biomarker was independently 
assessed using a general linear regression model adjusting for age, sex, and educational level. ROC analysis was 
performed to determine the diagnostic accuracy. We performed a forward step-wise linear discriminant analysis 
as demonstrated previously13,14 using our biomarker expression data, UPSIT scores and potential confounding 
variables including age and sex in STATISTICA 12 (StatSoft, OK, USA). A p-value of 0.05 or less was considered 
significant.
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